A. Chern, F. Knoeppel, F. Pedit and U. Pinkall. Commuting Hamiltonian flows on curves in real space forms. Integrable Systems and Algebraic Geometry, Vol 1, LMS Lecture Note Series 458, (2020), 279--317.
P. Wang, F. Pedit and X. Ma. Moebius homogeneous Willmore 2-spheres in the n-sphere. Bull. Lond. Math. Soc. 50 (3), (2018), 509--512
L. Heller, F. Pedit. Towards a constrained Willmore conjecture. "Willmore Energy and Willmore Conjecture", Chapman & Hall/CRC Monographs and Research Notes in Mathematics (2017), 119--139.
C. Bohle, K. Leschke, F. Pedit, U. Pinkall. Conformal maps of a 2-torus into the 4-sphere. J. Reine Angew. Math., 671 (2012), 1--30
F. Burstall, N. Donaldson, F. Pedit, U. Pinkall. Isothermic submanifolds in symmetric R-spaces. J. Reine Angew. Math. 660 (2011), 191--243
C. Bohle, F. Pedit, U. Pinkall. Discrete holomorphic geometry I. Darboux transformations and spectral curves. J. Reine Angew. Math., 637 (2009), 99--139
K. Leschke, F. Pedit, U. Pinkall. Willmore tori in 4-space with non-trivial normal bundle. Math. Ann., 332, 2 (2005), 381--394
D. Ferus, K. Leschke, F. Pedit, U. Pinkall. Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic tori. Invent. Math., 146 (2001), 507--593
U. Jeromin, I. McIntosh, P. Norman, F. Pedit. Periodic discrete conformal maps. J. Reine Angew. Math., 534 (2001), 129--153
F. Pedit, U. Pinkall. Quaternionic analysis on Riemann surfaces and differential geometry. Doc. Math. J. DMV, Extra Volume ICM 1998, Vol. II, 389--400
J. Dorfmeister, F. Pedit, H. Wu. Weierstrass-type representation of harmonic maps into symmetric spaces. Com. Anal. Geom., Vol. 6, No. 4 (1998), 633--667
D. Ferus, F. Pedit. Isometric immersions of space forms and soliton theory. Math. Ann., 305 (1996), 329--342
J. Bolton, F. Pedit, L. Woodward. Minimal surfaces and the affine Toda field model. J. Reine Angew. Math., 459 (1995), 119--150
F. Burstall, D. Ferus, F. Pedit, U. Pinkall. Harmonic tori in symmetric spaces and integrable Hamiltonian systems on loop algebras. Ann. of Math., 138 (1993), 173--212
Department of Mathematics and Statistics