Analysis Qualifying Examination

Department of Mathematics and Statistics
University of Massachusetts

January 2022

This exam consists of eight equally weighted problems (ten points each): a passing grade is 65% ($52 / 80$), including at least five "essentially correct" problems ($\approx 7.5 / 10$).

Clearly show your work, explicitly stating or naming results that you use; justify use of named theorems by verifying necessary conditions.

Please work legibly and clearly label each page/file of your exam with your name.

1. Prove the following variant of Egoroff's Theorem for an arbitrary measure space (X, \mathcal{M}, μ) : Suppose $g, f, f_{1}, f_{2}, \ldots$ are measurable functions on X with $f_{n} \rightarrow f$ almost everywhere, $\left|f_{n}\right| \leq g$ for all n, and $g \in L^{1}(X)$. Then for every $\epsilon>0$ there is $E \in \mathcal{M}$ such that $\mu(E)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on E^{c} (the complement of E).
Hint: Prove that $\lim _{n \rightarrow \infty} E_{n}(k)=0$ for each positive integer k, where $E_{n}(k)=\cup_{m=n}^{\infty}\left\{\left|f_{m}-f\right| \geq k^{-1}\right\}$.
2. You may assume the conclusion of part (a) in proving part (b) (you don't have to).
(a) Suppose \mathcal{B} is a Banach space, \mathcal{S} is a closed proper linear subspace (that is $\mathcal{S} \neq 0$ and $\mathcal{S} \neq \mathcal{B}$), and $f_{0} \notin \mathcal{S}$. Show that there is a continuous linear functional $\ell: \mathcal{B} \rightarrow \mathbb{R}$ such that $\ell(f)=0$ for $f \in \mathcal{S}, \ell\left(f_{0}\right)=1$, and $\|\ell\|=1 / d$, where d is the distance from f_{0} to \mathcal{S}.
(b) Prove that a linear functional $\ell: \mathcal{B} \rightarrow \mathbb{R}$ is continuous if and only if $\{f \in \mathcal{B}$ s.t. $\ell(f)=0\}$ is closed.
3. The underlying measure space in this problem is \mathbb{R}^{d} with the Lebesgue measure m. Recall that the maximal function (the sup is over all balls
containing x),

$$
f^{*}(x)=\sup _{x \in B} \frac{1}{m(B)} \int_{B}|f(y)| d y,
$$

satisfies the estimate $m\left(\left\{\left|f^{*}\right|>\alpha\right\}\right) \leq A \alpha^{-1}\|f\|_{L^{1}}$ for all $\alpha>0$ and all $f \in L^{1}$. Here A is a constant which is independent of α and f.
(a) Prove that there is a constant C (independent of α and f) such that for $f \in L^{p} \cap L^{1}, p \in(1, \infty)$,

$$
m\left(\left\{f^{*}>\alpha\right\}\right) \leq \frac{C}{\alpha} \int_{\{|f|>\alpha / 2\}}|f| d x .
$$

Hint: Write $f=f_{1}+f_{2}$ where $f_{1}=\chi_{\{|f|>\alpha / 2\}} f$ and $f_{2}=\chi_{\{|f| \leq \alpha / 2\}} f$.
(b) Prove that there is a constant M (which is independent of f) such that $\left\|f^{*}\right\|_{L^{p}} \leq M\|f\|_{L^{p}}$ for all $f \in L^{p} \cap L^{1}, p \in(1, \infty)$.
Hint: Recall that for any non-negative measurable function F, we have $\int_{\mathbb{R}^{d}}(F(x))^{p} d x=\int_{0}^{\infty} \lambda\left(\alpha^{1 / p}\right) d \alpha$, where $\lambda(\alpha)=m(\{|F|>\alpha\})$. You may use this fact and the previous part.
4. Let $H=L^{2}\left(\mathbb{R}^{d}\right)$ with the Lebesgue measure, and let $B: H \times H \rightarrow \mathbb{C}$ be sesquilinear (linear in the first component and conjugate linear in the second), and satisfy

$$
\begin{equation*}
|B(f, g)| \leq C\|f\|\|g\| \tag{1}
\end{equation*}
$$

for some constant C. Recall that as a consequence of the Riesz Representation Theorem, there is a unique bounded linear operator $T: H \rightarrow H$ such that $B(f, g)=\langle T f, g\rangle$ for all $f, g \in H$. Let $B: H \rightarrow H$ be given by

$$
B(f, g)=\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \frac{\widehat{f}(\xi)}{1+|\xi|^{2}} e^{i x \cdot \xi} d \xi\right)\left(\int_{\mathbb{R}^{d}} \overline{\hat{g}(\eta)} \sin (|\eta|) e^{-i x \cdot \eta} d \eta\right) d x,
$$

where $\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} f(x) d x$ denotes the Fourier transform. Prove that B satisfies the estimate (1) (for some C independent of f, g) and give T as above in terms of Fourier transforms and their inverses (you're allowed to be off by factors of 2π).
5. Consider the locally integrable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, given in polar coordinates as $f(r, \theta)=\log r$, where \log is the natural logarithm, defined on $(0, \infty)$. Calculate the derivative $\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}\right) f$ in the distributional sense. Hint: Consider the integral in polar coordinates over the regions $\{0 \leq r<\epsilon\}$ and $\{r \geq \epsilon\}$ separately and use integration by parts where needed.
6. In this problem each Euclidean space is equipped with the usual Lebesgue measure. Suppose $K: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfies $\int_{\mathbb{R}^{m}}|K(x, y)| d y \leq C$ for almost every x and $\int_{\mathbb{R}^{n}}|K(x, y)| d x \leq C$ for almost every y, for some finite constant C. If $p \in(1, \infty)$ prove that

$$
T F(x)=\int_{\mathbb{R}^{m}} K(x, y) f(y) d y
$$

defines a bounded linear operator $T: L^{p}\left(\mathbb{R}^{m}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ with $\|T\| \leq C$.
7. The two parts of this problem are unrelated.
(a) Prove that there is a constant $C>0$ such that for all Schwartz functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\left\|x_{j} f\right\|_{L^{2}}\left\|\xi_{j} \widehat{f}\right\|_{L^{2}} \geq C\|f\|_{L^{2}}^{2}
$$

Here x_{j} and ξ_{j} are the j th coordinate function on the spatial and Fourier domain, and \uparrow denotes the Fourier transform.
Hint: Start with $\|f\|_{L^{2}}^{2}$ and integrate by parts.
(b) We say that a subspace $S \subseteq L^{2}\left(\mathbb{R}^{d}\right)$ is total if its orthogonal complement S^{\perp} satisfies $S^{\perp}=\{0\}$. For $f \in L^{2}\left(\mathbb{R}^{d}\right)$ prove that $S=$ $\left\{f(x+a) \mid a \in \mathbb{R}^{d}\right\}$ is total if and only if $\widehat{f}(\xi) \neq 0$ a.e. (that is, $m(\{\widehat{f}=0\})=0)$.
Hint: Convolutions.
8. Let H be a Hilbert space and $T: H \rightarrow H$ an isometry, that is, a bounded linear operator with $\|T f\|=\|f\|$ for all $f \in H$. We will denote the adjoint of T by T^{*} and the identity map by I. You may use the conclusion of the first part in proving the second part of this problem.
(a) Let $S=\{f \in H \mid T(f)=f\}, S_{*}=\left\{f \in H \mid T^{*}(f)=f\right\}$, and $S_{1}=\{f \in H \mid f=(I-T) g$ for some $g \in H\}$. Prove that $S=S_{*}$ and $\left(\overline{S_{1}}\right)^{\perp}=S$.
Hint: For the first statement in one direction use the fact that for an isometry $T^{*} T=I$ and for the other consider $\left\langle f,\left(I-T^{*}\right) f\right\rangle$.
(b) Let $A_{n}=\frac{1}{n}\left(I+T+\cdots+T^{n-1}\right)$. Prove that for each $f \in H$ we have

$$
\lim _{n \rightarrow \infty}\left\|A_{n}(f)-P(f)\right\|=0
$$

where P denotes the orthogonal projection on S (it is easy to see that S is closed, and you do not need to prove this).
Hint: Decompose $f=f_{0}+f_{1}$ with $f_{0} \in S$ and $f_{1} \in \overline{S_{1}}$, and write $f_{1}=\left(f_{1}-f_{2}\right)+f_{2}$ where $f_{2} \in S_{1}$ is very close to f_{1}. Then consider A_{n} on each term of the decomposition separately.

