Analysis Qualifying Examination

Department of Mathematics and Statistics University of Massachusetts

January 2022

This exam consists of eight equally weighted problems (ten points each): a passing grade is 65% (52/80), including at least five "essentially correct" problems ($\approx 7.5/10$).

Clearly show your work, explicitly stating or naming results that you use; justify use of named theorems by verifying necessary conditions.

Please work legibly and clearly label each page/file of your exam with your name.

1. Prove the following variant of Egoroff's Theorem for an arbitrary measure space (X, \mathcal{M}, μ) : Suppose g, f, f_1, f_2, \ldots are measurable functions on Xwith $f_n \to f$ almost everywhere, $|f_n| \leq g$ for all n, and $g \in L^1(X)$. Then for every $\epsilon > 0$ there is $E \in \mathcal{M}$ such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^c (the complement of E).

Hint: Prove that $\lim_{n\to\infty} E_n(k) = 0$ for each positive integer k, where $E_n(k) = \bigcup_{m=n}^{\infty} \{ |f_m - f| \ge k^{-1} \}.$

- 2. You may assume the conclusion of part (a) in proving part (b) (you don't have to).
 - (a) Suppose \mathcal{B} is a Banach space, \mathcal{S} is a closed proper linear subspace (that is $\mathcal{S} \neq 0$ and $\mathcal{S} \neq \mathcal{B}$), and $f_0 \notin \mathcal{S}$. Show that there is a continuous linear functional $\ell : \mathcal{B} \to \mathbb{R}$ such that $\ell(f) = 0$ for $f \in \mathcal{S}$, $\ell(f_0) = 1$, and $\|\ell\| = 1/d$, where d is the distance from f_0 to \mathcal{S} .
 - (b) Prove that a linear functional $\ell : \mathcal{B} \to \mathbb{R}$ is continuous if and only if $\{f \in \mathcal{B} \text{ s.t. } \ell(f) = 0\}$ is closed.
- 3. The underlying measure space in this problem is \mathbb{R}^d with the Lebesgue measure *m*. Recall that the maximal function (the sup is over all balls

containing x),

$$f^*(x) = \sup_{x \in B} \frac{1}{m(B)} \int_B |f(y)| dy$$

satisfies the estimate $m(\{|f^*| > \alpha\}) \leq A\alpha^{-1} ||f||_{L^1}$ for all $\alpha > 0$ and all $f \in L^1$. Here A is a constant which is independent of α and f.

(a) Prove that there is a constant C (independent of α and f) such that for $f \in L^p \cap L^1$, $p \in (1, \infty)$,

$$m(\{f^* > \alpha\}) \le \frac{C}{\alpha} \int_{\{|f| > \alpha/2\}} |f| dx$$

Hint: Write $f = f_1 + f_2$ where $f_1 = \chi_{\{|f| > \alpha/2\}} f$ and $f_2 = \chi_{\{|f| \le \alpha/2\}} f$.

- (b) Prove that there is a constant M (which is independent of f) such that $\|f^*\|_{L^p} \leq M \|f\|_{L^p}$ for all $f \in L^p \cap L^1$, $p \in (1, \infty)$. Hint: Recall that for any non-negative measurable function F, we have $\int_{\mathbb{R}^d} (F(x))^p dx = \int_0^\infty \lambda(\alpha^{1/p}) d\alpha$, where $\lambda(\alpha) = m(\{|F| > \alpha\})$. You may use this fact and the previous part.
- 4. Let $H = L^2(\mathbb{R}^d)$ with the Lebesgue measure, and let $B : H \times H \to \mathbb{C}$ be sesquilinear (linear in the first component and conjugate linear in the second), and satisfy

$$|B(f,g)| \le C ||f|| ||g|| \tag{1}$$

for some constant C. Recall that as a consequence of the Riesz Representation Theorem, there is a unique bounded linear operator $T: H \to H$ such that $B(f,g) = \langle Tf,g \rangle$ for all $f,g \in H$. Let $B: H \to H$ be given by

$$B(f,g) = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \frac{\widehat{f}(\xi)}{1+|\xi|^2} e^{ix\cdot\xi} d\xi \right) \left(\int_{\mathbb{R}^d} \overline{\widehat{g}(\eta)} \sin(|\eta|) e^{-ix\cdot\eta} d\eta \right) dx$$

where $\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-ix\cdot\xi} f(x) dx$ denotes the Fourier transform. Prove that *B* satisfies the estimate (1) (for some *C* independent of *f*, *g*) and give *T* as above in terms of Fourier transforms and their inverses (you're allowed to be off by factors of 2π).

- 5. Consider the locally integrable function $f : \mathbb{R}^2 \to \mathbb{R}$, given in polar coordinates as $f(r, \theta) = \log r$, where log is the natural logarithm, defined on $(0, \infty)$. Calculate the derivative $(\partial_r^2 + \frac{1}{r}\partial_r)f$ in the distributional sense. Hint: Consider the integral in polar coordinates over the regions $\{0 \le r < \epsilon\}$ and $\{r \ge \epsilon\}$ separately and use integration by parts where needed.
- 6. In this problem each Euclidean space is equipped with the usual Lebesgue measure. Suppose $K : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ satisfies $\int_{\mathbb{R}^m} |K(x,y)| dy \leq C$ for almost every x and $\int_{\mathbb{R}^n} |K(x,y)| dx \leq C$ for almost every y, for some finite constant C. If $p \in (1, \infty)$ prove that

$$TF(x) = \int_{\mathbb{R}^m} K(x, y) f(y) dy$$

defines a bounded linear operator $T: L^p(\mathbb{R}^m) \to L^p(\mathbb{R}^n)$ with $||T|| \leq C$.

7. The two parts of this problem are unrelated.

(a) Prove that there is a constant C > 0 such that for all Schwartz functions $f : \mathbb{R}^d \to \mathbb{R}$,

$$||x_j f||_{L^2} ||\xi_j \widehat{f}||_{L^2} \ge C ||f||_{L^2}^2.$$

Here x_j and ξ_j are the *j*th coordinate function on the spatial and Fourier domain, and $\hat{\cdot}$ denotes the Fourier transform. Hint: Start with $||f||_{L^2}^2$ and integrate by parts.

(b) We say that a subspace $S \subseteq L^2(\mathbb{R}^d)$ is *total* if its orthogonal complement S^{\perp} satisfies $S^{\perp} = \{0\}$. For $f \in L^2(\mathbb{R}^d)$ prove that $S = \{f(x+a) \mid a \in \mathbb{R}^d\}$ is total if and only if $\widehat{f}(\xi) \neq 0$ a.e. (that is, $m(\{\widehat{f}=0\})=0$).

Hint: Convolutions.

8. Let H be a Hilbert space and $T: H \to H$ an isometry, that is, a bounded linear operator with ||Tf|| = ||f|| for all $f \in H$. We will denote the adjoint of T by T^* and the identity map by I. You may use the conclusion of the first part in proving the second part of this problem. (a) Let $S = \{f \in H \mid T(f) = f\}$, $S_* = \{f \in H \mid T^*(f) = f\}$, and $S_1 = \{f \in H \mid f = (I - T)g \text{ for some } g \in H\}$. Prove that $S = S_*$ and $(\overline{S_1})^{\perp} = S$.

Hint: For the first statement in one direction use the fact that for an isometry $T^*T = I$ and for the other consider $\langle f, (I - T^*)f \rangle$.

(b) Let $A_n = \frac{1}{n}(I + T + \dots + T^{n-1})$. Prove that for each $f \in H$ we have

$$\lim_{n \to \infty} \|A_n(f) - P(f)\| = 0,$$

where P denotes the orthogonal projection on S (it is easy to see that S is closed, and you do not need to prove this).

Hint: Decompose $f = f_0 + f_1$ with $f_0 \in S$ and $f_1 \in \overline{S_1}$, and write $f_1 = (f_1 - f_2) + f_2$ where $f_2 \in S_1$ is very close to f_1 . Then consider A_n on each term of the decomposition separately.