Skip to main content

Recent Graduate Outcomes

Graduate School

Approximately 30% of recent graduates immediately enroll in graduate programs. Of those students who enter grad school, 77% enrolled in Master’s programs; 23% enrolled directly in Doctoral programs. They are attending institutions including:

  • UMass Amherst
  • Northeastern
  • UC Berkeley
  • McGill
  • Duke
  • Brown
  • Boston University
  • Johns Hopkins University

Some of the programs our graduates have recently gone on to study include:

  • Mathematics / Applied Mathematics
  • Biostatistics / Statistics / Applied Statistics
  • Computer Science
  • Physics
  • Data Science / Data Analytics
  • Finance / Economics / Business Analytics
  • Education (K-12)

Employment

In recent years, the most common jobs were in data and analyticsresearchactuarial servicesfinance and business management, and education. Top employers of our majors in recent years include:

  • Financial / Insurance Services: Liberty Mutual, MassMutual, Hanover Insurance, Amica
  • Government / Defense: General Dynamics, McLaughlin Research Corporation, Federal Reserve Board, US Air Force
  • Internet / Software / Telecommunications: Amazon, Oracle, National Grid, Microsoft
  • Education: Teach for America, Public Higher Education Network of Massachusetts, Boston Public Schools
  • Research: Underwriters Laboratories (UL), MIT Lincoln Laboratory, Broad Institute, UMass Amherst
  • An interesting example, and likely our highest paid recent major, is Andy Isabella, who was a second round NFL draft pick in 2019 and plays for the Arizona Cardinals

Job titles include:

  • Technical Analyst
  • Associate Solution Analyst
  • Actuarial Analyst
  • Enterprise Data Modeler
  • Technical Solutions Engineer
  • Marketing Data Analyst
  • Bioinformatics Engineer
  • Associate Data Engineer
  • Quality Systems Associate
  • Quantitative Trading Analyst
  • Research Associate

Internships

Students in the Department of Mathematics and Statistics are encouraged to pursue an internship or research experience as an undergraduate student. Internships provide practical job experience and allow students to gain experience interviewing and network with professionals in the field. Students who are interested in a summer REU (research experience for undergraduates) may apply for the UMass Math REU or search for opportunities at other sites. To search for industry internships, undergraduate students are encouraged to utilize Handshake or speak with a career advisor in the department or in the CNS Career and Professional Development Center. For a list of internships our students have completed in past years, click here.

Additional Internship Resources:

Departmental Career Events

Each semester the department hosts career events aimed at undergraduate math majors. Recent programs include:

  • Anthony Rentsch, Class of 2018, visited in February and spoke about his graduate work in data science at Harvard and about entering the data science field.  As an undergraduate, Anthony completed his senior thesis on applying statistical techniques in political science, his second major.
  • Emily Dwizil, Class of 2019, joined us by Zoom in April and talked about her experiences as a Junior Data Scientist at MassMutual.  
  • Luis Serrano, a Math PhD working as Content Lead of Artificial Intelligence at Udacity, will joined us by Zoom to talk about machine learning and opportunities for majors in industry.
  • Melissa Campbell, Class of 2018, visited us from Optum, a unit of United Health Care.  Melissa shared her experience of working as a Python programmer and software engineer.

Career Services & Resources

All students should join Handshake, which contains job and internship opportunities for UMass students and alumni.

General Recommendations for all Career Paths

In the past half century there has been a great increase in the importance of mathematics to our society. The need for trained mathematicians at all levels is on the rise as the use of computers and automation has spread to almost all sectors of our economy. Nowadays, technological, engineering and business problems are often of such complexity that they require a high level of mathematical treatment. Whereas in the past advanced mathematics was generally restricted to the physical sciences and engineering, today there is an ever growing demand for mathematical expertise in the biological and social sciences, as well as in finance and business management and the burgeoning field of data science. 

Every student should carefully consider the following five points when deciding on a course of studies during the undergraduate major.

  1. A balanced set of core courses in mathematics and statistics.

    Of course, many of those courses will be determined by the major concentration, which in turn depends on the intended career path. But every student should be sure to take a good balance of courses. Especially, there should be some mix of mathematics with statistics, and of theoretical and pure courses with applied courses. This kind of balance is really crucial for those students who will pursue work in the non-academic world, and for students who intend to undertake interdisciplinary graduate studies. Even students who plan to enroll in graduate studies in mathematics or statistics, or will train to be secondary school teachers, should make sure that they have sufficient breadth at the undergraduate level in order to take full advantage of their later studies.

  2. An extensive exposure to computing.

    One of the main reasons that mathematics and statistics are of such importance in the modern world is that they are so closely allied with computation of all sorts. In virtually every profession based on mathematical or statistical knowledge, computing plays a key role. For this reason, students should take enough courses in computer science, scientific computing or information technology to gain expertise with computational techniques and platforms.

  3. Some coherent studies in another related field.

    It is highly desirable for a student to develop a base of knowledge in another field related to mathematics or statistics. For instance, a successful career might be built on a mathematics major together with a minor in computer science, finance, economics, physics, chemistry, biology, public health or a branch of engineering. If a minor is not feasible, then it is advisable to take a few related courses that complement the studies in the major.

  4. An array of "soft" skills.

    Mathematics and statistics are "hard" sciences in the sense that their subject matter is technical and abstract. Consequently, their usefulness and relevance to the world is hugely dependent upon how well mathematicians and statisticians relate to their colleagues and coworkers. Employers often talk about how it is absolutely necessary for their technical staff to be able to communicate in writing and orally, to interact productively in teams and groups, and to be diligent, versatile and innovative. These people skills are equally necessary in the teaching professions. A good selection of General Education courses and other electives is one way to develop these skills, as are independent studies and projects, extracurricular activities and even hobbies.

  5. An internship, coop or summer research experience.

    One of the best ways to procure a good job upon graduation is to have done an internship or coop beforehand. Employers like to have a chance to see a student in the actual work environment, and the student benefits by trying out the kind of work that the employer offers. For students considering graduate study, it is highly desirable to apply for summer Research Experience for Undergraduates (REU) either at your home university or at sites elsewhere in the country. See the links on this page to the university offices on campus that coordinate internships and coops, and to the NSF, NSA and other agencies that offer summer research experiences.

Specific Recommendations Within the Career Categories

Actuarial Science

Actuaries are business executives who use mathematical and statistical skills to define, analyze, and solve complex problems arising in the insurance and pension fields. They create and manage programs to reduce the financial impact of events such as illness, accidents, unemployment, or premature death. Actuaries must understand the entire operation of the insurance and pension fields because their evaluations often influence company policies and practices. Besides good command financial markets, tax and insurance law, regulatory requirements, accounting, and so forth, an actuary must have solid background in applied mathematics and statistics.

Professional status is attained through fellowship in one of two actuarial societies (CAS or SOA). Fellowship is earned, and most of the theoretical training is provided, by passing a series of rigorous examinations sponsored by the societies.   Please see our departmental Actuarial Program webpage.

Data Science

In the last few years, the field of data science has exploded.  Majors who have taken Stat 525 (Linear Regression) and have profiency in SAS, R, or Python are particularly well-poised to take advantage of these opportunites.  Students are encouraged to enhance their data science credentials by combining statistical coursework in our department with data science or machine learning coursework in Computer Science, Biostats, or Linguistics.  The following site has extensive information on the field of data science:  Masters in Data Science.  The MassMutual Data Center in downtown Amherst is becoming a vital player in training our students and providing them employment.  Seniors are encouraged to apply to the MassMutual Data Science Development Program

Information Technology and Computing

A mathematics major can launch a career in the wide-ranging world of information technology and computing services, provided that the major studies are complemented by enough training in computer science. Typically, such a major will also complete a minor, or perhaps a double major, in computer science. Some of the more mathematically intensive parts of IT concern cryptography or animation and graphics. There are also many positions as applications programmers, that is computer programmers who tailor algorithms to fit the specific needs of clients and companies. Other occupations in this area include network management, web development, security systems, and mobile computing.

Successful completion of a major in mathematics and a minor in computer science is also good preparation for a graduate program in Computer Science. A Master's degree in this computer science is beneficial for some of the more challenging and innovative opportunities. Further information is available from the Association of Computing Machinery:
https://jobs.acm.org/

Business, Management and Consulting

There is an increasing demand for mathematicians and statisticians in many different areas of business. Besides the clearly defined career path to actuarial science, there are also diverse opportunities in production management, forecasting and financial modeling. A major in mathematics that includes statistics, augmented by a minor in computer science and courses in economics, accounting, finance, or industrial engineering, for example, would provide a solid basis for a business career.

Almost all the positions in this broad range of vocations are advertised with titles that do not include the words "mathematician" or even "statistician." Normally, the positions are for "analysts" of some kind. In recent years there have been burgeoning opportunities in the area of quantitative financial analysis, the practitioners being referred to as "quants." This work focuses on stock market analysis, risk management, financial derivatives and related products. While a bachelor's degree is sufficient for entry into the field, there is also a strong demand for employees with more training. For instance, there are many Master's degree program in Financial Mathematics, and Ph.D.s in the mathematical sciences are often engaged in work in this field. Some of the many resources on the web include:

http://www.quantnet.com/
http://www.quantfinancejobs.com/
https://www.cfainstitute.org

The problem solving and critical thinking skills possessed by mathematics and statistics majors make them very desirable candidates for positions with consulting firms. These positions are accessible with a bachelor's degree, but they require a quick and adept mind that combines quantitative expertise with business acumen and excellent communication skills. A web search for "quantitative consulting" yields numerous opportunities in this direction.

A mathematics major who wishes to prepare for a career in a government agency would do well to focus on statistics and applied mathematics and to complete a minor in computer science.

Teaching at elementary or secondary school level

There is a continuing demand for qualified mathematics teachers in the nation's secondary schools. Besides training in their major field, future teachers must also complete state certification requirements. Most of the information here is for students who wish to teach in secondary schools. Students who wish to teach in elementary school take Mathematics For Elementary School Teachers I and II (Math 113 and 114). School districts across the country are increasingly in need of mathematics specialists in elementary schools. Mathematics majors who are interested in elementary education should consider the possibility of such a career path. Students are also encouraged to explore teaching mathematics in middle school, where there is very high demand for mathematics majors.

Mathematics majors wishing to obtain the intermediate equivalent of the Massachusetts certification to teach mathematics at the middle or high school level must:

  • include courses that satisfy the Commonwealth's Standard I requirements on subject matter knowledge;
  • complete the School of Education's Secondary Teacher Education Program;
  • achieve a passing score on both sections of the Massachusetts Test for Educator Licensure (MTEL).

Any student who is interested in becoming a middle or high school mathematics teacher should contact the Secondary Teacher Education Program. The program includes student teaching, which requires a full semester during which regular courses cannot be taken. For this reason, these students should plan to complete most of their requirements before their student teaching, as they will have one less semester to satisfy Departmental, College, and University requirements.

The Commonwealth's Standard I Subject Matter Knowledge for mathematics states: "The effective teacher of mathematics has completed the college's or university's requirements for a major in mathematics, or the equivalent, by demonstrating knowledge of: mathematics, including: algebra, geometry, analytical geometry, trigonometry, calculus, number theory, probability and statistics, and the history of mathematics; how to use computers in mathematics; modes of inquiry and methods of research in mathematics; relationships between mathematics and other fields of knowledge."

The teaching concentration is designed to help the student fulfill these requirements. Further details available.

The following courses can be used to satisfy the Commonwealth requirements:

  • algebra, analytical geometry, trigonometry, calculus: Math 233
  • geometry: Math 461, Math 563
  • number theory:  Math 471
  • probability and statistics: Stat 501, Stat 515
  • history of mathematics:  Math 475
  • discrete mathematics:  Math 455
  • abstract algebra:  Math 411 or Math 490A
  • how to use computers in mathematics: Math 471 (Math 551 is also an option)
  • modes of inquiry and methods of research: Math 300, Math 411, Math 456, Math 523
  • relationships between mathematics and other fields:  Physics 151-153 or 171-173, Math 331, Math 456, Math 532, Math 534, Math 545.

The Department of Mathematics & Statistics is in the process of developing courses specifically geared to future secondary mathematics teachers, especially in light of the Common Core State Standards in Mathematics (http://www.corestandards.org) and in light of the recommendations of The Education of Mathematics Teachers I and II, Conference Board of the Mathematical Sciences, published by the American Math Society, 2001 and 2012 (available from http://cbmsweb.org/MET_Document/). For instance, on an experimental basis, we offer Math 597T Mathematical Knowledge for Teaching I. Students interested in a teaching career are encouraged to take this course.

Completion of the School of Education's Secondary Teacher Education Program for Prospective Middle and High School Teachers of Mathematics requires the following courses: Students may enroll in (1)-(3) prior to applying to STEP; to enroll in (4)-(7) the student must already be in STEP.

  1. Educ 524: Work of the Middle and High School Teacher
  2. Psych 305: Educational Psychology, Psych 355: Adolescent Psychology or Educ 693I: Psychology in the Classroom
  3. Educ 497I: Tutoring in Schools (or an alternative course option)
  4. Educ 592S: Pre-Practicum
  5. Educ 511: Teaching Mathematics in Middle and High School
  6. Educ 510: The Teacher in the Classroom and Educ 615J: Education and the Law (Taken while student teaching)
  7. Educ 500M (503): Student Teaching (5-9) or Educ 500S (504): Student Teaching (9-l2) or both for 5-12 certification.

Graduate Study

There are three main options for graduate study following a undergraduate degree in mathematics or statistics. Students are advised to consult departmental faculty about these options as well as the attributes of particular graduate programs nationwide.

  1. A traditional graduate program in a mathematics or statistics department.

    Every major research university has a graduate program in mathematics, and the majority are primarily focused on the Ph.D. Many universities have separate departments and Ph.D. programs in statistics, biostatistics and related quantitative areas. The doctoral graduates from these programs find employment either in academic institutions or else pursue careers in government, business, or industry.

    There are about 1500 colleges and universities in the United States, which seek to fill their faculty positions with Ph.D.-qualified candidates. These positions involve a mixture of teaching, research and service responsibilities. The particular blend of these activities varies with the type of academic institution (research university, liberal arts college, etc.). This job market tends to be quite tight and there is strong competition for the most desirable opportunities. Those who go into graduate programs intending to teach at the college level should strive to acquire a broad foundation in both theoretical and applied subjects in the field, along with some experience in communicating the subject matter.

  2. A professional Master's degree program in applied mathematics or statistics.

    An alternative to the traditional Ph.D.-oriented graduate program is a terminal Master's program, which is now available at an increasing number of universities. These programs tend to be in either applied mathematics or statistics. Normally they grant the Master's degree after two years of study. Upon graduation students are qualified to take competitive positions in industry, business or government. Such a program can also be used as a bridge for a student who intends to do a Ph.D. in mathematics or statistics, a Ph.D. in a field other than mathematics and statistics, or an interdisciplinary Ph.D. One of the longest running Masters in Applied Mathematics programs is here at the University of Massachusetts Amherst; see Graduate Applied MS. In addition, our Department offers a Masters degree with an option in Statistics; see Graduate Statistics MS.

  3. A graduate program in an interdisciplinary field that is allied with mathematics or statistics.

    Yet another pathway is to graduate-level studies in a field that is related to mathematics or statistics. Students pursuing this path will have undertaken a broad program at the undergraduate level, probably having completed a minor or double major in the other field. Examples include physics, computer science, engineering, mathematical finance, biostatistics, bioinformatics, mathematical biology, or operations research. In addition, it is possible to undertake a professional degree in law or medicine after an undergraduate degree in mathematics or statistics.

    Talented students who intend to pursue postgraduate studies should also consider participating in the Mathematics Honors Program. Also, graduate courses are open to undergraduates with the consent of the instructor, and majors may wish to enroll in beginning graduate courses, especially those at the 600-level.