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Abstract

While it is known that musculotendon units adapt to their load environments, there is only a
limited understanding of tendon adaptation in vivo. Here we develop a computational model
of tendon remodeling based on the premise that mechanical damage and tenocyte-medi-
ated tendon damage and repair processes modify the distribution of its collagen fiber
lengths. We explain how these processes enable the tendon to geometrically adapt to its
load conditions. Based on known biological processes, mechanical and strain-dependent
proteolytic fiber damage are incorporated into our tendon model. Using a stochastic model
of fiber repair, it is assumed that mechanically damaged fibers are repaired longer, whereas
proteolytically damaged fibers are repaired shorter, relative to their pre-damage length. To
study adaptation of tendon properties to applied load, our model musculotendon unitis a
simplified three-component Hill-type model of the human Achilles-soleus unit. Our model
results demonstrate that the geometric equilibrium state of the Achilles tendon can coincide
with minimization of the total metabolic cost of muscle activation. The proposed tendon
model independently predicts rates of collagen fiber turnover that are in general agreement
with in vivo experimental measurements. While the computational model here only repre-
sents a first step in a new approach to understanding the complex process of tendon remod-
eling in vivo, given these findings, it appears likely that the proposed framework may itself
provide a useful theoretical foundation for developing valuable qualitative and quantitative
insights into tendon physiology and pathology.

Author Summary

It is now widely acknowledged that tendon plays a vital role in locomotion, while experi-
ments have revealed that tendon is much more metabolically active than previously
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believed. There have been increasing numbers of papers describing the responses of teno-
cytes to mechanical loading and speculation about the origins of tendinopathy, but to date
there is currently no basic theoretical framework describing how tendon maintains tissue
homeostasis consistent with the experimental data, or indeed how tendon adapts to its
environmental load conditions. Based on established biological principles of tendon dam-
age and repair, for the first time we develop a dynamic model of tendon homeostasis that
is capable of adaptation. We show that for a model soleus musculotendon unit with muscle
fiber length kept constant, our model tendon is ‘capable’ of dynamically adjusting itself to
find a stable equilibrium tendon geometry, which coincides with minimum metabolic cost
of muscle activation. This new theoretical framework for tendon homeostasis and adapta-
tion offers the possibility of refocusing research in basic and clinical science.

Introduction

Tendons are dense fibrous tissues that transfer tensile forces from muscles to bones. During
normal daily activity, human Achilles tendon experiences high intensity cyclic loads, up to 4-8
times the body weight [1-3]. Achilles tendon stores potential strain energy as it is stretched,
which is then recovered later in the gait cycle [4, 5]. This strain energy cycling reduces muscu-
lar work and improves the economy of locomotion. Furthermore, the uncoupling of tendon
and muscle lengths, due to the elastic deformation of Achilles tendon, enable the muscle fibers
to operate at more favorable lengths and velocities, thus improving locomotion economy even
further [6].

It is apparent that there are variable tendon geometries and properties, and that tendon tis-
sue has the capacity to adapt to its mechanical environment [7-10], but how? Here we develop
a biologically plausible computational model of tendon adaptation. The basis of our model is a
collagen fiber damage and repair models, which in turn are based on known biological pro-
cesses. When an Achilles tendon model is incorporated into a simplified model of the Achilles-
soleus unit and allowed to adapt over time with usage, we observe the capacity of model tendon
to remodel towards a stable equilibrium tendon geometry, which can coincide with minimum
metabolic cost of the model musculotendon unit operation. We begin by introducing the key
biological processes incorporated into the model.

Tendon extracellular matrix (ECM) is primarily composed of Type I collagen (up to 86%
dry mass). Collagen fibers, run mainly along the axial length of the Achilles tendon, arranged
in a hierarchical structure [11, 12]. At the smallest scale, tropocollagen molecules self-assemble
into microscopically visible strands of collagen fibrils [13]. Despite the small diameter of colla-
gen fibrils, typically 100-150 nm in human adult Achilles tendon [11, 14, 15], their total
lengths are believed to be much longer, and potentially extend continuously from muscle fibers
to bone [16]. A bundle of collagen fibrils form primary collagen fibers [11, 17] that are then
hierarchically aggregated to form primary, secondary and tertiary fascicles across the whole
tendon [11, 18-20].

Tendon ECM is maintained by resident cells known as tenocytes, which mediate the synthe-
sis and degradation of the ECM components [21]. There is compelling evidence for continuous
tendon remodeling by the tenocytes [22-24]. Normally, primary collagen fibers are enclosed
by a confluent sheet of tenocytes [25]. This implies that collagen fibril adaptation must nor-
mally occur via processes acting at a distance from the tenocyte itself. The tenocytes synthesize
proteases and new collagen molecules that then self-assemble to repair fibrillar damage.

We envisage that these physiologic processes are consistent with homeostatic and adaptive
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processes within tendon [26], and it is these processes that are the focus of our proposed ten-
don adaptation model.

Typically, the stress-strain response of a whole tendon is composed of four regions: (i)
extension without significant force up to the tendon’s slack length, (ii) a toe region, (iii) a linear
elastic region, and (iv) a failure region [27]. The slack length is defined as the tendon length at
which the tendon first experiences load [28]. Most of the tendon crimp is removed during
extension up to the slack length [29]. The toe region corresponds with further sequential
straightening of crimped collagen fibers [29]. Experimental observations report a unique crimp
pattern to each individual collagen fascicle [29-31] indicating that each fascicle's stretched
length is also unique. Based on the premise of distribution of collagen fiber lengths, it is possi-
ble to reproduce tendon’s non-linear force-extension behavior [32-34], Fig 1.

Cyclic loading of Achilles tendon during habitual activities, such as walking or running, dam-
ages the tendon and initiates repair processes to maintain tendon homeostasis. It is observed
that cyclic loading of tendons gradually induces ‘micro-damage’ or ‘sub-failure injuries’ at the
collagen molecular and fibrillar levels, which are collectively referred to as ‘mechanical fatigue
damage’ [35-41]. The fatigue response of human Achilles tendon to cyclic mechanical loading
is clearly evidenced in the experimental studies of Wren et al. [38].

At the microscale, mechanical fatigue damage to collagen fibrils may present itself in focal’
or ‘generalized’ modes. Generalized damage is evidenced by repeating patterns of kinks and
distortions along a number of fibrils [42], whereas focal damage is evidenced by fracture of col-
lagen fibrils [43]. One mode of damage may dominate the other depending on the prevalence
and type of cross-links within collagen fibrils [44]. More cross-linking between tropocollagen
molecules results in stiffer tendons, such as Achilles and patellar tendons, and so favors the
focal fatigue damage mode [44]. For simplicity, in this paper we have focused on the focal
mode of damage only. Nevertheless, the damage model employed here may be modified to
include other modes of collagen fiber damage as required.

In addition to mechanical damage, tenocyte-mediated proteolytic collagen degradation also
occurs, and is an essential component of tendon homeostatic processes [14] as it facilitates tis-
sue remodeling [23, 42]. In normal tendon, proteolytic damage is usually meditated primarily
by members of the matrix metalloproteinases (MMPs) family of proteases [45, 46]. Intrigu-
ingly, mechanical tensile strain of collagen fibrils has been shown to reduce, and even
completely prevent, proteolytic damage of collagen fibrils by collagenase MMPs at physiologi-
cally relevant strains [14, 22, 47, 48].

From the above it is clear that while the basic mechanical and physiological aspects of ten-
don tissue and adaptation have been studied, how these processes are integrated to produce
physiologically relevant outcomes during habitual loading is not completely understood.

Here we hypothesize that through utilization of the abovementioned biological processes,
Achilles tendon is capable of adaptation by remodeling its geometry, to reach a dynamic stable
equilibrium that represents tendon homeostasis. In the following, we demonstrate that for a
musculotendon unit with constant muscle fiber length, our proposed tendon model is able to
remodel its geometry to reach a stable homeostatic equilibrium, and that this equilibrium state
can coincide with minimizing the total metabolic cost of the model musculotendon unit.

Methods
Model Overview

In the following we first develop and then test a discretized model of Achilles tendon adapta-
tion. The model tendon is based upon damage and repair processes that take place at the level
of primary collagen fibers. The mechanical load experienced by the tendon is based upon a
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Fig 1. Discretized model of tendon. The mechanical response of tendon is constructed by aggregating the
mechanical behavior of strings with different slack lengths, resulting in a non-linear tendon stress-strain
curve.

doi:10.1371/journal.pcbi.1005106.g001

simplified Achilles-soleus model and experimental measurements made during normal human
gait mechanics. Over time, repeated cycles of damage and repair of the collagen fibers gradually
remodel the whole Achilles tendon. We note here that the timescale for the simulated sequen-
tial damage and repair processes are not critical to our proposed adaptation model, but for con-
venience and definiteness we have assumed a daily cycle of damage and repair. This timescale
is likely to accord with at least some of the important cyclic homeostatic processes taking place
within tendon [49, 50].

To frame our model of tendon adaptation in accordance with the known abovementioned
tendon physiological process, the following computational sub-models are developed: (i) a dis-
cretized fiber model of tendon mechanics, Fig 2(a), from which the force-extension behavior of
the whole tendon can be estimated, Fig 2(b). (ii) a simplified model of the musculotendon
(Achilles-soleus) unit, Fig 2(c), from which the metabolic cost of the (effective) soleus muscle
mechanical work at the ankle joint is estimated, Fig 2(d). (iii) a model for calculating the inten-
sity of daily load as a function of metabolic cost, Fig 2(e), (iv) models for mechanical damage
and repair to individual collagen fibers, Fig 2(f), and (v) models for proteolytic damage and
repair to individual collagen fibers, Fig 2(g). A single sequential pass through these sub-models,
results in a remodeled tendon geometry, with a modified force-extension response, Fig 2(h). In
other words, the model tendon adapts by repeatedly cycling through this algorithm. We now
describe each of these sub-models in detail.

Tendon Mechanical Model

In principle, either the collagen fibrils or the primary collagen fibers may be the anatomical
units regarded as the load carrying ‘string elements’ in our model. However to render the com-
putations more tractable, here we have chosen to represent the primary collagen fibers as the
discretized string elements. For the rest of this paper, collagen fibers in our model refer to pri-
mary collagen fibers.
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Fig 2. Tendon adaptation modeling cycle. a) discretized tendon model, b) force-extension response of the tendon model, c) three-component Hill
musculotendon model, d) metabolic rate calculation model, ) model to scale contractile force from muscle, f) collagen fiber mechanical damage model
and, g) collagen fiber proteolytic damage and repair model, h) updated tendon fiber length distribution results in a new tendon configuration and
completion of a remodeling cycle of tendon adaptation model. Where PDF is probability density function, Ls represents tendon slack length that is equal
to the slack length of the shortest fiber, SD represents fiber length standard deviation, a measure of fiber dispersion, and L; represents fiber slack length.

doi:10.1371/journal.pcbi.1005106.9002

Human Achilles tendon cross-sectional area (CSA) at the mid-section is reported to range
from under 50 mm? [51, 52] to values higher than 80 mm? [38, 53]. Assuming an Achilles ten-
don to have a CSA of 60 mm” and assuming a circular cross-section for collagen fibers with an
average fiber diameter of 28 um [54], the total number of primary collagen fibers (Niota1) in
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human Achilles tendon is estimated to be:

N,

total —

A
A_T ~ 100,000 (fibers) (1)

F

where At and Ar denote whole tendon cross-sectional area and average collagen fiber cross-
sectional area In the present study, we explicitly model 100,000 collagen fibers that are of non-
uniform length, but otherwise similar. We note here that it may be appropriate to have fibers
with variable stiffness along their length, as it has been reported that the ‘free’ Achilles tendon
is more compliant than the aponeurosis [21, 55, 56]. Nevertheless, for simplicity we adopt a
uniform stiffness along the fiber length. And for simplicity we assume a Gaussian (normal) dis-
tribution for the initial profile of fiber lengths, and show that it can approximate the non-linear
stress-strain curve of a tendon, Fig 1. Starting mean fiber length is chosen to be in the range
250 to 280 mm to correspond with reported total anatomic length of human Achilles tendon,
including the aponeurosis [57-60].

Choosing Lt as the mean length of the tendon and L; the slack length of the i™ fiber, then
the linear extension of the i fiber (AL;) as the whole tendon undergoes linear extension ALy is
calculated from:

. (2)
0 if L4+ AL, < L,

{ L — (L, +AL;) if L, +AL, > L,
AL =

For convenience, we take mean of the slack lengths of all fibers to represent the mean ten-
don length (L, ~ L,). While the measured estimates vary, the commonly reported Young’s
modulus of the Achilles tendon (Et) is about 1 GPa [61, 62]. Assuming homogenous material
properties, and uniform cross-sectional area (Ag) for all collagen fibers, the stiffness of the ith
fiber (k;) is then estimated by:

(3)

Using Eqs (2) and (3), fiber force (F;) and whole tendon force (Fr) at a given tendon exten-
sion can then be calculated by:

F, =k AL (4)

Fp = ZﬁqmlFi (5)

Mechanical Damage and Repair Models

Repeated cyclic loading of tendon during daily activity damages collagen fibers [38, 63]. Our
estimates for the likelihood of mechanical fatigue damage of primary collagen fibers is based
on the empirical fatigue damage data for the whole human Achilles tendon obtained by Wren
et al [38]. The implicit assumption we employ to use this data is that the whole Achilles tendon
fatigue behavior is also representative of the individual primary collagen fibers fatigue behavior
making up the human Achilles tendon. The assumption that each part of the Achilles tendon is
similar to all others is likely to be a reasonable assumption for healthy tendon, but we note this
is less likely to be a reasonable assumption for diseased tendon.

The average age of the 25 human subjects from whom the Achilles tendon samples were
obtained by Wren et al (2003) was 75 (+12) years [38]. Therefore, in order to represent the in
vivo damage in young adults, we chose to rescale the ultimate tensile stress value of 70 MPa
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reported by Wren et al (2003) [38] to 100 MPa [64-66], while leaving the slope of the fatigue
curve unchanged. Fig 3 shows the normalized fatigue curve for collagen fibers employed in our
model. This rescaled human Achilles tendon fatigue curve is probably more representative of
younger adults, though other scalings may be deemed appropriate depending on data and the
intended purpose of the model. However provided that reasonable values are chosen, the actual
values for scaling are not critical, and do not substantially change the findings reported here
(see later sensitivity analysis).

From Fig 3, the number of loading cycles to tendon failure (ng,;) at a given peak fiber stress
(0max) are calculated using:

O max — a— b : loglo(nfail) (6)

S Mgy = 107%" (7)
where a corresponds to the ultimate tensile stress at one cycle, in this case 100 (MPa), and b is
the slope of the logarithmic fatigue curve in Fig 3, in this case 8.25 (MPa/log(n)). Peak tensile
stress of the i fiber (¢

max

) in a tendon undergo)ing linear extension AL is calculated by:

Chn = B ®)
where fiber extension AL; is calculated from Eq 2. It is clear that typical daily activities lead to
peak stress levels that rarely (if ever) result in complete failure of a normal tendon. Conse-
quently we need to devise a ‘cumulative damage function’ to estimate the amount of damage
arising from daily activity. For our ‘string’ tendon model, cumulative tendon damage is
assumed to be directly proportional to the fraction of broken fibers. The fraction of broken
fibers as a result of daily activity can be estimated from a failure (or reliability) function for
individual collagen fibers. However due to the lack of experimental data on failure functions
(Ppic) or reliability functions (R = 1 — Pe™) for tendon, we employ a commonly adopted
‘exponential failure function’ [67] to describe focal damage failure of individual collagen fibers
within the Achilles tendon. Therefore the probability of mechanical failure of an individual
fiber experiencing peak fiber stress 0,,,,, and n load cycles is estimated by:

P =kt k- O o)

The fitting constants x and A in (Eq 9) are defined such that Pl = 0 at =0, Pji* = 0.1
at n = ngy/2 and P};‘;Ch = 1 at n = ng,;. These fitting constants are chosen based on reported typ-
ical cyclic fatigue test on human Achilles tendon reported in Fig 2(b) and 2(c) of Wren et al
(2003) [38]. Fitting Eq 9 to this figure suggests reasonable parameter values are, ¥ = 0.0125 and
A =4.395. A typical cumulative damage probability curve is shown in Fig 3. However clearly
these fitting constants can be adjusted to fit experimental results as required, while the influ-
ence of these parameters on our model outputs are quantitated in a later sensitivity analysis.

In our model for an Achilles tendon with normal physiology, if a fiber mechanically fails, it
is always repaired (which may not happen in a diseased tendon). A repaired fiber may (proba-
bilistically) be repaired either shorter or longer, however, we bias the repair of mechanically
damaged fibers towards lengthening (Fig 4). A probabilistic interpretation of fiber repair as
used in our model is depicted in Fig 4(b), which shows the probability distribution of relative
length changes to a fiber following its repair.

We suggest that this repaired length change, depicted Fig 4(a), is consistent with the follow-
ing conceptual model of the repair process following mechanical damage. First, the two ends of
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the broken fiber are enzymatically debrided by proteases to obtain a suitable undamaged sur-
face from which a new portion of collagen fiber can be constructed. A new portion of collagen
fiber is then created by polymerization of tropocollagen molecules [68, 69]. While the section
of fiber debrided may be longer than the newly formed portion of collagen fiber, leading to
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Fig 4. Collagen fiber remodeling. a) remodeling of collagen fibers by mechanical damage and repair, () shorter fibers are subject to higher strains, (11)
fiber focal damage under mechanical strain forming a gap, (l1l) fiber repair at a longer length by filling in the gap with new collagen, b) repair probability
density function following mechanical damage, quantifies the bias toward fiber lengthening, c) remodeling of collagen fiber by proteolytic damage and
repair, (IV) longer fibers are subject to lower strains, thus more likely to be degraded by proteases, (V) new collagen forms across the gap while excess
fiber is degraded resulting in a shorter fiber (VI), c) repair probability density function following proteolytic damage quantifies the bias towards fiber
shortening.

doi:10.1371/journal.pcbi.1005106.9004
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further fiber shortening, on average the broken ends are more likely to lie somewhat apart, so
the new portion of fiber bridges both this gap and any fiber debridement, and so the repaired
mechanically damaged fiber is on average longer. The gap between the broken ends arises at
least partly because mechanically damaged fibers are on average shorter than remaining nearby
fibers, but it seems plausible that the gap between broken fiber ends may also be partly pro-
moted by other events, such as the elastic recoil of the fractured ends of a failed fiber or subse-
quent cyclic friction forces between fibers. The gap between the broken ends is observable in
SEM images of damaged collagenous matrices [43, 70, 71]. A schematic depiction of this is
shown in Fig 4(a). It has been noted previously by Provenzano et al [43], that if the gaps
between the fractured ends are filled by newly polymerized collagen fiber, then the repaired
fibers lengths are increased.

Proteolytic Damage and Repair

Proteases remove damaged or unwanted ECM as part of normal tissue turnover and collagen
fiber homeostasis [14, 23, 41], but the rate of collagen degradation is modified by collagen
strain. For example, Wyatt el al. [72] reports an almost complete cessation in collagenase deg-
radation rate when rat tail fascicles were strained 4-5% [72]. However, Flynn et al. performed
similar tests on single collagen fibrils, thereby avoiding rotational deformations of collagen
fibers during extension (rotational deformations are often observed in collagen networks made
up of fibrils with a variety of fibril orientations) [73]. For the experimental tests reported by
Flynn et al (2013), which probably most closely approximate the (linear) fibril structure
observed in Achilles tendon, collagenase degradation of fibrils is prevented at strains larger
than about 1.5%.

These test results suggest that in terms of our ‘string’ model of tendon, for a given tendon
strain, relatively long collagen fibers are less stretched along their length, which render them
more susceptible to being degraded by active proteases [22, 41, 48, 74-76]. Based on the experi-
mental results of Flynn et al [47], we employ an exponentially decreasing probability of fiber
cleavage with increasing strain (Fig 5), viz:

P};ri(l)teo — e*Q'fmax ( 10)

where £,,,,x is the fiber peak strain during a gait cycle and ¢ is a fitting constant. To accord with
the observations of Flynn et al. [73], ¢ is calculated to be 300. This selection of ¢ results in
almost no proteolytic damage in fibers experiencing peak strains &,,,x > 1.5%. Clearly the sen-
sitivity to proteolytic damage can be altered by varying the constant.

It is equally clear that Eq 10 is a very crude modeling representation of an actual proteolytic
process occurring within tendon, as binding of MMPs to collagen fibers, the movement of
MMPs along collagen fibers, the surface state of the collagen fibers, and the history of cyclic
strain experienced by the collagen fibers, are all time dependent, and so the level of protection
afforded to collagen fibers must also be time dependent. A more sophisticated proteolytic dam-
age model would include such time dependencies, but unfortunately to date there is little data
available in the literature to suggest more precise functional relationships.

When proteolytic degradation of the collagen fiber is complete, once again new collagen
molecules polymerize to create newly formed collagen fiber, which bridges the gap between the
degraded ends (see schematic Fig 4(c)). For each fiber that is proteolytically degraded, the fiber
repair model determines a probabilistic repair length. As in the case of mechanical damage,
the repair length is found by sampling a triangular probability distribution. However, this time
the triangular probability distribution has a greater tendency to shorten the original fiber, see
Fig 4(d). In other words, the fiber section removed proteolytically is on average longer than
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doi:10.1371/journal.pcbi.1005106.9005

that filled by newly formed fiber section, and so the repaired fiber is shortened. We note that
the mechanism for fiber shortening is not known with certainty. However, it is possible that
passive mechanical forces may contribute to fiber shortening (e.g. cyclic frictional forces, or
compressive residual stresses in long fibers may relax), or active forces generated by cells may
contribute to fiber shortening (e.g. a number of experiments have reported that tenocyte gener-
ated contractile forces can actively shorten collagen fibers [41, 74, 75, 77].

Integration of the Tendon Model with the Muscle Model

To provide an appropriate context to test adaptation of Achilles tendon to its loading environ-
ment, we set our new tendon model within a standard three-component Hill-type model. Rep-
resenting the musculotendon unit, the Hill-type model is composed of a contractile element
and two elastic elements, Fig 2(c). The contractile element and the parallel elastic element sim-
ulate the integrative behavior of the human soleus through gait cycles [78, 79]. The soleus is
the muscle of choice for examining our tendon model for the following reasons: (i) among the
plantarflexor muscles it is the largest muscle, and from several modeling studies it has become
clear that the soleus is the primary muscle responsible for producing ankle power and work in
both walking and running [80-82]. Furthermore, modeling results has found the soleus to be
among the most important producers of mechanical work during walking and running across
all lower limb muscles [83, 84]. (ii) The soleus only crosses the ankle, unlike the gastrocnemius
muscles that cross both the ankle and knee joints (knee flexor). This simplifies the modeling of
muscle force using our hill-type model, eliminating potentially complicating factors.

Joint torque sharing between the soleus and the other synergist muscles is simplified by ini-
tially attributing the torque produced by the soleus to the relative physiological cross sectional
area of the soleus and the other ankle plantarflexors combined. Soleus force is subsequently
computed from a joint angle-specific soleus moment arm [59]. The activation required to pro-
duce this force is modelled incorporating muscle force-length-velocity constraints. Muscle
fiber lengths and velocities are influenced in our calculation by ankle joint angle, muscle penna-
tion angle (we assumed a constant volume muscle model) as well as tendon stretch.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005106 September 29, 2016 10/30
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The series elastic element in the musculotendon unit shown in Fig 2(c) represents the Achil-
les tendon, with its mechanical properties obtained from the discretized tendon model described
above. As we allow tendon remodeling over time, mechanical properties of this series elastic ele-
ment, representing the Achilles tendon, also changes over time.

For simplicity the contractile element and its parallel elastic element are taken to have con-
stant properties in all our simulations, though in reality these may also adapt over time [85,
86]. This simplification is to focus our attention on the adaptation process of the Achilles ten-
don alone, and to exclude muscle adaptation (which has been investigated elsewhere [85, 86]).
Allowing the muscle to adapt simultaneously with the tendon could potentially complicate our
understanding of tendon adaptation, and possibly obscure tendon responses that are of interest
here. But clearly muscle does adapt too, and inclusion of such mechanisms is an obvious exten-
sion for developing a more realistic future model.

Fig 6 illustrates the algorithm for updating the tendon properties in the musculotendon
model as a result of activity. The musculotendon model uses an inverse dynamics approach
with ankle torque and kinematics as inputs to calculate the required muscle force. The ankle
torque and kinematics were experimentally obtained from motion tracking and force measure-
ments from an adult subject during walking [87].

The algorithmic steps in Fig 6 include: ankle torque, Fig 6(a), and musculoskeletal dimen-
sions (moment arms) and ankle angles, Fig 6(b) are employed to first calculate tendon force.
The tendon model response to force is then used to calculate tendon extension, Fig 6(c). Ten-
don extension and ankle angles, Fig 6(b) and 6(c), are then used to calculate muscle fiber pen-
nation angle, muscle fiber operating length and muscle force (Fy;), Fig 6(d), which balances the
calculated tendon force. Muscle activation (M,) to generate the required muscle force is esti-
mated based on muscle length, Fig 6(e) [79], and muscle velocity, Fig 6(f) [79, 88]. The expres-
sion used to calculate muscle activation, based on formulations by Buchanan et al. [79], is:

F
Mact = F . F MF
L v M

,;max

(11)

M, (muscle activation) is a dimensionless number between zero and one that represents the
fraction of maximal muscle activation. Fy; is the muscle force, Fig 6(d), while F; is the muscle
force at current length as a fraction of the maximum isometric force (Fymax)> Fig 6(e), and Fy,
is the muscle force at the current contraction velocity as a fraction of the maximum isometric
force (Fymax)> Fig 6(f). The muscle activation M, from Eq (10) is then used to calculate the
metabolic cost rate (power), and integration of this quantity with respect to time gives the total
metabolic cost during a gait cycle, as described in [78].

The metabolic cost rate (Q) during a gait cycle, Fig 6(g), is expressed as the sum of four

terms: activation heat rate (/,_,), maintenance heat rate (), shortening/lengthening heat rate

act

(ﬁsl) and the mechanical work rate performed by the muscle (w,,) [78], viz:
Q:I:le:\ct_‘_I:lm_|_I;lsl_|_1;vM (12)

Now that we have defined our musculotendon unit model, we need to recognize that the
musculotendon unit does not operate in isolation from the whole organism, but is in fact part
of the whole organism. This relationship between the musculotendon unit and whole organism
puts constraints on the muscultotendon units operation, which help guide the tendon to an in
vivo equilibrium state. Potential factors at the whole organism level affecting the musculoten-
don operation in the adult include sensory feedback signaling (including pain), neural muscle
activation patterning, higher order cognitive inputs (e.g. willpower) and oxygen and metabolic
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doi:10.1371/journal.pcbi.1005106.9006

energy availability from the organism to make sure there is matching of supply-demand func-
tions over the whole musculotendon unit.

The equilibrium state achieved by tendon operating within the musculotendon unit, operat-
ing within the whole organism, depends on these interactions/constraints, which may be for-
mulated mathematically as optimization of a multi-objective function. Clearly this multi-
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objective function can vary over time with changes in environmental and sensory inputs, nutri-
tional status and determination of the individual, and it is these changes that usually drive ten-
don adaptation in vivo. But for our modeling purposes, how can we simply and reasonably take
into account this substantial in vivo complexity?

At equilibrium it is likely that for everyday repetitive activities such as walking, an important
contributor to the multi-objective function is musculotendon unit economy. For habitual
repetitive activities such as walking, energy minimization is regarded by some as a key optimi-
zation criterion dictating locomotor behavior [89, 90]. There is much evidence pointing to
movement patterns that minimize energy expenditure, from the selection of preferred walking
speeds in humans and other species [91, 92] to preferred stride frequencies [93, 94] and pre-
ferred gaits [95, 96].

Consequently, it is likely that Achilles-soleus unit economy is close to being maximized
when the tendon geometry has reached its geometrical equilibrium state, and that Achilles-
soleus unit economy will ‘fall’ on either side of the tendon’s geometrical equilibrium state.
Making these assumptions, the simplest way for us to approximate the change in walking econ-
omy with tendon geometry in our model is to reflect the effect of current metabolic cost on the
musculotendon unit load intensity. This can be implemented most simply by scaling the ankle
torque while keeping both gait pattern and number of load cycles per day constant. Taking this
approach effectively acts as a constraint on the musculotendon unit operation, preventing the
total metabolic cost from becoming physiologically unrealistic at some tendon geometries.

Therefore ankle torque (7,) can be calculated via:

Ta = ﬁ : Ta.m (13)
where 7,,, is the lab-measured ankle torque and f is an activity scale factor calculated by:

Qmin

Q (14)

p=
where Q refers to the total metabolic cost of muscle activation and Q,,;,, refers to the minimum
total metabolic cost of muscle activation. Fig 6(h), shows the relationship between the activity
scale factor (0 < 8 < 1) and the metabolic cost for a range of tendon lengths and constant fiber
length dispersion. The calculated activity scale factor §is used in the next cycle to determine
subsequent ankle torques, from which flows tendon forces, muscle forces and metabolic cost,
which are calculated via cycling through the algorithm for muscultotendon unit operation
depicted in Fig 6. Clearly a more realistic model would take into account changes in the multi-
objective function governing musculotendon unit interactions/constraints with the whole body
in a much more sophisticated way, and also involve changes in both gait patterns and number
of load cycles. Relaxing the assumptions made here represent an interesting direction for future
research.

We chose a single cycle of remodeling, shown in Fig 2, to represent a 24-hour period. To
correspond the tendon activity level with this time-frame, we subjected all our tendon models
to a total of n = 5,000 load cycles per day, which approximates the number of gait cycles of
active adults [97-99].

To reduce possible time discretization errors, the tendon model is subjected to loading cycles
in three equally spaced blocks of simulated activity cycles during a day. At the end of an activity
block, the tendon’s fatigue damage is assessed as outlined above, resulting in loss of some intact
fibers. With an updated metabolic cost, tendon peak force for the next loading block is updated
wherein tendon continues undergoing mechanical loading. At the end of the third loading
block, proteolytic damage and finally repair of the mechanically and proteolytically damaged
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Table 1. Parameter names, symbols and values.

Parameter Name Parameter Symbol Parameter Value
Number of fibers Niotar 100,000
Average collagen fiber CSA Ar 6.15x 10~ mm?
Average tendon CSA Ar 60mm?
Young’s modulus of tendon E+ 1GPa
Loading cycles per day n 5,000
Tendon ultimate tensile stress a 100MPa
Logarithmic fatigue curve slope b 8.25MPa/log(Niai)
Peak ankle torque, measured Ta,m 165Nm

doi:10.1371/journal.pcbi.1005106.t001

fibers take place, as previously explained, resulting in a new fiber length distribution (and
restored fiber number). This daily cycle is repeated to simulate tendon remodeling over weeks
or months, and adaptation of tendon properties can be tracked over time.

A summary of parameter symbols and values used in the model are shown in Table 1 below.

Results

We first consider fiber length distribution of the model tendon, as fiber dispersion strongly
influences its mechanical properties. A model tendon with reduced fiber length dispersion (i.e.
reduced standard deviation) experiences more rapid fiber recruitment and force development
with strain, while a tendon with a larger fiber length dispersion (i.e. larger standard deviation)
exhibits slower fiber recruitment and force development with strain (see Fig 7). Strain energy is
the potential energy stored by elastic materials as they undergo deformation. For elastic materi-
als such as tendon, it is quantified as the dot product of force and displacement. The elastic
strain energy is equal to the area under the force-extension curves shown in Fig 7. For a given
tendon extension of two otherwise identical tendons, the tendon with smaller fiber dispersion
has a higher force and more strain energy is stored. However for constant force, the tendon
with the lower stiffness will store more strain energy [7].

e SD=0.5% of Mean

e SD=1.5% of Mean

e
o

e
N

o
i~

Tendon Force (Normalized)
o
N

0 .

0 25 5 7.5 10 12.5 15
Tendon Extension (mm)

Fig 7. Mechanical response of tendons with different fiber length distributions. Force-extension curves
for tendons with identical mean fiber length and different length standard deviations (SDs) i.e. SDs = 0.5%
and 1.5% of mean fiber length.

doi:10.1371/journal.pcbi.1005106.9007
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Fig 8. Tendon remodeling by mechanical damage and repair. a) tendon remodeling by mechanical damage alone over 15 days, b) tendon
remodeling by mechanical damage and repair over 90 days. Tendon peak force and number of loading cycles are kept constant for all simulated days.

doi:10.1371/journal.pcbi.1005106.9008

The effects of damage and repair models on tendon fiber length distributions are next dem-
onstrated in Figs 8 and 9. All tendon simulation results shown in these two figures are for cyclic
loading n = 5,000 cycles/day and a peak stress of 55 MPa (i.e. 5.5% strain). The model tendons
initially have a normal distribution of fiber lengths, with mean fiber length 275mm and fiber
length standard deviation of 2mm.

Fig 8(a) represents remodeling of tendon by mechanical damage only (i.e. there is no repair
operating). The shortest fibers, where fiber strain is the highest, are damaged rapidly and so

0.14 + 0.14 -
——Initial ——Initial
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Fig 9. Tendon remodeling by proteolytic damage and repair. (a) tendon remodeling by proteolytic damage alone over 15 days, b) tendon remodeling
by proteolytic damage and repair over 90 days. Tendon peak force and number of loading cycles are kept constant for all simulated days.

doi:10.1371/journal.pcbi.1005106.9009
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break first (they are not repaired, as no repair is operating). The remaining shortest fiber are
now more abundant (as the probability density function of fiber lengths progressively increases
up to the mean), which slows the rate of advance of the broken fiber. Note that without includ-
ing subsequent repair, the total number of intact fibers gradually decreases over time. If
mechanical fatigue damage continues for a long time without repair, eventually all the fibers
would fail, and the tendon would rupture [38].

In Fig 8(b) both mechanical damage and repair are operating, so the total number of fibers
remains constant. However, repaired lengths are on average longer than the original fiber slack
lengths, so the mean fiber length increases, and the whole fiber population ‘marches’ towards
longer tendon lengths (see Fig 8(b)). We note that standard deviation of fiber lengths initially
changes, but becomes relatively constant over time, even as the population of fibers marches
towards longer tendon lengths.

Fig 9(a) represents remodeling of a tendon by only proteolytic damage (i.e. there is no repair
operating). The longest fibers, where strain is the low, undergo rapid proteolytic damage. The
remaining shorter fibers of the population experience progressively higher strains, which helps
preserve them. As fibers are removed proteolytically there are fewer fibers and so they experi-
ence higher the average strain, which slows their removal.

In Fig 9(b), both proteolytic damage and repair processes operate. The longest fibers are
first proteolytically damaged, but when repaired, on average they are shorter. Progressive dam-
age of the longer fibers in the population combined with repair with fiber shortening results in
the entire fiber distribution ‘marching’ to the left.

Results shown in Figs 8 and 9 are obtained using only the tendon model. Hereafter, activity
levels are calculated by incorporating the tendon model within the Hill-type musculotendon
model, as described above.

The calculated total metabolic cost for a single gait cycle for a range of tendon slack lengths
and fiber length standard deviations are shown in the color map plot of Fig 10. To illustrate
tendon remodeling behavior with the musculotendon unit, we chose four arbitrary initial ten-
don geometries (i.e. each tendon is given a different initial tendon length and fiber dispersion).
All tendons are then allowed to remodel for a period of 720 days, subjected to 5,000 loading
cycles every day, and all other model parameters are held constant. Fig 10 shows remodeling
paths for each of the four tendons (see paths A-D in Fig 10). Because the tendons are initially
in disequilibrium states for the musculotendon unit conditions, they remodel towards their
normal tendon length, which is an equilibrium state.

Importantly, we note that with appropriate selection of damage and repair parameters (as
detailed in the model development described above), for each of the initially different tendon
geometries illustrated in Fig 10, their remodeling paths all converge towards final equilibrium
states within a region of tendon geometries. Within the assumptions of the computational
model as described above, this clearly illustrates that the chosen parameters in the proposed
remodeling processes are capable of directing tendon adaptation so that each tendon
approaches an equilibrium geometrical state, and that this state can coincide with a region of
minimum metabolic cost per gait cycle.

During the remodeling from initial states A to D shown in Fig 10, collagen fibrils are
mechanically and proteolytically degraded and repaired as they remodel over time. Fig 11
shows collagen fiber degradation and synthesis turnover times during the remodeling as each
tendon moves along its remodeling path (i.e. along each of the paths A to D shown in Fig 10).
Collagen fiber degradation turnover time refers to the ratio of total initial fibrillar collagen con-
tent to the rate of collagen fiber removal, as a result of both mechanical and proteolytic damage
processes. Collagen fiber synthesis turnover time refers to the ratio of total initial fibrillar colla-
gen content to the rate of new fibrillar collagen formation, as a result of repair processes. At
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Fig 10. Tendon remodeling in response to metabolic cost. Tracking geometric changes in four sample tendons with
initial geometries corresponding with points A, B, C and D over 720 days of simulation. a-d) Total metabolic cost, mean
tendon length, fiber length standard deviation, mechanical damage rate and proteolytic damage rate plots over 720 days
for paths A-D respectively.
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selected tendons of (Fig 10A—10D) during the remodeling process. Collagen fiber turnover time at equilibrium reaches around 180 years.

doi:10.1371/journal.pcbi.1005106.g011

equilibrium, when there is no apparent change in tendon length or fiber dispersion, the degra-
dation and synthesis turnover times are equal.

Fig 12 explores the tendon geometries after 720 days of remodeling for each of 55 equally
spaced initial tendon geometries placed over the whole tendon geometry domain of tendon
length and fiber dispersion while all other model parameters are held constant. Based on
the tendon geometries after 720 days remodeling, these 55 initial tendon geometries can be
categorized into two distinct groups. We observe that some initial geometries remodel to an
equilibrium state (dark shaded points), coinciding with minimum metabolic cost, while the
remaining initial geometries remodel towards non-physiological states (light shaded points),
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Fig 12. Tendon remodeling exploration. a) 55 equally spaced initial tendon geometries selected across the metabolic cost region, b) final
geometries after 720 days of remodeling. White points indicate unstable initial geometries, dark points indicate initial geometries converging to
an equilibrium state.

doi:10.1371/journal.pcbi.1005106.9012
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where tendons are short (and growing shorter) and metabolic costs are very high (and growing
higher).

Finally, we report the sensitivity of equilibrium tendon length and dispersion to variations
in model parameters. For our purpose, we define normalized sensitivity to be:

_1/Y,9Y

Sve = 1/P,0P (15)

where Y is the length of the tendon (or tendon fiber dispersion), and P is a model parameter.
Model sensitivities are estimated by incrementing model parameters by 5%. Normalized sensi-
tivities for fourteen model parameters are shown in Table 2.

Discussion

The normal physiological processes occurring within tendon have been described in some
detail. These processes enable the tendon to maintain its normal functional mechanical proper-
ties and to adapt to its local musculoskeletal environment when needed. However not a lot is
known about the details of how tendon homeostasis and adaptation occurs [21, 26, 100, 101],
and very little is known about how the basic processes of damage and repair are integrated to
result in functionally relevant tendon responses.

Though simplified, the tendon model presented here is based on the normal physiological
processes taking place in the Achilles tendon. We first combined known details of strain-medi-
ated proteolytic and mechanical damage on collagen fibers into an integrated tendon-fiber
damage and repair model. We then set the new tendon model within a simplified Achilles-
soleus tendon model. Then in a very simple way (i.e. via our ‘beta function’), we set the muscu-
lotendon unit within the whole organism. Finally, we examined how the tendon remodels
when perturbed from its equilibrium state. We demonstrated that for suitable model parameter
selection (i.e. those parameter selected as described during model development), our tendon
model is able to remodel the tendon in such a way that it approaches an equilibrium geometry,
which is stable. Because of the way the beta function is formulated, this equilibrium tendon
geometry also coincides with the minimum metabolic cost of generating force and mechanical
work by the musculotendon unit.

Table 2. Sensitivity to changes of model parameters (% change Y/% change P, where Y is tendon
length or dispersion, and P are model parameters).

Parameter (P) Length Sensitivity Dispersion Sensitivity
Activity Scale Factor 8 0.070 -0.41
Ultimate Tensile Stress a -0.069 21
Fatigue Slope b 0.031 -0.37
Mechanical Damage « 0.0041 -0.032
Mechanical Damage A 0.0028 -0.030
Total Daily Cycles n 0.0017 -0.0079
Proteolytic Damage ¢ 0.037 0.033
Repair (% Change of Length) Mean -0.0026 -0.16
Repair (% Change of Length) Dispersion 0.0010 0.25
Collagen Fiber Stiffness k; 0.031 -1.1
Soleus Maximum Isometric Force F,ax -0.043 0.014
Soleus Maximum Shortening Velocity Vmax -0.044 -0.12
Calcaneus Length Lgg ¢ 0.066 0.36

doi:10.1371/journal.pcbi.1005106.1002
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How does tendon remodeling occur? The two tissue damage processes (mechanical damage
and proteolytic damage) and their interaction within the context of the musculotendon unit
operation, are fundamental to understanding the tendon adaptation model presented here.
The basic properties of the mechanical and proteolytic damage and repair models are demon-
strated in Figs 8 and 9. Then we demonstrate the behavior of the model tendon set within
musculotendon unit, set within the whole organism, as shown in Fig 12. Fig 12 demonstrates
regions of tendon length stability and regions of tendon length instability.

How do we understand this tendon length behavior within the musculotendon unit, set
within the whole organism? At tendon lengths where musculotendon unit metabolic cost is
low, (i.e. where muscle efficiency and load intensity is largest), tendons undergo high rates of
mechanical damage, while at very short or long tendon lengths where musculotendon meta-
bolic cost is high, (i.e. where the muscle becomes less efficient and load intensity reduces),
mechanical damage rate is reduced. The reverse is true for proteolytic damage (e.g. where mus-
cle efficiency is largest, proteolytic damage is lowest).

If we now assume that any damage is repaired by the tendon repair processes as described
above, then the qualitative structure of these damage relationships shown in Fig 13 define
regions of tendon length stability. For when the rate of mechanical damage is greater than the
rate of proteolytic damage, the tendon lengthens. In contrast, where the proteolytic damage is
greater than the rate of mechanical damage, the tendon shortens. This implies Point A in Fig
13 is an unstable point with respect to tendon length, i.e. following a geometrical perturbation
from Point A, the tendon must either lengthen or shorten (in other words, its length diverges
from A), while Point B is a stable point with respect to tendon length, that is, following a per-
turbation from Point B, the tendon length will always return to Point B. This stability structure
of the tendon model set within the musculotendon unit, set within the whole organism,
explains our model findings shown in Fig 12. In Fig 12, the lighter shaded points represent ten-
don lengths to the left of point “A” in Fig 13 (i.e. the lighter shaded points are in the domain of
divergent initial states), while the darker points correspond with the tendon lengths to the right
of point “A” (i.e. the darker shaded points are in the domain of convergent initial states). The
domain of convergent initial states remodel towards the (attractor) equilibrium state (i.e. point
“B” in Fig 13).

—— Proteolytic
Damage

-

—— Mechanical
Damage

Damage (%)

Mean Tendon Length (mm)

Fig 13. Relative relation of mechanical and proteolytic damages at different mean tendon lengths.
Intersection at point A denotes an unstable state where remodeling lengths diverge. Point B denotes a stable
state where remodeling lengths converge. Arrows signify the direction of tendon length change driven by
damage and repair processes.

doi:10.1371/journal.pcbi.1005106.9013
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In it important to realise though, that a tendon at a stable geometrical configuration is in a
dynamic equilibrium state. In other words at equilibrium, tendon damage and repair continue
even though the tendon length (and fiber dispersion) are not changing (see Fig 11). In essence,
when at homeostatic equilibrium, the tendency for the tendon to reduce its length is exactly
balanced by the tendency for the tendon to increase its length. We see that anything upsetting
this dynamic balance will lead to a change in tendon length. So for example, if the mechanical
damage curve in Fig 13 is ‘pulled down’ (e.g. exercise level is reduced) while the rate of proteo-
lytic damage is held constant, the tendon will shorten to find a new equilibrium state. On the
other hand, if the rate of proteolytic damage is decreased (e.g. collagenases are inhibited) while
the rate of mechanical damage remains constant, the tendon will lengthen to find a new equi-
librium state. As long as this model structure is maintained (e.g. the two damage curves always
intersect), this suggests that the model will operate successfully over a relatively wide range of
parameter values.

This is confirmed by the sensitivity analysis shown in Table 2. For example, the sensitivity
analysis shows that any tendon model parameter changed by 10% will lead to a change in ten-
don length of less than 1%. In other words, substantial changes in tendon model parameters
are required to cause significant changes in tendon length. This may help explain why large
changes in equilibrium tendon length are not commonly observed in vivo—in addition to
requiring considerable time to reach a new equilibrium, changes in equilibrium tendon length
would require significant changes in model parameters.

On the other hand, Table 2 shows that our model fiber length dispersion is about an order
of magnitude more sensitive to parameter changes than its sensitivity to tendon length changes.
Interestingly, this suggests that changes in tendon performance in vivo, may be reflected first
by changes in fiber dispersion, which would alter tendon stiffness (for example tendon stiffness
is likely to increase as fiber dispersion decreases).

In the tendon fiber model described above, we found that if the standard deviation of the
collagen fiber lengths is initially greater than that of an equilibrium state, then the remodeling
process results in a stiffening of a tendon (Fig 7), much like the stiffening reported in the litera-
ture [102]. This suggests that changes in the musculotendon unit associated with exercise may
result from a decrease in fiber length dispersion. While we do not pursue this hypothesis in this
paper, this brings us to discuss the structure of the probabilistic repair functions.

To simplify the model, we have assumed the repair function for mechanical fatigue damage
to be the mirror image of the repair function for proteolytic damage. In a more general formu-
lation of the model, there is no reason to suppose this be the case (e.g. as when an animal is
growing). It is also apparent that the asymmetric structure of both lengthening and shortening
employed in repair functions has an important influence on the rate at which an equilibrium
state is achieved, and on the collagen fiber distribution at equilibrium. We found that if the var-
iance of the repair functions is kept constant, while the expected values for fiber length adjust-
ments is increased, i.e. the mean values of the fiber distributions shown in Fig 4(b) and 4(d) are
increased, then the speed of convergence to an equilibrium state is increased. In other words,
the speed of progression along the paths A-D in Fig 10 can be adjusted through the repair func-
tions, however the equilibrium tendon length is found to relatively invariant to change in mean
repair length (see Table 2).

It is clearly apparent that damage functions (see Fig 13) themselves depend on environmen-
tal conditions experienced by the tendon. It is also clear that tenocytes in the Achilles tendon
are well placed to perceive any change in environmental conditions, and to adjust their secre-
tion profile accordingly. It seems likely the tenocytes detect both strain and strain rates, which
they ‘interpret’ by changing their local secretion profile [103]. A change in the secretion profile
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will influence both the proteolytic degradation profile and the repair functions, but these rela-
tionships remain to be elucidated experimentally.

In our model, an increase in dispersion of fiber lengths not only leads to a more compliant
tendon, but also accelerates fiber damage under identical levels of activity. With continued
increase in dispersion of the fiber distribution, eventually the rate of fiber damage may possibly
exceed the capacity of the tendon to repair itself. In terms of our model, such an imbalance
between damage and repair processes may help potentially explain disease states such as tendi-
nosis and tendon rupture. It is possible, indeed likely, that the mean and variance of the repair
functions depends on a variety of environmental factors including strain, strain rate, activity
level, hormonal and nutritional states, as well as a variety of genetically and epigenetically
determined factors. Unfortunately little or no quantitative experimental data about such rela-
tionships exist, and so clearly a large number of questions remain to be answered.

Despite its importance to muscle performance, there is little published information to sug-
gest that tendon slack length changes with exercise. This is possibly due to the multiple short-
comings of published research on tendon adaptation studies to date [8, 9]. Nevertheless it is
clear that tendons do change their length in both animal models and humans. For example, it
has been demonstrated in a growing rabbit that tendon reattachment resulted in tendon
lengthening accounting for approximately half of total length change of the musculotendon
unit [104]. Indeed, the tendon itself experienced an increase in its initial length of about 15%,
which demonstrates that the tendon incorporated new collagen fiber at an exceptionally rapid
rate over an 8 week period.

There is also clear evidence of gastrocnemius tendon length adaptation in adult Guinea
Fowl from a running exercise experiment (the treatment group had 30 to 60 minutes exercise 5
days per week for minimum or 8 weeks), while control animals remained caged) [7]. It is
reported that for the treatment group gastrocnemius tendon stiffness increased 100%, while
the gastrocnemius tendon lengthened by 25% [7].

Here we are particularly interested in what happens in adult human Achilles tendon. Surgi-
cal repair of ruptured Achilles tendon provides an opportunity to gain some insight into the
capacity of Achilles tendon to remodel itself, but first we need to acknowledge that ruptured
Achilles tendon must be in an abnormal state initially, and so how a ruptured tendon responds
following surgical repair needs to be interpreted cautiously. The response may have less rele-
vance to normal tendon physiology, as for example, inflammatory processes are involved in
tendon remodeling for at least the first several months [22]. Nevertheless, closely monitoring
the post-surgical changes in Achilles tendon demonstrates that over a twelve months period
post-surgically the free Achilles tendon significantly changed its length, becoming up to 10
mm shorter or longer [105].

But perhaps the best in vivo evidence for adult human tendon length adaptation is evi-
denced following knee arthroplasty. Davies et al [106] provides data reporting substantial
patellar tendon length adaptation over five year periods following knee arthroplasty. After
examining 50 patients (n = 150 procedures), Davies et al [106] reports that following total knee
arthroplasty, 38% of patellar tendons shortened by at least 10% after 5 years, while uni-com-
partment knee arthroplasty resulted in patellar tendon lengthening by at least 10% in 24% of
patients after one year, and 22% after five years. Multiple additional studies on patellar tendon
lengthening and shortening following knee replacement clearly demonstrate the capacity of
adult human patellar tendon to remodel its length [107-109].

For habitual repetitive activities such as walking, energy minimization is regarded by some
as a key optimization criterion dictating locomotor behavior [89, 90]. There is much evidence
pointing to movement patterns that minimize energy expenditure, from the selection of pre-
ferred walking speeds in humans and other species [91, 92] to preferred stride frequencies
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[93, 94] and preferred gaits [95, 96]. Here we have shown that following a geometric perturba-
tion in tendon geometry, our model tendon geometry can remodel to its equilibrium state in a
biologically plausible way, which can coincide with minimizing the metabolic cost of the mus-
culotendon unit. This finding corroborates that of Lichtwark and Wilson, who found optimal
Achilles tendon properties exist for minimizing muscular energetic costs [110].

Although unintended in the sense it was not originally a goal of the tendon model developed
here, the model also provide valuable insights and a possible explanation into a puzzling prob-
lem reported in the experimental literature about tendon, cartilage and bone. It has been exper-
imentally established that the rate of collagen fiber turnover is remarkably slow while the
metabolic activity of tendon is remarkably high [111]. That the metabolic activity of tendon is
high is evidenced by the rate of procollagen synthesis per day in tendon is found experimentally
to be around 1% of the total collagen mass (meaning the whole tendon could be replaced in a
matter of about 3 months) [112, 113]. Yet, in contrast to the rapid rates of collagen turnover
noted above, carbon 14 measurements indicate a ‘very limited’ rate of adult collagen fiber turn-
over [114]. The very slow rate of collagen fiber turnover and the seemingly contradictory find-
ing of very high procollagen synthesis rates have yet to be explained.

We first consider the rate of collagen fiber turnover. For the exercise level considered in
our model (which has Achilles tendon experience 5,000 load cycles per day), the total collagen
fiber turnover time at the equilibrium state is predicted to be about 180 years (Fig 11). If the
activity levels in our model are reduced to those associated with a more usual urban lifestyle
in a well-developed country (say 2,000 load cycles per day), our model estimates the collagen
fiber turnover time at an equilibrium state would increase to around 270 years. Significantly,
though our intention was not to examine collagen turnover rates, these estimates appear to be
consistent with observations on collagen fiber turnover rates reported in the literature. For
example, a turnover rate of 197 years is reported for tendon in skeletally mature horses [115],
while Thorpe et al (2010) estimated similar tendon collagen turnover rates in humans[116],
and Silvin et al. (2008) report a half-life in human intervertebral disc collagen of 95 to 215
years [117]. Finally Verzigl et al. report a half-life of collagen in human articular cartilage
of 117 years [117]. We note these measurements are in general agreement with our model
predictions for the half-life of Achilles collagen fiber turnover. As far as we are aware, no
quantitative explanation for experimentally observed collagen fiber turnover rates has been
previously offered.

Now turning to the high procollagen production rates observed in Achilles tendon, it is also
clear that for non-equilibrium Achilles tendon length states in the model tendon (i.e. when the
tendon is in the process of changing its length), collagen degradation and synthesis turnover
times differ, sometimes quite dramatically, from the equilibrium, dynamic steady-state turn-
over rate estimates (Fig 11). For example, our tendon model predicts that when a ‘long tendon’
is rapidly shortening to its equilibrium state, the peak degradation turnover time may decrease
to below 5 years (Fig 11(b)). This clearly indicates that under certain environmental conditions,
very high rates of procollagen synthesis and matrix MMP expression may be required to facili-
tate very rapid tendon adaptation [118]. It seems plausible that large rates of procollagen pro-
duction may be maintained just in case circumstances arise when rapid remodeling of the
tendon is required, e.g. as depicted in Fig 11.

In any case we mention here that estimating collagen turnover played no part in our model
calibration. In other words, the collagen fiber turnover predictions made by our model are
independent estimates, yet they are remarkably consistent with turnover times reported in
the experimental literature [114-117]. This outcome is very encouraging as it helps to build
confidence in the model, while pointing to further utility of our proposed tendon model
formulation.
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Conclusion

The tendon adaptation model presented here primarily revolves around the interplay between
mechanical and proteolytic damage and repair processes operating in physiologically normal
Achilles tendon. It is now well established that mechanical fatigue can damage collagen fibrils,
that MMPs are present in tendon and they proteolytically degrade collagen fibrils, that
mechanical strain reduces and can even prevents proteolytic degradation of collagen fibrils,
and that collagen fibrils can be repaired in vivo. But what is not yet known is how these individ-
ual processes are functionally integrated in vivo to facilitate tendon homeostasis and adaptation
[100, 101].

The key achievement in the present work is that we have demonstrated how these processes
can be logically combined to facilitate tendon length adaptation in a robust fashion. In the con-
tent of our model assumptions, and for suitable parameter selection (which based on a sensitiv-
ity analysis appear to be robust), we show that the tendon can autonomously remodel until it
reaches a stable, equilibrium length state. Assuming that the multi-objective function repre-
senting external influences on the musculotendon unit is dominated by musculotendon unit
economy, we find the perturbations of tendon geometry result in remodeling towards a stable
tendon geometry, which coincides with a region minimizing the metabolic cost of muscle activ-
ity. As with the initial development of any model, we have invoked many important model
simplifications in the interests of building a parsimonious model to highlight fundamental the-
oretical concepts. But it is clear that upon relaxing these model simplifications, there is great
scope for further subtleties of tendon adaptation to emerge. Building upon the foundation
established here, it seems likely that more sophisticated and complex extensions of the model
will reveal important new interactions that may help explain experimental observations or sug-
gest new experiments on tendon biology.
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