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This exam consists of eight equally weighted problems (ten points each): a
passing grade is 65% (52/80), including at least five “essentially correct”
problems (≈ 7.5/10).

Clearly show your work, explicitly stating or naming results that you use;
justify use of named theorems by verifying necessary conditions.

Please work legibly and clearly label each page/file of your exam with your
name.

1. Prove the following variant of Egoroff’s Theorem for an arbitrary measure
space (X,M, µ): Suppose g, f, f1, f2, . . . are measurable functions on X
with fn → f almost everywhere, |fn| ≤ g for all n, and g ∈ L1(X). Then
for every ε > 0 there is E ∈ M such that µ(E) < ε and fn → f uniformly
on Ec (the complement of E).
Hint: Prove that limn→∞En(k) = 0 for each positive integer k, where
En(k) = ∪∞m=n{|fm − f | ≥ k−1}.

2. You may assume the conclusion of part (a) in proving part (b) (you don’t
have to).

(a) Suppose B is a Banach space, S is a closed proper linear subspace (that
is S 6= 0 and S 6= B), and f0 /∈ S. Show that there is a continuous
linear functional ` : B → R such that `(f) = 0 for f ∈ S, `(f0) = 1,
and ‖`‖ = 1/d, where d is the distance from f0 to S.

(b) Prove that a linear functional ` : B → R is continuous if and only if
{f ∈ B s.t. `(f) = 0} is closed.

3. The underlying measure space in this problem is Rd with the Lebesgue
measure m. Recall that the maximal function (the sup is over all balls
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containing x),

f∗(x) = sup
x∈B

1

m(B)

∫
B
|f(y)|dy,

satisfies the estimate m({|f∗| > α}) ≤ Aα−1‖f‖L1 for all α > 0 and all
f ∈ L1. Here A is a constant which is independent of α and f .

(a) Prove that there is a constant C (independent of α and f) such that
for f ∈ Lp ∩ L1, p ∈ (1,∞),

m({f∗ > α}) ≤ C

α

∫
{|f |>α/2}

|f |dx.

Hint: Write f = f1 + f2 where f1 = χ{|f |>α/2}f and f2 = χ{|f |≤α/2}f .

(b) Prove that there is a constant M (which is independent of f) such that
‖f∗‖Lp ≤M‖f‖Lp for all f ∈ Lp ∩ L1, p ∈ (1,∞).
Hint: Recall that for any non-negative measurable function F , we have∫
Rd(F (x))pdx =

∫∞
0 λ(α1/p)dα, where λ(α) = m({|F | > α}). You may

use this fact and the previous part.

4. Let H = L2(Rd) with the Lebesgue measure, and let B : H × H → C
be sesquilinear (linear in the first component and conjugate linear in the
second), and satisfy

|B(f, g)| ≤ C‖f‖‖g‖ (1)

for some constant C. Recall that as a consequence of the Riesz Representa-
tion Theorem, there is a unique bounded linear operator T : H → H such
that B(f, g) = 〈Tf, g〉 for all f, g ∈ H. Let B : H → H be given by

B(f, g) =

∫
Rd

(∫
Rd

f̂(ξ)

1 + |ξ|2
eix·ξdξ

)(∫
Rd

ĝ(η) sin(|η|)e−ix·ηdη
)
dx,

where f̂(ξ) =
∫
Rd e

−ix·ξf(x)dx denotes the Fourier transform. Prove that
B satisfies the estimate (1) (for some C independent of f , g) and give T as
above in terms of Fourier transforms and their inverses (you’re allowed to
be off by factors of 2π).
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5. Consider the locally integrable function f : R2 → R, given in polar coor-
dinates as f(r, θ) = log r, where log is the natural logarithm, defined on
(0,∞). Calculate the derivative (∂2r + 1

r∂r)f in the distributional sense.
Hint: Consider the integral in polar coordinates over the regions {0 ≤ r < ε}
and {r ≥ ε} separately and use integration by parts where needed.

6. In this problem each Euclidean space is equipped with the usual Lebesgue
measure. Suppose K : Rn × Rm → R satisfies

∫
Rm |K(x, y)|dy ≤ C for

almost every x and
∫
Rn |K(x, y)|dx ≤ C for almost every y, for some finite

constant C. If p ∈ (1,∞) prove that

TF (x) =

∫
Rm

K(x, y)f(y)dy

defines a bounded linear operator T : Lp(Rm)→ Lp(Rn) with ‖T‖ ≤ C.

7. The two parts of this problem are unrelated.

(a) Prove that there is a constant C > 0 such that for all Schwartz functions
f : Rd → R,

‖xjf‖L2‖ξj f̂‖L2 ≥ C‖f‖2L2 .

Here xj and ξj are the jth coordinate function on the spatial and
Fourier domain, and ·̂ denotes the Fourier transform.
Hint: Start with ‖f‖2L2 and integrate by parts.

(b) We say that a subspace S ⊆ L2(Rd) is total if its orthogonal com-
plement S⊥ satisfies S⊥ = {0}. For f ∈ L2(Rd) prove that S =
{f(x + a) | a ∈ Rd} is total if and only if f̂(ξ) 6= 0 a.e. (that is,
m({f̂ = 0}) = 0).
Hint: Convolutions.

8. Let H be a Hilbert space and T : H → H an isometry, that is, a bounded
linear operator with ‖Tf‖ = ‖f‖ for all f ∈ H. We will denote the adjoint
of T by T ∗ and the identity map by I. You may use the conclusion of the
first part in proving the second part of this problem.
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(a) Let S = {f ∈ H | T (f) = f}, S∗ = {f ∈ H | T ∗(f) = f}, and
S1 = {f ∈ H | f = (I − T )g for some g ∈ H}. Prove that S = S∗ and
(S1)

⊥ = S.
Hint: For the first statement in one direction use the fact that for an
isometry T ∗T = I and for the other consider 〈f, (I − T ∗)f〉.

(b) Let An = 1
n(I + T + · · ·+ Tn−1). Prove that for each f ∈ H we have

lim
n→∞

‖An(f)− P (f)‖ = 0,

where P denotes the orthogonal projection on S (it is easy to see that
S is closed, and you do not need to prove this).
Hint: Decompose f = f0 + f1 with f0 ∈ S and f1 ∈ S1, and write
f1 = (f1− f2) + f2 where f2 ∈ S1 is very close to f1. Then consider An
on each term of the decomposition separately.
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