University of Massachusetts **Department of Mathematics and Statistics Advanced Exams in Geometry** August, 2002

Do 5 out of the following 7 questions. Indicate clearly what questions you want to have graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1. Let $M = \mathbb{R}^2/\mathbb{Z}^2$ be a 2-torus and consider the trivial rank n bundle $V = M \times \mathbb{R}^n$ over M. Denote by d the trivial connection on V (directional derivative of \mathbb{R}^n -valued functions). Let $\nabla = d + Adx + Bdy$ be a connection on V where A, B are real $n \times n$ matrices and dx, dy are the coordinate differentials on \mathbb{R}^2 which are well defined closed (but not exact) 1-forms on M. Show :

- (1) ∇ is flat if and only if the matrices A and B commute, i.e., [A, B] = 0.
- (2) Assuming ∇ to be flat, calculate the holonomy representation $H: \mathbb{Z}^2 \to$ $\mathbf{Gl}(n,\mathbb{R}).$
- (3) Assuming ∇ to be flat then ∇ admits a non-trivial parallel section if and only if A and B have a common kernel.

Problem 2. Let $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$ and define $\mathbf{Sp}(n) = \{A \in \mathbf{Gl}(2n, \mathbb{R}), AJA^T = J, \text{ det } A = 1\}$. Show that $\mathbf{Sp}(n)$ is a Lie group and determine its dimension and Lie algebra.

Problem 3. Let M be a compact manifold.

- (1) Explain what is meant by a volume form on M.
- (2) If M is 2n-dimensional we call M symplectic if there exist a closed 2-form $\omega \in \Omega^2(M,\mathbb{R})$, i.e., $d\omega = 0$, so that $\omega \wedge \cdots \wedge \omega$ (n-times) is a volume form on M. Show that S^{2n} is not symplectic for n > 1.

Problem 4.

(1) Let F_1 and F_2 be homogeneous polynomials in the variables x_0, \ldots, x_n , of degree d_1 and d_2 , respectively. Suppose moreover that the matrix $(\frac{\partial F_i}{\partial x_i})_{i,j}$ has rank 2 everywhere in $\mathbb{R}^{n+1} \setminus \{0\}$. Prove that the common zero set

$$M = \{ [x_0 : x_1, \dots : x_n] \in \mathbb{RP}^n : F_1(x) = F_2(x) = 0 \}$$

is a smooth submanifold of \mathbb{RP}^n .

(2) Let $F_1(x_0, \ldots, x_3) = x_0 x_3 - x_1 x_2$, $F_2(x_0, \ldots, x_3) = x_1^2 - x_0 x_2$. Prove that

$$M = \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{RP}^3 : F_1(x) = F_2(x) = 0 \}$$

has a unique singular point P. That is, M is not smooth but there exists a point $P \in \mathbb{RP}^3$ such that $M \setminus \{P\}$ is a smooth submanifold of \mathbb{RP}^3 . What is the dimension of $M \setminus \{P\}$? Describe M. (3) Let $F_3(x_0, \ldots, x_3) = x_2^2 - x_1 x_3$ and F_1 , F_2 as above. Prove that

$$M' = \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{RP}^3 : F_1(x) = F_2(x) = F_3(x) = 0 \}$$

is a smooth submanifold of \mathbb{RP}^3 . What is the dimension of M'? Describe M'.

Problem 5. Let $\pi : V \to \mathbb{RP}^n$ be the tautological line bundle whose fiber over $[x] \in \mathbb{RP}^n$ is given by the line

$$V_{[x]} = \mathbb{R}x \subset \mathbb{R}^{n+1}$$

As usual, we view points in \mathbb{RP}^n as equivalence classes in $\mathbb{R}^{n+1} \setminus \{0\}$.

- (1) Let $U_i = \{ [x] \in \mathbb{RP}^n : x_i \neq 0 \}$. Show that V is trivial over U_i .
- (2) Compute the transition functions g_{ij} relative to the covering $\{U_i\}, i = 0, \ldots, n$.
- (3) Find all the global sections of the dual bundle V^* .

Problem 6.

Let $M^{n-1} \subset \mathbb{R}^n$ be a hypersurface and denote by $V \to M$ its normal line bundle. Show that V is trivial if and only if M is orientable. What can you say for a hypersurface in a non-orientable manifold?

Problem 7. Let C be the connected circular cone in \mathbb{R}^3 of opening angle α without its vertex.

- (1) Find a domain $D \subset \mathbb{R}^2$ and an immersion $f: D \to \mathbb{R}^3$ so that $f(D) = C \setminus L$ where L is one of the generating lines of the cone and the induced metric $\langle df, df \rangle = dx^2 + dy^2$ is the standard flat metric on D.
- (2) Find all the geodesics on C.
- (3) Show that the Levi-Civita connection on C is flat and parallel transport is path dependent. In contrast, parallel transport on D is path independent.