Basic Exam: Advanced Calculus & Linear Algebra

Department of Mathematics and Statistics University of Massachusetts, Amherst 21 January 2022

Instructions: Do all the problems and show your work. The passing standards are:

- Master's level: 60% with three questions essentially, complete (including one question from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Calculus

- 1. Evaluate $\int \frac{\ln(1+x)}{x^{3/2}} dx$. (*Hint:* At some point it will be useful that the derivative of $\arctan(t)$ is $1/(1+t^2)$.)
- 2. Find the global maxima and minima of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = 5x + y - 3z$$

on the region

$$X := \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0, x^2 + y^2 + z^2 = 1\}.$$

3. Consider the integral

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} x^2 \, dz \, dy \, dx.$$

Draw a picture of its domain of integration and then evaluate the integral. (*Hint*: Try using other coordinate systems.)

4. Let E_r denote the ellipse given by solutions to the equation $r^2x^2 + y^2 = r^4$. For r > 0, let

$$f(r) = \int_{E_n} \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$

- a) State Green's theorem and use it to compute f(r) f(1) for any r > 1.
- b) Compute f(1).
- 5. Let α be a real number that is not an integer. Associated to it is a sequence of numbers C_k^{α} where $C_0^{\alpha} = 1$, $C_1^{\alpha} = \alpha$, and

$$C_k^{\alpha} = \frac{\alpha(\alpha - 1)\cdots(\alpha - k + 1)}{k!}$$

for k a natural number. Consider the power series

$$F_{\alpha}(x) = \sum_{k=0}^{\infty} C_k^{\alpha} x^k.$$

- a) Find the radius of convergence for F_{α} .
- b) Show that F_{α} satisfies the differential equation

$$(1+x)F'_{\alpha} = \alpha F_{\alpha}.$$

c) Show that $G_{\alpha}(x) = (1+x)^{\alpha}$ also solves this differential equation. (Make sure to discuss how to properly define G_{α} as a function on the real line. What is exponentiation with a real number?) How are F_{α} and G_{α} related?

Linear Algebra

6. Let

$$A = \begin{bmatrix} -2 & 4 & -2 & 4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & 1 \end{bmatrix}.$$

- a) If possible, find a solution for $A\mathbf{x} = \mathbf{e_1} \mathbf{e_2}$. If not, explain why
- b) Find a basis for Nul(A) and Row(A), motivating your choice.
- c) State the rank theorem relating the dimensions of Col(A) and Nul(A) and verify that it holds for the matrix A.
- 7. Sulphur-crested cockatoos migrate each month between Adelaide, Brisbane, and Canberra. On average, their migration pattern is:
 - 50% of the cockatoos in Adelaide remain in Adelaide, while 25% each go to Brisbane and Canberra.
 - 50% of the cockatoos in Brisbane remain in Brisbane, and the rest go to Adelaide.
 - 50% of the cockatoos in Canberra remain in Canberra, and the rest go to Adelaide.
 - a) If we write the populations in each city by alphabetical order, we get a column vector P of height 3. Write the matrix T that TP is the expected population distribution next month.
 - b) Find the expected distribution of the sulphur-crested cockatoos population at month k, i.e., describe T^kP .
 - c) As $k \to \infty$, an equilibrium is reached. Describe the relative proportions between the three populations in this limit (i.e., the long time behavior of this dynamical system).
- 8. Let T be the linear transformation with standard matrix given by

$$\begin{bmatrix} 0 & 0 & a & 1 \\ 1 & 1 & -8 & 4 \\ 0 & 0 & b & c \\ 0 & 3 & -2 & -1 \end{bmatrix}.$$

- a) What is the domain of T? And the codomain?
- b) For which values of a and b is T one-to-one?
- c) For which values of a and b is T onto?
- d) For which values of a and b is T invertible?
- 9. Let E be the ellipse whose equation is given by

$$4x_1^2 + 4x_1x_2 + 2x_2^2 = 1.$$

- a) Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(E) is the circle in \mathbb{R}^2 centered at the origin and with radius $\frac{1}{2}$. (*Hint:* It may be useful to rewrite $2x_2^2$ in an equivalent form.)
- b) Find the area of the region in \mathbb{R}^2 bounded by the ellipse E.
- 10. Say if each of the following is true or false, giving justifications or counterexamples as appropriate.
 - a) If **v** is an eigenvector for an $n \times n$ -matrix A and for an $n \times n$ -matrix B, then **v** is also an eigenvector for the matrix $BA + I_n$.
 - b) There exists a matrix M with real coefficients such that

$$M^4 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

c) If a nonzero vector \mathbf{v} belongs to the orthogonal complement of $Span\{\mathbf{w}\}$ and \mathbf{w} is a nonzero vector, then \mathbf{w} cannot be a scalar multiple of \mathbf{v} .