DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST

ADVANCED CALCULUS/LINEAR ALGEBRA EXAM

SEPTEMBER 2016

Do all 7 problems. Show your work.

Passing Standard:

- M.S. level: 60% with three questions essentially complete (including at least one from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

1. Linear Algebra

- 1. Let A be an $n \times n$ complex matrix such that $A^2 = A$.
 - (a) Show that A is similar to a diagonal matrix.
 - (b) Show that the trace of A is a non-negative integer.
- **2**. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation. Prove that there exists an m such that the kernel of T^m intersects the image of T^m only at the origin **0**.
- **3**. Let A be a square matrix.
 - (a) Prove that if every row adds up to 1, then det(A I) = 0.
 - (b) If det(A I) = 0, does det A = 1? Prove or disprove.

2. Advanced Calculus

- **4.** Let $f(x,y) = xy + \int_0^y \sin(t^2) dt$.
 - (a) Compute $\nabla f(a, b)$.
 - (b) Show that (0,0) is a saddle point of f(x,y).
- **5.** Let $f, g : [0,1] \to \mathbf{R}$ be continuous. Assume that f(x) < g(x) for all $x \in [0,1]$. Prove that

$$\int_0^1 f dx < \int_0^1 g dx.$$

(Note that the inequality is strict.)

6. Define a recursive sequence $\{a_n\}$ by:

$$a_1 = 5;$$
 $a_{n+1} = \sqrt{3 + a_n}.$

Give a careful proof that the sequence converges and determine its limit.

7. Consider the vector field $\mathbf{F}(x,y,z) = \langle y^2z, 2y - e^z, \sin x \rangle$. Evaluate the flux integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$$

where S is the boundary of the region bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 1 and z = 8 - y, with outward pointing normal vector.