DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST

ADVANCED CALCULUS/LINEAR ALGEBRA EXAM

SEPTEMBER 2016

Do all 7 problems. Show your work.

Passing Standard:

- M.S. level: 60% with three questions essentially complete (including at least one from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

1. Linear Algebra

1. Let A be an $n \times n$ complex matrix such that $A^{2}=A$.
(a) Show that A is similar to a diagonal matrix.
(b) Show that the trace of A is a non-negative integer.
2. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation. Prove that there exists an m such that the kernel of T^{m} intersects the image of T^{m} only at the origin $\mathbf{0}$.
3. Let A be a square matrix.
(a) Prove that if every row adds up to 1 , then $\operatorname{det}(A-I)=0$.
(b) If $\operatorname{det}(A-I)=0$, $\operatorname{does} \operatorname{det} A=1$? Prove or disprove.

2. Advanced Calculus

4. Let $f(x, y)=x y+\int_{0}^{y} \sin \left(t^{2}\right) d t$.
(a) Compute $\nabla f(a, b)$.
(b) Show that $(0,0)$ is a saddle point of $f(x, y)$.
5. Let $f, g:[0,1] \rightarrow \mathbf{R}$ be continuous. Assume that $f(x)<g(x)$ for all $x \in[0,1]$. Prove that

$$
\int_{0}^{1} f d x<\int_{0}^{1} g d x
$$

(Note that the inequality is strict.)
6. Define a recursive sequence $\left\{a_{n}\right\}$ by:

$$
a_{1}=5 ; \quad a_{n+1}=\sqrt{3+a_{n}}
$$

Give a careful proof that the sequence converges and determine its limit.
7. Consider the vector field $\mathbf{F}(x, y, z)=\left\langle y^{2} z, 2 y-e^{z}, \sin x\right\rangle$. Evaluate the flux integral

$$
\oiint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

where S is the boundary of the region bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=1$ and $z=8-y$, with outward pointing normal vector.

