NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, August 27th, 2018

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all the results that you use in your proofs and verify that these results apply.
- 5. Show all your work and justify the steps in your proofs.
- 6. Please write your full work and answers <u>clearly</u> in the blank space under each question and on the blank page after each question.

Conventions

- 1. If a measure is not specified, use Lebesgue measure on \mathbb{R}^d . This measure is denoted by m or $m_{\mathbb{R}^d}$.
- 2. If a σ -algebra on \mathbb{R}^d is not specified, use the Borel σ -algebra.

1. Let $\{E_n\}_{n\geq 1}$ be a countable collection of measurable sets in \mathbb{R}^d . Define

$$\limsup_{n \to \infty} E_n := \{ x \in \mathbb{R}^d : x \in E_n, \text{ for infinitely many } n \}.$$

$$\liminf_{n \to \infty} E_n := \{ x \in \mathbb{R}^d : x \in E_n, \text{ for all but finitely many } n \}.$$

a) Show that

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \qquad \liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} E_j.$$

b) Show that

$$m(\liminf_{n \to \infty} E_n) \le \liminf_{n \to \infty} m(E_n),$$

and that

$$m(\limsup_{n \to \infty} E_n) \ge \liminf_{n \to \infty} m(E_n)$$
 provided that $m(\bigcup_{n=1}^{\infty} E_n) < \infty$.

2. Let *E* be a measurable subset of \mathbb{R} with m(E) > 0. Prove that for each $0 < \alpha < 1$ there exists an interval *I* in \mathbb{R} so that

$$m(E \cap I) \ge \alpha m(I).$$

<u>Hints</u> Express m(E) as an infimum over all $m(\mathcal{O})$ with $\mathcal{O} \supseteq E$, \mathcal{O} open. Recall that an open set \mathcal{O} can be written as the countable union of disjoint open intervals.

3. Consider the function $f(x, y) := e^{-xy} - 2e^{-2xy}$ where $x \in (1, \infty)$ and $y \in (0, 1)$.

(a) Prove that for a.e. $y \in (0,1)$ f^y (defined as $f^y(x) = f(x,y)$) is integrable on $(1,\infty)$ with respect to $m_{\mathbb{R}}$.

(b) Prove that for a.e. $x \in (1,\infty)$ f^x (defined as $f^x(y) = f(x,y)$) is integrable on (0,1) with respect to $m_{\mathbb{R}}$.

(c) Prove that f(x, y) is not integrable on $(1, \infty) \times (0, 1)$ with respect to $m_{\mathbb{R}^2}$.

Hint for c). You can use Fubini.

4. (a) Let $\{e_n\}_{n=1}^N$ be an orthonormal collection of functions in $L^2([a, b])$. Given $f \in L^2([a, b])$ find the values of $a_k \in \mathbb{R}$ which minimize $||f - \sum_{n=1}^N a_n e_n||_{L^2([a, b])}$.

(b) Suppose $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis for $L^2([a,b])$. Show that if $\{\varphi_n\}_{n=1}^{\infty}$ is another collection of functions (not necessarily orthonormal) in $L^2([a,b])$ such that

$$\sum_{n=1}^{\infty} \|e_n - \varphi_n\|_{L^2([a,b])}^2 < 1$$

then $\{\varphi_n\}_{n=1}^{\infty}$ is also a complete system: that is, show that if $f \in L^2([a, b])$ is orthogonal to φ_n for every $n \ge 1$ then f is the zero function.

- 5. Let $f : [a, b] \to \mathbb{R}$ be a given function.
 - (a) Show that if f is absolutely continuous then it has finite total variation.

(b) Show that if f is Lipschitz then f has finite total variation. Recall that f is said to be Lipschitz if there exists a constant M > 0 such that $|f(x) - f(y)| \le M|x - y|$ for all x, y in [a, b].

(c) Is it possible for f to be continuous but not have finite total variation? Justify your answer.

6. (a) Consider $f_n(x) := \chi_{[n,n+1]}(x)$ be a sequence in $L^1(\mathbb{R})$. Show that $||f_n||_{L^1} = 1$ for all $n \ge 1$ and that $f_n \to 0$ pointwise but $f_n \not\to 0$ weakly in L^1 .

(b) For every $n \ge 1$ let $f_n(x) := \cos(2\pi nx)$ be a sequence in $L^2([0,1))$. Show that $f_n \to 0$ weakly in L^2 but $f_n \not\to 0$ a.e. x.

<u>Hints.</u> For the first part of (b) recall that $\cos(2\pi nx) = \frac{(e^{2\pi inx} + e^{-2\pi inx})}{2}$. For the second part, you may argue by contradiction or if arguing directly you may use that the sequence $\{\overline{nx} : n \ge 1\}$ is dense in [0, 1) for x irrational (here we denoted by $\overline{nx} := nx \pmod{1}$).

(c) Let $f_n(x) := n\chi_{(0,\frac{1}{n})}(x)$ be a sequence in $L^2([0,1])$. Show that $f_n \to 0$ a.e. x and in measure but $f_n \not\to 0$ weakly in L^2 .

- 7. Let \mathcal{H} be a Hilbert space, and $L : \mathcal{H} \to \mathcal{H}$ a linear function.
 - (a) Show that L is bounded if and only if it is continuous.

(b) Suppose ||L|| < 1, where $|| \cdot ||$ denotes the operator norm, and let $I : \mathcal{H} \to \mathcal{H}$ be the identity operator (that is, I(h) = h for every $h \in \mathcal{H}$). Show that I - L is invertible.

Hint: Think in terms of power series.

8. Let $1 \le p < \infty$ fixed. For $f \in L^p(\mathbb{R}^d)$ consider the distribution function $\lambda_f : [0, \infty] \to [0, \infty]$ defined by

$$\lambda_f(a) := m(\{ x \in \mathbb{R}^d : |f(x)| > a \}).$$

Recall that λ_f is decreasing and right continuous and that $\int_{\mathbb{R}^d} |f(x)|^p dx = \int_0^\infty \alpha^{p-1} \lambda_f(\alpha) d\alpha$.

- (a) Show that if $\sum_{k=-\infty}^{\infty} 2^{kp} \lambda_f(2^k) < \infty$ then $f \in L^p(\mathbb{R}^d)$. <u>Hint</u>: Consider the sets $E_j := \{ x \in \mathbb{R}^d : 2^j < |f(x)| \le 2^{j+1} \}$
- (b) Show that if $f \in L^p(\mathbb{R}^d)$ then $\sum_{k=-\infty}^{\infty} 2^{kp} \lambda_f(2^k) < \infty$.

<u>Hint</u>: One approach is to note that $1 = \int_0^\infty 2^{1-n} \chi_{[2^{n-1},2^n)}(\alpha) \, d\alpha$ and use it to rewrite

$$\sum_{k=-\infty}^{\infty} 2^{kp} \lambda_f(2^k) = \int_0^\infty 2^{kp} 2^{1-k} \lambda_f(2^k) \,\chi_{[2^{k-1}, 2^k)}(\alpha) \,d\alpha$$