UNIVERSITY OF MASSACHUSETTS
 Department of Mathematics and Statistics
 Basic Exam - Applied Statistics
 August 2021

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level. The number of points for each part of each question is listed inline with the part.

Question:	1	2	3	4	5	Total
Points:	30	8	36	17	9	100
Score:						

1. Consider a study designed to explore the relationships between several features of nuclei and whether or not a biopsied lesion is benign (not cancer) or malignant (cancer), using the following measurements for for $i=1, \ldots, 167$ human subjects:

- Class_{i}, the status of the lesion biopsied from subject i, equal to DCIS if potentially malignant and UDH if benign;
- Mean_Area ${ }_{i}$, the average area of nuclei in the lesion biopsied from subject i;
- Mean_Perim i_{i}, the average perimeter of nuclei in the lesion biopsied from subject i;
- Mean_Round ${ }_{i}$, the average roundness of nuclei in the lesion biopsied from subject i;
- Mean_Solidity ${ }_{i}$, a measure of the average solidity of nuclei in the lesion biopsied from subject i;

Letting $y_{i}=1$ if Class ${ }_{i}=$ DCIS and 0 otherwise and letting $x_{i 1}=$ Mean_Area $_{i}, x_{i 2}=$ Mean_Perim ${ }_{i}, x_{i 3}=$ Mean_Round $_{i}$ and $x_{i 4}=$ Mean_Solidity $_{i}$, we will consider logistic and probit regression models for this data. The logistic regression model is given by

$$
\begin{equation*}
y_{i} \stackrel{\text { indep }}{\sim} \operatorname{binomial}\left(1, p_{i}\right), \quad p_{i}=\left(1+\exp \left\{-z_{i}\right\}\right)^{-1}, \quad z_{i}=\beta_{0}+\sum_{j=1}^{4} \beta_{j} x_{i j} . \tag{1}
\end{equation*}
$$

The probit regression model is given by

$$
\begin{equation*}
y_{i} \stackrel{i n d e p}{\sim} \operatorname{binomial}\left(1, p_{i}\right), \quad p_{i}=\Phi\left(z_{i}\right), \quad z_{i}=\gamma_{0}+\sum_{j=1}^{4} \gamma_{j} x_{i j} \tag{2}
\end{equation*}
$$

where $\Phi\left(z_{i}\right)$ is the standard normal cumulative distribution function evaluated at z. Some summary statistics for the response and covariates are provided below:

y	Mean_Area	Mean_Perim	Mean_Round	Mean_Solidity
Min. $\quad 0.0000$	Min. : 375.5	Min. : 76.74	Min. 00.5930	Min. $: 0.7438$
1st Qu.:0.0000	1st Qu.: 557.1	1st Qu.: 97.15	1st Qu.:0.6502	1st Qu.:0.8205
Median :1.0000	Median : 643.3	Median :108.04	Median :0.6652	Median :0.8842
Mean :0.5988	Mean : 659.9	Mean : 111.91	Mean :0.6694	Mean :0.8616
3rd Qu.:1.0000	3rd Qu.: 735.8	3rd Qu.:125.77	3rd Qu.:0.6877	3rd Qu.:0.9042
Max. $: 1.0000$	Max. :1419.1	Max. :200.69	Max. $: 0.7781$	Max. : 0.9309

(a) (4 points) Provide an expression for the probability that a lesion biopsied from a subject with average values of Mean_Area, Mean_Perim, Mean_Round, and Mean_Solidity will be malignant under the logistic regression model (1) if $\beta_{0}=0$ and under the probit regression model (2) if $\gamma_{0}=0$.
(b) (4 points) Some R output for using glm to obtain estimates of the regression coefficients using logistic and probit regression is given below. Can this R output be used to obtain estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{4}$ of $\beta_{0}, \beta_{1}, \ldots, \beta_{4}$ according to (1) and estimates $\hat{\gamma}_{0}, \hat{\gamma}_{1}, \ldots, \hat{\gamma}_{4}$ of $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{4}$ according to (2)? If yes, compute estimated coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{4}$ and $\hat{\gamma}_{0}, \hat{\gamma}_{1}, \ldots, \hat{\gamma}_{4}$ based on the R output provided below.

```
> fit1 <- glm(y~I(Mean_Area - mean(Mean_Area)) +
+ I(Mean_Perim - mean(Mean_Perim)) +
+ I(Mean_Round - mean(Mean_Round)) +
```

```
+ I(Mean_Solidity - mean(Mean_Solidity)),
+ family = binomial(link = "logit"))
> summary(fit1)
Call:
glm(formula = y ~ I(Mean_Area - mean(Mean_Area)) + I(Mean_Perim -
    mean(Mean_Perim)) + I(Mean_Round - mean(Mean_Round)) + I(Mean_Solidity -
    mean(Mean_Solidity)), family = binomial(link = "logit"))
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-2.0535 & -0.9817 & 0.5501 & 0.8276 & 2.5818
\end{tabular}
```

Coefficients:

	Estimate	Std. Error	z value	Pr $(>\|z\|)$
(Intercept)	0.509812	0.182630	2.792	$0.00525 * *$
I (Mean_Area - mean(Mean_Area))	0.005439	0.004662	1.167	0.24340
I (Mean_Perim - mean(Mean_Perim))	0.018678	0.055688	0.335	0.73732
I (Mean_Round - mean(Mean_Round))	18.352268	6.822816	2.690	$0.00715 * *$
I(Mean_Solidity - mean(Mean_Solidity))	25.331501	12.340685	2.053	$0.04010 *$

Signif. codes: 0 ' $* * *$ ' $0.001^{\prime * * '} 0.01$ ' $*$ ' 0.05 '.' 0.1 ' , 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 224.95 on 166 degrees of freedom
Residual deviance: 184.63 on 162 degrees of freedom
AIC: 194.63
Number of Fisher Scoring iterations: 5
> fit2 <- glm($\mathrm{y}^{\sim} \mathrm{I}($ Mean_Area - mean(Mean_Area)) +

+ I(Mean_Perim - mean(Mean_Perim)) +
$+\quad I($ Mean_Round - mean(Mean_Round)) +
$+\quad$ I(Mean_Solidity - mean(Mean_Solidity)),
+ family = binomial(link = "probit"))
> summary (fit2)
Call:
glm(formula $=$ y ~ I(Mean_Area - mean(Mean_Area)) + I(Mean_Perim -
mean(Mean_Perim)) + I(Mean_Round - mean(Mean_Round)) + I(Mean_Solidity -
mean(Mean_Solidity)), family = binomial(link = "probit"))
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-1.9915	-1.0127	0.5518	0.8356	2.5981

Coefficients:

	Estimate	Std. Error	e	$\operatorname{Pr}(>\|z\|)$
(Intercept)	0.321399	0.107826	2.981	0.00288 **
I(Mean_Area - mean(Mean_Area))	0.003611	0.002817	1.282	0.19982
I(Mean_Perim - mean(Mean_Perim)	0.004022	0.033394	0.120	0.90415
I (Mean_Round - mean(Mean_Round))	10.688107	3.974998	2.689	0.00717 **
I(Mean_Solidity - mean(Mean_Solidity)	13.178172	7.203640	1.829	0.06734

Signif. codes: 0 ' $* * *$ ' 0.001 ' $* *$ ' 0.01 ' $*$ ' 0.05 '.' 0.1 ' , 1

Null deviance: 224.95 on 166 degrees of freedom Residual deviance: 185.29 on 162 degrees of freedom AIC: 195.29

Number of Fisher Scoring iterations: 5
(c) (5 points) Based on the R output provided in the previous part, perform two level $\alpha=0.05$ tests of the null hypothesis that a lesion biopsied from a subject with average values of Mean_Area, Mean_Perim, Mean_Round, and Mean_Solidity is equally likely to be malignant or benign, one under the logistic regression model (1) and one under the probit regression model (2). Describe your conclusions carefully. Do the results of the tests agree?
(d) (5 points) With reference to the figure provided below, compute the estimated probability that a lesion biopsied from a subject with average values of Mean_Area, Mean_Perim, Mean_Round, and Mean_Solidity will be malignant under models (1) and (2). Are the estimated probabilities more or less comparable than $\hat{\beta}_{0}$ and $\hat{\gamma}_{0}$? Explain why, with reference to the summary statistics as needed.

Logistic and Probit Functions

Z

(e) (4 points) Interpret $\hat{\beta}_{3}$ and $\hat{\gamma}_{3}$ in words.
(f) (4 points) Indicate which model is better as measured by AIC and which model is better as measured by BIC. How does the best model compare, depending on whether or AIC or BIC is used?
(g) (4 points) Suppose that the researchers who designed the study asked - "Is there a statistically significant relationship between average nucleus solidity within a lesion and whether or not a lesion is malignant, holding all else in the model constant?" Answer in at most two sentences.
2. Consider the same data described in Question 1 and the logistic regression model described by Equation (1). Some R output for using glm to obtain estimates of the regression coefficients for this model is provided below.

```
> fit3 <- glm(y~Mean_Area +
+ Mean_Perim +
+ Mean_Round +
+ Mean_Solidity,
+ family = binomial(link = "logit"))
> summary(fit3)
Call:
glm(formula = y ~ Mean_Area + Mean_Perim + Mean_Round + Mean_Solidity,
    family = binomial(link = "logit"))
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.0535 & -0.9817 & 0.5501 & 0.8276 & 2.5818
\end{tabular}
Coefficients:
```



```
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 224.95 on 166 degrees of freedom
Residual deviance: 184.63 on 162 degrees of freedom
AIC: 194.63
Number of Fisher Scoring iterations: 5
```

(a) (4 points) Suppose that the researchers who designed the study saw the results and exclaimed - "The most important predictor of whether or not a lesion is malignant is average nucleus solidity, and the least important is the average nucleus area!" Would you agree or disagree? Explain in at most two sentences.
(b) (4 points) Suppose that the researchers who designed the study saw the results and exclaimed - "The most important predictor of whether or not a lesion is malignant is average nucleus roundness, and the least important is the average nucleus perimeter!" Would you agree or disagree? Explain in at most two sentences.
3. The United Nations is interested in understanding patterns of life expectancy across countries. For this problem, we consider modeling female life expectancy (lifeExpF) as a function of:

- Per capita gross domestic product in US dollars (ppgdp, a measure of the revenue generated by the country)
- A grouping of countries into 3 groups (group variable): oecd for countries that are members of the OECD, the Organization for Economic Co-operation and Development, africa for countries on the African continent, and other for all other countries. No OECD countries are located in Africa.

There are 31 OECD countries and 53 in Africa.

Variable	Min	1st Qu.	Median	Mean	3rd Qu.	Max
lifeExpF	48.11	65.66	75.89	72.29	79.58	87,12
ppgdp	114.8	1283.0	4684.5	13011.0	15520.5	105094.4
log(ppgdp)	4.743	7.157	8.452	8.464	9.650	11.563

Several models were fit to these data, and the residual degrees of freedom and residual sum of squares are provided for each.

	Mean function	df	RSS
M1	lifeExpF ~ 1	198	20293.2
M2	lifeExpF \sim group	196	7730.2
M3	lifeExpF $\sim \log$ (ppgdp)	197	8190.7
M4	lifeExpF \sim group + log(ppgdp)	195	5090.4
M5	lifeExpF $\sim \log ($ ppgdp $)+$ group:log(ppgdp)	195	5232.0
M6	lifeExpF \sim group + log(ppgdp) + group:log(ppgdp)	193	5077.7

(a) (4 points) How many countries are in the dataset? Why does M6 have five fewer degrees of freedom than M1?
(b) (5 points) Why do you think \log (ppgdp) is used instead of ppgdp? Sketch a diagnostic plot that might have led you to choose to use \log (ppgdp) instead of ppgdp.
(c) (4 points) Explain in a sentence or two the meaning of the model M5.
(d) (5 points) There are two models with 195 degrees of freedom. Which of the two models would you prefer and why? Give at least 2 reasons for your preference.
(e) (4 points) A researcher uses ANOVA to test H_{0} : M5 vs H_{A} : M6. They find $\mathrm{p}=.05564$. What would you conclude? Which of these two models would you prefer and why?
(f) (4 points) Suppose you wish to do an ANOVA to determine whether model M6 is better than M4. Compute the F statistic necessary for this comparison. Show your work.
(g) (5 points) To what distribution (including df) would you compare the statistic in the previous part to decide the test? What do you expect to find in this case? Interpret this finding.
(h) (5 points) Which of this set of models would you most prefer to use? Why? Draw a sketch of a scatterplot with fitted regression that might correspond to your chosen model.
4. Suppose that you are developing an algorithm that involves the decomposition of a data matrix, X, into the product of three component matrices, $X \approx A * B * C$. Let X be of size $n \times p, A$ be of size $n \times k, B$ be of size $k \times l$, and C be of size $l \times p$.
(a) (4 points) How many scalar operations (multiplications and additions) are required to compute $A * B$?
(b) (4 points) What is the computational complexity of $A * B$ in the previous part in asymptotic notation?
(c) (4 points) Suppose you choose to compute $A * B * C$ by first multiplying $A * B$, then multiplying the result by $C:(A * B) * C$. Suppose $n \gg l$ and $p \gg k$, what is the computational complexity of the algorithm in asymptotic notation?
(d) (5 points) Now, suppose you choose to compute $A * B * C$ by first multiplying $B * C$, then multiplying the result by $A: A *(B * C)$. Suppose $n \gg l$ and $p \gg k$. Is this method faster or slower or the same than computing $(A * B) * C$ and under what conditions of $\{n, k, l, p\}$ would it be true?
5. Suppose a researcher shows you a result that shows they have identified two genes that predict whether a person will develop a neurological disorder. That is, by measuring the expression levels of these two genes at the age of 18 , the researchers use their model to predict whether the person will develop Alzheimer's disease between the ages of 65 and 75. They show that their algorithm fits their data perfectly, and therefore claim that their algorithm is 100% accurate.
(a) (4 points) One concern about the claim is whether the researchers have overfit the data. What questions might you ask and what suggestions might you make to the researchers to ensure that they are not overfitting their data and why?
(b) (5 points) Another concern is the selection of the sample for the study used to fit the model. What questions might you ask and how might you assess issues of bias in the sample collection stage?

