University of Massachusetts Department of Mathematics and Statistics Advanced Exams in Geometry August, 2002

Do 5 out of the following 7 questions. Indicate clearly what questions you want to have graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1. Let $M=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be a 2-torus and consider the trivial rank n bundle $V=M \times \mathbb{R}^{n}$ over M. Denote by d the trivial connection on V (directional derivative of \mathbb{R}^{n}-valued functions). Let $\nabla=d+A d x+B d y$ be a connection on V where A, B are real $n \times n$ matrices and $d x, d y$ are the coordinate differentials on \mathbb{R}^{2} which are well defined closed (but not exact) 1-forms on M. Show :
(1) ∇ is flat if and only if the matrices A and B commute, i.e., $[A, B]=0$.
(2) Assuming ∇ to be flat, calculate the holonomy representation $H: \mathbb{Z}^{2} \rightarrow$ $\mathbf{G l}(n, \mathbb{R})$.
(3) Assuming ∇ to be flat then ∇ admits a non-trivial parallel section if and only if A and B have a common kernel.

Problem 2. Let $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ and define $\mathbf{S p}(n)=\left\{A \in \mathbf{G l}(2 n, \mathbb{R}), A J A^{T}=\right.$ $J, \operatorname{det} A=1\}$. Show that $\mathbf{S p}(n)$ is a Lie group and determine its dimension and Lie algebra.

Problem 3. Let M be a compact manifold.
(1) Explain what is meant by a volume form on M.
(2) If M is $2 n$-dimensional we call M symplectic if there exist a closed 2 -form $\omega \in \Omega^{2}(M, \mathbb{R})$, i.e., $d \omega=0$, so that $\omega \wedge \cdots \wedge \omega$ (n-times) is a volume form on M. Show that $S^{2 n}$ is not symplectic for $n>1$.

Problem 4.

(1) Let F_{1} and F_{2} be homogeneous polynomials in the variables x_{0}, \ldots, x_{n}, of degree d_{1} and d_{2}, respectively. Suppose moreover that the matrix $\left(\frac{\partial F_{i}}{\partial x_{j}}\right)_{i, j}$ has rank 2 everywhere in $\mathbb{R}^{n+1} \backslash\{0\}$. Prove that the common zero set

$$
M=\left\{\left[x_{0}: x_{1}, \cdots: x_{n}\right] \in \mathbb{R P}^{n}: F_{1}(x)=F_{2}(x)=0\right\}
$$

is a smooth submanifold of $\mathbb{R P}^{n}$.
(2) Let $F_{1}\left(x_{0}, \ldots, x_{3}\right)=x_{0} x_{3}-x_{1} x_{2}, F_{2}\left(x_{0}, \ldots, x_{3}\right)=x_{1}^{2}-x_{0} x_{2}$. Prove that

$$
M=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \in \mathbb{R P}^{3}: F_{1}(x)=F_{2}(x)=0\right\}
$$

has a unique singular point P. That is, M is not smooth but there exists a point $P \in \mathbb{R P}^{3}$ such that $M \backslash\{P\}$ is a smooth submanifold of $\mathbb{R} \mathbb{P}^{3}$. What is the dimension of $M \backslash\{P\}$? Describe M.
(3) Let $F_{3}\left(x_{0}, \ldots, x_{3}\right)=x_{2}^{2}-x_{1} x_{3}$ and F_{1}, F_{2} as above. Prove that

$$
M^{\prime}=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \in \mathbb{R}^{3}: F_{1}(x)=F_{2}(x)=F_{3}(x)=0\right\}
$$

is a smooth submanifold of $\mathbb{R} \mathbb{P}^{3}$. What is the dimension of M^{\prime} ? Describe M^{\prime}.

Problem 5. Let $\pi: V \rightarrow \mathbb{R} \mathbb{P}^{n}$ be the tautological line bundle whose fiber over $[x] \in \mathbb{R P}^{n}$ is given by the line

$$
V_{[x]}=\mathbb{R} x \subset \mathbb{R}^{n+1}
$$

As usual, we view points in $\mathbb{R}^{p} \mathbb{P}^{n}$ as equivalence classes in $\mathbb{R}^{n+1} \backslash\{0\}$.
(1) Let $U_{i}=\left\{[x] \in \mathbb{R}^{p n}: x_{i} \neq 0\right\}$. Show that V is trivial over U_{i}.
(2) Compute the transition functions $g_{i j}$ relative to the covering $\left\{U_{i}\right\}, i=$ $0, \ldots, n$.
(3) Find all the global sections of the dual bundle V^{*}.

Problem 6.

Let $M^{n-1} \subset \mathbb{R}^{n}$ be a hypersurface and denote by $V \rightarrow M$ its normal line bundle. Show that V is trivial if and only if M is orientable. What can you say for a hypersurface in a non-orientable manifold?
Problem 7. Let C be the connected circular cone in \mathbb{R}^{3} of opening angle α without its vertex.
(1) Find a domain $D \subset \mathbb{R}^{2}$ and an immersion $f: D \rightarrow \mathbb{R}^{3}$ so that $f(D)=C \backslash L$ where L is one of the generating lines of the cone and the induced metric $<d f, d f>=d x^{2}+d y^{2}$ is the standard flat metric on D.
(2) Find all the geodesics on C.
(3) Show that the Levi-Civita connection on C is flat and parallel transport is path dependent. In contrast, parallel transport on D is path independent.

