## DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS

Wednesday September 2, 2015 10:00AM - 1:00PM

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions, including one from the ODE part (Questions 1-3) and one from the PDE part (Questions 4-7).

(1) Consider the linear system  $\dot{x} = Ax$  with coefficient matrix

$$A = \left(\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{array}\right)$$

We say that x(t) grows linearly if  $\lim_{t\to+\infty} |x(t)|/t = c > 0$  and superlinearly if  $\lim_{t\to+\infty} |x(t)|/t = +\infty$ . Find all initial conditions x(0) such that their solutions x(t) are (a) bounded; (b) grow linearly; (c) grow superlinearly.

(2) a) Consider a planar autonomous system  $\dot{x} = f(x)$ , for  $x = (x_1, x_2) \in \mathbb{R}^2$ , and assume that the vector field f(x) is divergence free, that is,

div 
$$f \doteq \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 0$$
 identically in  $\mathbb{R}^2$ .

Prove that this dynamical system has no (isolated) periodic orbits.

- b) Construct an explicit vector field, f(x), on  $\mathbb{R}^2$  with div f > 0 in |x| < 1, and div f < 0 in |x| > 1, such that the unit circle, |x| = 1, is an isolated limit cycle for f.
- (3) Consider the nonautonomous, nonlinear, second-order differential equation

$$\frac{d^2x}{dt^2} + (1 - \alpha \sin t) \left[ \frac{dx}{dt} \right]^3 + x = 0,$$

where  $\alpha$  is a constant satisfying  $0 < \alpha < 1$ . Prove that the origin, that is,  $(x, \dot{x}) = (0, 0)$ , is an asymptotically stable fixed point for this equation.

(4) a) Let  $f: \mathbb{R} \to \mathbb{R}$  be a smooth and bounded function. Use the method of characteristics to find the solution of the following Cauchy problem,

$$u_y - xu_x = -u, \quad x \in \mathbb{R}, y > 0$$
  
 $u(x,0) = f(x).$ 

What is  $\lim_{y\to+\infty} u(x,y)$ ?

b) Let  $\alpha, \beta, \gamma$  be real constants and  $\phi : \mathbb{R}^2 \to \mathbb{R}^2$  a smooth function. Use the method of characteristics to solve the following Cauchy problem,

$$\alpha u_{x_1} + \beta u_{x_2} + u_{x_3} = -\gamma u, \quad x_3 > 0$$
  
 $u(x_1, x_2, 0) = \phi(x_1, x_2).$ 

(5) Use d'Alembert's formula and Duhamel's principle to solve the following Cauchy initial value problem

$$\begin{cases} u_{tt} - c^2 u_{xx} = \cos x \\ u(x, 0) = \sin x, \quad u_t(x, 0) = 1 + x \end{cases}$$

(6) Let  $\Omega \subset \mathbb{R}^2$  be a smooth domain and u = u(x,t) a smooth solution to the following initial boundary value problem

$$\begin{cases} u_t = \Delta u - u^3 & \text{in} \quad x \in \Omega, t > 0 \\ u(x,0) = 0, & \text{for all} \quad x \in \Omega \\ u(x,t) = 0 & \text{for all} \quad x \in \partial\Omega, t \ge 0. \end{cases}$$

Show that u(x,t) = 0 for all  $x \in \Omega$  and  $t \ge 0$ .

- (7) We say that a function  $u \in C^2(\overline{\Omega})$  is subharmonic if  $-\Delta u \leq 0$  in  $\Omega$ .
  - (a) Prove that if  $u \in C^2(\bar{\Omega})$  is subharmonic then

$$u(x) \le \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) \, dy$$
 for all  $B(x,r) \subset \Omega$ .

- (b) Prove that therefore,  $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$ .
- (c) Let  $\varphi : \mathbb{R} \to \mathbb{R}$  be a smooth and <u>convex</u> function. Assume v is harmonic and let  $u(x) := \varphi(v(x))$ . Prove that u is subharmonic.
- (d) Prove that  $u := |Dv|^2$  is subharmonic whenever v is harmonic.