# UNIVERSITY OF MASSACHUSETTS 

Department of Mathematics and Statistics
Basic Exam - Probability
Friday, January 29, 2021
Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

1. Let $A$ and $B$ be any two events. Which of the following statements, in general, are false? For those that are false in general, give a simple, concrete counterexample. For those that are true, use the definition of conditional probability to show why.
(a) $(6 \mathrm{pts}) P(A \mid B)+P(\bar{A} \mid \bar{B})=1$.
(b) $(6 \mathrm{pts}) P(A \mid B)+P(A \mid \bar{B})=1$.
(c) $(6 \mathrm{pts}) P(A \mid B)+P(\bar{A} \mid B)=1$.
2. Let $X_{1}, \ldots, X_{n}$ be independent $\chi^{2}$-distributed random variables, each with 1 df. Define $Y$ as

$$
Y=\sum_{j=1}^{n} X_{j}
$$

In other words, $Y$ has a $\chi^{2}$ distribution with $n$ degrees of freedom.
(a) (6pts) Using the fact that each $X_{j}$ has mean 1 and variance 2, use the Central Limit Theorem to establish that $Y$, suitably transformed, has an asymptotically normal distribution.
(b) (6pts) A machine in a heavy-equipment factory produces steel rods of length $W$, where $W$ is a normally distributed random variable with mean 6 inches and variance .2. The rod lengths are independent. The cost $C$ of repairing a rod that is not exactly $\mu=6$ inches in length is proportional to the square of the error and is given, in dollars, by $C=4(W-\mu)^{2}$. What distribution does $\sqrt{5}(W-\mu)$ follow? What distribution does $C$ follow?
(c) $(6 \mathrm{pts})$ If 50 rods with independent lengths are produced in a given day, approximate the probability that the total cost for repairs for that day exceeds 48 dollars. You may leave your answer in terms of the standard normal CDF $\Phi$.
3. Let $Y_{1}$ and $Y_{2}$ have joint density function

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}3 y_{1}, & 0 \leq y_{2} \leq y_{1} \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) (6pts) Make a rough sketch of the region of the state space (i.e., the $\left(y_{1}, y_{2}\right)$ plane) where the density is nonzero.
(b) $(6 \mathrm{pts})$ Find the marginal density functions of $Y_{1}$ and $Y_{2}$.
(c) ( 6 pts ) Find $P\left(Y_{1} \leq 3 / 4 \mid Y_{2} \leq 1 / 2\right)$. A sketch of the state space where $y_{1} \leq 3 / 4$ and $y_{2} \leq 1 / 2$ may be helpful.
(d) $(6 \mathrm{pts})$ Find the conditional density of $Y_{1}$ given $Y_{2}=y_{2}$. Remember to include the region where this density is defined.
(e) $(6 \mathrm{pts})$ Find $E\left(Y_{1} \mid Y_{2}=y_{2}\right)$.
(f) $(6 \mathrm{pts})$ Use the Law of Total Probability to Find $E\left(Y_{1}\right)$.
4. (a) ( 7 pts ) Let $X$ be a nonnegative random variable and $\epsilon>0$. Show that the following inequality (Markov inequality) is true:

$$
P(X \geq \epsilon) \leq \frac{E(X)}{\epsilon}
$$

(b) (7pts) Let $X_{1}, \ldots, X_{n}$ be iid Uniform $(0, \theta)$ with $\theta>0$. Consider $X_{(n)}$, the largest order statistic. Find $E\left(X_{(n)}\right)$.
(c) (7pts) Using the Markov inequality, find the range of $\gamma(>0)$ such that $n^{\gamma}\left(X_{(n)}-\theta\right)$ converges to zero in probability as $n \rightarrow \infty$.
(d) ( 7 pts ) Does $X_{(n)}-X_{(n-1)}$ converges to zero in probability as $n \rightarrow \infty$ ?

