UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Probability Friday, January 29, 2021

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

- 1. Let A and B be any two events. Which of the following statements, in general, are false? For those that are false in general, give a simple, concrete counterexample. For those that are true, use the definition of conditional probability to show why.
 - (a) (6pts) $P(A \mid B) + P(\overline{A} \mid \overline{B}) = 1.$
 - (b) (6pts) $P(A | B) + P(A | \overline{B}) = 1.$
 - (c) (6pts) $P(A \mid B) + P(\overline{A} \mid B) = 1.$
- 2. Let X_1, \ldots, X_n be independent χ^2 -distributed random variables, each with 1 df. Define Y as

$$Y = \sum_{j=1}^{n} X_j$$

In other words, Y has a χ^2 distribution with n degrees of freedom.

- (a) (6pts) Using the fact that each X_j has mean 1 and variance 2, use the Central Limit Theorem to establish that Y, suitably transformed, has an asymptotically normal distribution.
- (b) (6pts) A machine in a heavy-equipment factory produces steel rods of length W, where W is a normally distributed random variable with mean 6 inches and variance .2. The rod lengths are independent. The cost C of repairing a rod that is not exactly $\mu = 6$ inches in length is proportional to the square of the error and is given, in dollars, by $C = 4(W - \mu)^2$. What distribution does $\sqrt{5}(W - \mu)$ follow? What distribution does C follow?
- (c) (6pts) If 50 rods with independent lengths are produced in a given day, approximate the probability that the total cost for repairs for that day exceeds 48 dollars. You may leave your answer in terms of the standard normal CDF Φ .
- 3. Let Y_1 and Y_2 have joint density function

$$f(y_1, y_2) = \begin{cases} 3y_1, & 0 \le y_2 \le y_1 \le 1\\ 0, & \text{elsewhere} \end{cases}$$

(a) (6pts) Make a rough sketch of the region of the state space (i.e., the (y_1, y_2) plane) where the density is nonzero.

- (b) (6pts) Find the marginal density functions of Y_1 and Y_2 .
- (c) (6pts) Find $P(Y_1 \leq 3/4 \mid Y_2 \leq 1/2)$. A sketch of the state space where $y_1 \leq 3/4$ and $y_2 \leq 1/2$ may be helpful.
- (d) (6pts) Find the conditional density of Y_1 given $Y_2 = y_2$. Remember to include the region where this density is defined.
- (e) (6pts) Find $E(Y_1 | Y_2 = y_2)$.
- (f) (6pts) Use the Law of Total Probability to Find $E(Y_1)$.
- 4. (a) (7pts) Let X be a nonnegative random variable and $\epsilon > 0$. Show that the following inequality (Markov inequality) is true:

$$P(X \ge \epsilon) \le \frac{E(X)}{\epsilon}.$$

- (b) (7pts) Let X_1, \ldots, X_n be *iid* Uniform $(0, \theta)$ with $\theta > 0$. Consider $X_{(n)}$, the largest order statistic. Find $E(X_{(n)})$.
- (c) (7pts) Using the Markov inequality, find the range of $\gamma(>0)$ such that $n^{\gamma}(X_{(n)} \theta)$ converges to zero in probability as $n \to \infty$.
- (d) (7pts) Does $X_{(n)} X_{(n-1)}$ converges to zero in probability as $n \to \infty$?