DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS AMHERST
 BASIC NUMERIC ANALYSIS EXAM
 AUGUST 2016

Do five of the following problems. All problems carry equal weight.
Passing level:
Masters: 60% with at least two substantially correct.
PhD: 75% with at least three substantially correct.

1. Consider integrating

$$
I(f)=\int_{0}^{1} f(x) d x
$$

Suppose we cannot compute $f(x)$ directly, but instead we can compute $g(x)$ where $|g(x)-f(x)|<\epsilon$ for all $x \in[0,1]$.
(a) On the interval $[a, b], 0 \leq a<b \leq 1$, obtain an error estimate for the trapezoidal approximation

$$
\int_{a}^{b} f(x) d x-\frac{b-a}{2}(g(a)+g(b)) .
$$

(b) Using $g(x)$ write down a composite trapezoidal rule approximation for $I(f)$ with evenly spaced nodes $0=x_{0}<x_{1} \cdots<x_{n}=1$. Give an error bound for the composite rule.
2. Let

$$
A=\left[\begin{array}{cc}
10^{-20} & 2 \\
1 & 3
\end{array}\right]
$$

(a) Compute the LU decomposition of A in exact arithmetic.
(b) Compute the LU decomposition in finite precision floating-point arithmetic, assuming 15 decimal digits of accuracy. (Namely, at this precision $1 \oplus 10^{-16}=1$, but $10^{-16} \neq 0$.)
(c) Compare the two results.
3. Find a polynomial p of minimal degree satisfying

$$
p\left(x_{1}\right)=y_{1}, \quad p^{\prime}\left(x_{2}\right)=y_{2} \quad p\left(x_{3}\right)=y_{3} .
$$

Under what conditions is the solution unique?
4. Consider the numerical solution of $y^{\prime}=f(y)$ with a scheme of the form

$$
y_{n+1}=y_{n}+h\left[a_{1} f\left(y+h b_{1} f(y)\right)+a_{2} f\left(y+h b_{2} f(y)\right)\right] .
$$

(a) Show that the choices $a_{1}=1, b_{1}=1 / 2, a_{2}=0, b_{2}=0$ give a second-order scheme.
(b) Show that it is impossible to get a higher order scheme for general f for any choice of a_{i} and b_{i}.
5. Replace the true derivative with a constant value d in Newton's method to obtain a scheme

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{d}
$$

(a) For what values of d, will this method be locally convergent?
(b) Find the convergence order, and the rate if linearly convergent.
(c) Is there any value of d what would lead to quadratic convergence?
6. For function $\sin (\pi x)$,
(a) Find the value of a which solves the following optimization problem:

$$
\min _{a} \int_{-1}^{1}(\sin (\pi x)-a x)^{2} d x
$$

(b) Let $\hat{f}(x)$ be a polynomial with degree less than or equal to $n>1$, which solves the minimization problem:

$$
\min _{p(x) \in \mathbf{P}_{\mathbf{n}}(\mathbf{x})} \int_{-1}^{1}(\sin (\pi x)-p(x))^{2} d x
$$

Prove that $\hat{f}(x)$ is an odd function.
7. Given a vector norm $\|\cdot\|$ for the space \mathbb{R}^{n}, the induced matrix norm for an n-by- n matrix A is defined as

$$
\|A\|=\max _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}
$$

For a non-singular real matrix A,
(a) The condition number $\kappa(A) \doteq\|A\| \cdot\left\|A^{-1}\right\|$. Show that $\kappa(A) \geq 1$.
(b) Find $\kappa(A)$ for an orthogonal matrix A, when the Euclidean norm is used.
(c) Consider the linear system $A x=b$ and its perturbed version $(A+\delta A) x=b+\delta b$. Show that

$$
\frac{\|\delta b\|}{\|b\|} \leq \kappa(A) \frac{\|\delta A\|}{\|A\|}
$$

