LGRT 1590

I am working on minimal and constant mean curvature surfaces, Willmore surfaces and, more generally, harmonic maps from Riemann surfaces, using a combination of methods from integrable systems theory, Riemann surface theory, geometric analysis, and gauge theory.


1987 Post Doc University of North Carolina Chapel HIll

1986 Post Doc Durham University, England

1985 Ph.D. University of Innsbruck, Austria

1983 M.Sc. University of Innsbruck 

1980 B.Sc. University of Innsbruck


Differential geometry

Selected Publications

  • A. Chern, F. Knoeppel, F. Pedit and U. Pinkall. Commuting Hamiltonian flows on curves in real space forms. Integrable Systems and Algebraic Geometry, Vol 1, LMS Lecture Note Series 458, (2020), 279--317.
  • P. Wang, F. Pedit and  X. Ma. Moebius homogeneous Willmore 2-spheres in the n-sphere. Bull. Lond. Math. Soc. 50 (3), (2018), 509--512
  • L. Heller, F. Pedit. Towards a constrained Willmore conjecture. "Willmore Energy and Willmore Conjecture", Chapman & Hall/CRC Monographs and Research Notes in Mathematics (2017), 119--139.
  • C. Bohle, K. Leschke, F. Pedit, U. Pinkall. Conformal maps of a 2-torus into the 4-sphere. J. Reine Angew. Math., 671 (2012), 1--30
  • F. Burstall, N. Donaldson, F. Pedit, U. Pinkall. Isothermic submanifolds in symmetric R-spaces. J. Reine Angew. Math. 660 (2011), 191--243
  • C. Bohle, F. Pedit, U. Pinkall. Discrete holomorphic geometry I. Darboux transformations and spectral curves. J. Reine Angew. Math., 637 (2009), 99--139
  • K. Leschke, F. Pedit, U. Pinkall. Willmore tori in 4-space with non-trivial normal bundle. Math. Ann., 332, 2 (2005), 381--394
  • D. Ferus, K. Leschke, F. Pedit, U. Pinkall. Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic tori. Invent. Math., 146 (2001), 507--593
  • U. Jeromin, I. McIntosh, P. Norman, F. Pedit. Periodic discrete conformal maps. J. Reine Angew. Math., 534 (2001), 129--153
  • F. Pedit, U. Pinkall. Quaternionic analysis on Riemann surfaces and differential geometry. Doc. Math. J. DMV, Extra Volume ICM 1998, Vol. II, 389--400
  • J. Dorfmeister, F. Pedit, H. Wu. Weierstrass-type representation of harmonic maps into symmetric spaces. Com. Anal. Geom., Vol. 6, No. (1998), 633--667
  • D. Ferus, F. Pedit. Isometric immersions of space forms and soliton theory. Math. Ann., 305 (1996), 329--342
  • J. Bolton, F. Pedit, L. Woodward. Minimal surfaces and the affine Toda field model. J. Reine Angew. Math., 459 (1995), 119--150
  • F. Burstall, D. Ferus, F. Pedit, U. Pinkall. Harmonic tori in symmetric spaces and integrable Hamiltonian systems on loop algebras. Ann. of Math., 138 (1993), 173--212