DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM - ALGEBRA

WEDNESDAY, SEPTEMBER 2, 2009

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the FOUR parts.

Part I.

1. For any finite group G and any prime p, denote by $n_{p}(G)$ the number of Sylow p-subgroup of G. If N is a normal subgroup of G, show that $n_{p}(G / N) \leq n_{p}(G)$.
2. Let p be a prime, and let G be the group $\mathbf{Z} / p \times \mathbf{Z} / p^{2} \times \mathbf{Z} / p^{3}$.
(a) Determine the number of cyclic subgroup of G of order p^{2}. Justify your reasoning.
(b) Determine the number of subgroup (not necessarily cyclic) of G of order p^{3}. Justify your reasoning.

Part II.

1. Let R be a commutative ring with $1 \neq 0$. Denote by $R[x]$ the one-variable polynomial ring over R. Fix an element $f=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in R[x]$.
(a) Show that f is a unit in $R[x]$ if and only if a_{0} is a unit in R and that the remaining a_{i} are nilpotent.
(b) Show that f is nilpotent if and only if all a_{i} are nilpotent.

2(a) Prove or give a counterexample: the quotient ring of a PID by a prime ideal is a PID.
(b) Prove or give a counterexample: the quotient ring of a UFD by a prime ideal is a UFD.

Part III.

1. Let $f_{1}, f_{2} \in K[x]$ be non-constant polynomials over a field K.
(a) Determine $\frac{K[x]}{\left(f_{1}\right)} \otimes_{K[x]} \frac{K[x]}{\left(f_{2}\right)}$ as a $K[x]$-module. Show your work.
(b) Determine $\frac{K[x]}{\left(f_{1}\right)} \otimes_{K} \frac{K[x]}{\left(f_{2}\right)}$ as a K-module. Show your work.
2. Let p be a prime, and let \mathbf{F}_{q} be a finite field with $q=p^{n}$ elements. Denote by $\pi_{q}: \mathbf{F}_{q} \rightarrow \mathbf{F}_{q}$ the Frobenius automorphism given by $\alpha \mapsto \alpha^{p}$.
(a) Determine the dimension of \mathbf{F}_{q} as a \mathbf{F}_{p}-vector space.
(b) Show that as a \mathbf{F}_{p}-linear map, π_{q} is diagonalizable if and only if n divides $p-1$.

Part IV.

1(a) Let K / k be a finite field extension. Let R be a ring such that $k \subset R \subset K$. Show that R is a field.
(b) Give a counterexample to show that Part (a) is false in general if K / k is not a finite extension. Justify your reasoning.
2. Show that if the Galois group of a cubic polynomial over \mathbf{Q} is cyclic of order 3, then all three roots of this polynomials are real.

