UMass Amherst Algebra Advanced Exam

Friday August 29, 2014, 10AM - 1PM.

Instructions: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully.

1. Group theory and representation theory

Q1.
(a) Let G be a simple group of order 168. Determine the number of elements of G of order 7 .
(b) Let G be a group of order 20. Suppose G contains an element of order 4 and has trivial center. Describe G in terms of generators and relations.

Q2. Let G be a finite group and p a prime dividing $|G|$. Suppose H is a subgroup of G of index p.
(a) What are the possibilities for the number of conjugate subgroups of H ?
(b) Suppose in addition that p is the smallest prime dividing $|G|$. Prove that H is normal.

Q3. Let p be a prime. Let G be the subgroup of $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)$ consisting of all matrices of the form

$$
\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right) .
$$

Compute the number of irreducible complex representations of G and their dimensions.

2. Commutative Algebra

Q4.
(a) Prove that $\mathbb{Z}[\sqrt{-2}]$ is a unique factorization domain.
(b) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a unique factorization domain.

Q5. Let R be a commutative ring with 1 . Let I and J be ideals of R. Prove that the R-module $(R / I) \otimes_{R}(R / J)$ is isomorphic to $R /(I+J)$.

Q6. Let k be an algebraically closed field. Consider the set

$$
X=\left\{\left(t^{3}, t^{4}, t^{5}\right) \mid t \in k\right\} \subset k^{3} .
$$

(a) Compute generators for the ideal $I \subset k[x, y, z]$ of polynomials vanishing at each point of the set X, that is,

$$
I=\{f \in k[x, y, z] \mid f(p)=0 \text { for all } p \in X\} .
$$

(b) Determine the integral closure of the quotient ring $k[x, y, z] / I$ in its field of fractions.

3. Field theory and Galois theory

Q7. Let K be the splitting field of the polynomial $f(x)=x^{4}-2 x^{2}-1$ over \mathbb{Q}. Determine the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.

Q8. Let p be a prime. Let K be a field of order p^{28}. Determine the number of elements $\gamma \in K$ such that $K=\mathbb{F}_{p}(\gamma)$.

Q9. Let $\alpha \in \mathbb{C}$ be a root of the polynomial $f(x)=x^{3}+4 x+2$. For $n \in \mathbb{N}$, let $\zeta_{n} \in \mathbb{C}$ denote a primitive nth root of unity. Prove that α is not contained in the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ for any n.

