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Abstract

The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal
depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal
muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP
hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but
an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we
present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes
novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle
activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion
were constructed, using a combination of experimentally-derived data and literature values. Simulation results were
validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and
submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations
associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of
global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary
torque output.
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Introduction

Although muscle cross sectional area is the greatest determinant

of maximal isometric joint torque in humans [1], only about two-

thirds of maximal torque is accounted for by muscle size. In fact,

there are examples in the literature of considerable variation in

maximal voluntary torque per unit area [N?m?cm22]) [2], also

termed ‘‘specific strength’’ [1]. The generation of voluntary

torque, illustrated in Figure 1, begins with neural excitation in the

motor cortex, which produces propagation of excitatory potentials

down the cortico-spinal tracks to the a motor neurons. These

motor neurons innervate muscle cells, causing depolarization of

the sarcolemma and release of Ca2+ from the sarcoplasmic

reticulum. In this way, cross-bridge cycling is initiated and force is

produced, ultimately leading to torque generation about a joint.

Clearly, variation in any of the processes along this pathway

(Figure 1) could result in alterations in joint torque. Variations may

include changes in motor unit discharge rates, excitation-

contraction coupling, muscle fiber contractile force, or the

intracellular metabolic milieu. The complex interrelationships

among the physiological systems that govern these processes

further impact their combined function.

The interrelated nature of the physiological processes involved

in the generation of voluntary joint torque is difficult to discern in

vivo. While in vitro experimentation can provide explicit details

about isolated systems, and in vivo studies typically describe the

combined function of multiple systems, each of these approaches is

limited in addressing the coordinated events that lead to the

development of voluntary joint torque. Modeling and simulation

techniques may be used in a complementary fashion with in vitro

and in vivo methods to gain unique insights that are not possible

using experimentation alone [3–7]. Since the pioneering work of

A.V. Hill [8] and A.F. Huxley [9], computational models have

been proposed to explain a wide variety of functions within the

neuromuscular system, including the contractile dynamics of

skeletal muscle [10], perfusion [4], neuromuscular activation [11]

and fatigue during repeated activations [12]. However, these

examples, and most others, focus on a single aspect of a larger

system containing many interrelated components.

While such a unitary approach to modeling complicated systems

is justified in many cases, a more comprehensive model allows

simultaneous inquiry of multiple physiological events associated

with the voluntary production of joint torque. A model composed

of multiple components of the neuromuscular and musculoskeletal

systems might improve our ability to discriminate the relative

influence of these components on voluntary joint torque.

Critically, it would provide the opportunity to investigate how

the relative influence of these components might change in

response to global effectors such as age, disuse or disease. Models

have been developed that simulate motor neuron recruitment

[11], and the spatial distribution of muscle fibers they innervate

[4]; depolarization of the sarcolemmal [13]; calcium kinetics
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[7,14]; acto-myosin binding kinetics [6,15,16]; control of oxidative

phosphorylation by ADP [17]; and joint torque [18,19]; However,

rarely have multiple physiological components been included in

the same model [12].

The goal of the present study was to develop and evaluate a

comprehensive model of neural activation, contractile dynamics,

and metabolic perturbation. The approach combined previously-

validated models of voluntary activation [11,20], force develop-

ment [18,21,22] and torque generation [19] with a novel set of

model components that predict metabolic perturbation as a

consequence of muscle activation. This is the first model to

incorporate neural, contractile, bioenergetic, and architectural

features of the neuromuscular and musculoskeletal systems for the

purpose of simulating human torque production. Incorporation of

these features allowed the model to simulate the response of

multiple components of the neuromuscular system to the challenge

of producing various levels of voluntary joint torque.

Materials and Methods

Ethics Statement
Written informed consent, approved by the University of

Massachusetts Institutional Review Board, was obtained for all

participants prior to their participation. All measures were

performed in accordance with the Declaration of Helsinki and

this study was approved by the University of Massachusetts

institutional review board.

Approach and Source Data
Our approach to an integrated, comprehensive model of

neuromuscular function followed the general scheme outlined in

Figure 2. Steps in the theoretical model formulation were meant to

correspond to the physical pathway of voluntary torque produc-

tion illustrated in Figure 1. Considerable effort was made to base

model parameters on values in published studies of human muscle

function from our laboratory [23,24], and elsewhere in the

literature [4,19,25], as well as experimental measures available

from current and ongoing studies in the Department of

Kinesiology at the University of Massachusetts Amherst [26].

Model parameters were based on measures obtained from 8

healthy men (21–35 years), as well as from human studies reported

in the literature [11,27]. The participants underwent ultrasound

measures of the anterior shank and magnetic resonance imaging

(MRI) of the lower leg to provide anatomical data for formulation

of the musculoskeletal component of the model. To formulate the

metabolic perturbation component of the model, the participants

also underwent metabolic testing using non-invasive, 31P magnetic

resonance spectroscopy (MRS) [26].

Computational Overview
Because the model integrates the output from multiple

components intended to represent stages in the pathway of torque

production (Figure 1), they are presented here in the same

sequence that they were computed in the forward dynamics

simulations (Figure 2). All simulations for model formulation and

analysis were performed using Matlab software (MathWorks,

Natick MA). Briefly, a single parameter representing voluntary

excitation (Step 1) of the spinal cord initiated the model by serving

as the input for a pool of motor neurons (MN). The MN pool

responded to the excitation signal according to a recruitment

scheme originally proposed by Fuglevand et al [11] (Step 2). A

first-order model of activation, representing sarcolemmal depolar-

ization and intracellular calcium release (Step 3), generated a set of

signals that served as the inputs to a pool of 120 first-order, Hill-

type [18] muscle models (Step 4). Because the output of each MN

acted on a corresponding muscle model, this approach effectively

simulated the organization and behavior of a motor unit (MU) in

vivo [28]. The linear sum of forces produced by all muscle models

was then used as the input for a musculoskeletal model of the ankle

joint, to predict current joint torque (Tc) at the ankle (Step 5).

Finally, Tc was compared with a target torque (Tt) for each time

point t which allowed the model to adjust excitation (S, Step 1)

such that the difference between Tc and Tt was minimized.

Calculations were performed for time steps of 0.001s and repeated

for each MU before advancing the time step. Between each time

step, the system of equations associated with the output of each

MU was integrated forward in time using the ‘ode45’ differential

equation solver in Matlab. Details regarding the major compo-

nents of the model are detailed below and in appendices A and B.

Step 1. Excitation. The initial step for the model represents

excitation which begins at the motor cortex and descends through

corticospinal tracts to a MNs in the spinal cord. Input from the

central nervous system to pools of a MNs is physiologically

complex and regulates many aspects of coordinated, voluntary

muscle activation. Because of its complicated nature and

incomplete definition in the literature, no attempt is made for S

to directly reflect physical events in the process of cortical

excitation. Instead, an approach similar to that employed by Xia

et al [29] was used whereby the model adjusts S at each time step

to minimize the difference (Tdiff) between current modeled torque

(Tc) and target torque (Tt) with respect to peak torque-generating

capacity:

Tdiff ~Tc{Tt ð1Þ

in the case where Tdiff is ,0,

Figure 1. Pathway of Voluntary Torque Production. Physiological
events necessary for voluntary torque production are modeled by
components in the present computational model. 1) Excitation in the
motor cortex 2) a motor neuron activation, 3) sarcolemmal depolariza-
tion, calcium release, 4) cross-bridge formation and muscular force
development. Reproduced from: Kent-Braun J.A., Fitts R.H., Christie A.
‘‘Skeletal Muscle Fatigue’’ In: Comprehensive Physiology, Wiley-Black-
well, 10.1002/cphy.c110029, 2(2):997–1044, 2012.
doi:10.1371/journal.pone.0056013.g001
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:S~Sz(Tdiff
:(1{S)) ð2Þ

and in the case where Tdiff is .0,

;S~S{(Tdiff )R:S ð3Þ

This simple control algorithm uses the value R = 0.7 to

minimize unintended relaxation characteristics while maintaining

predictions for activation and relaxation that were consistent with

in vivo observation. An estimate of peak torque-generating

capacity was established by multiplying the sum of peak force-

generating capacity for each muscle model by the maximum

possible moment arm. This estimate is not necessarily the same as

actual peak torque-generating capacity, which is also subject to

other model elements (FR, activation, contractile element length

and velocity, variable moment arm length based on stretch of the

extensor retinaculum). However, it was effective for moderating

changes in activation that resembled in vivo experimental

observations.

Step 2. Motor Neuron Pool. The pool of 120 motor neurons

responded to S according to procedures described by Fuglevand et

al [11]. The recruitment thresholds (RT) for the pool of MNs were

distributed such that many MNs had low RT while relatively few

had high RT. The distribution of RTs is described by the

equation:

muRTm~exp(a) ð4Þ

where muRTm is the RT of MN(m) and a~log(Ar)=m; Ar = 30 is

the desired range (fold difference) for muRTm. A 30-fold range of

RT is consistent with the broad variation in recruitment thresholds

observed experimentally [28]. Each MN is assigned a minimum

firing rate (MFR) of 8 Hz [25,28]. Although it is possible that

MFR could vary between MNs in direct proportion to RT [30],

empirical studies performed in humans during voluntary contrac-

tions suggest that MFR is constant across MNs [31,32].

Once a MN’s threshold for excitation was surpassed, a single

linear function described the relationship between excitation and

FR:

FR~G:(S{(muRTm))zMFR ð5Þ

where G is a gain function affecting the magnitude of increasing

FR and S is the current level of excitation. FR increased according

to this function until the given MNs achieved a pre-determined

peak firing rate. The peak firing rate for each MN is directly

proportional to its RT within the relatively narrow range of 10 Hz

[33]. The fastest MNs fired at 56 Hz [25]. Each ‘‘pulse’’ delivered

by a given MN model served as the input to a model of muscle

activation, described in the next section.

Step 3. Muscle Activation. Because the kinetics of the Ca2+

transient are significantly slower than those of the depolarization

event [34,35] and precise measurement of the Ca2+ transient has

not been performed in human skeletal muscle, no effort is made to

distinguish the two events in the present model. The combined

steps of post-synaptic muscle activation were modeled similarly to

the approach used by He et al [21]:

act
.

~ Stim{actð Þ: rc1
:Stimzrc2ð Þ ð6Þ

rc2~1=tdeact ð7Þ

rc1~1=tact{rc2 ð8Þ

where tact has values between 0.039–0.060 depending on MN

assignment (m), and represents the activation time constant.

Deactivation time constants are defined by tdeact and have values

between 0.064–0.092. These values were based on Umberger and

Figure 2. Computational Approach. The model runs using a forward-integration routine to calculate each model step (1–6) at each time point for
the duration of the simulation. Primary literature sources pertinent to model functions are listed with each step.
doi:10.1371/journal.pone.0056013.g002
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colleagues [22] and modified slightly for the current application

where individual MUs were represented. Specifically, values were

altered to allow for a range of activation and deactivation kinetics

within the MN pool, and co-varied with contractile kinetics

(detailed later) to produced rates of force development and

relaxation that were physiologically realistic. The value of Stim was

set to either 0 or 1 and meant to represent the activity of the

sarcoplasmic reticulum either releasing or resequesting Ca2+ in

response to sarcolemmal depolarization. For the first 0.023-s that

each MN was activated, the value Stim associated with that MN

was assigned a value of 1, and 0 thereafter. The counter

incremented through the duration of the current interpulse

interval (IPI = FR21), after which point the counter was reset to

0, and the process continued until the MN was no longer active. A

more detailed description of this process can be found in Appendix

S1. This activation strategy yields activation kinetics consistent

with the time course of experimentally-observed Ca2+ transients

(20–30 ms) [36] and allowed complete summation of the Ca2+

transient for the MN with the lowest MFR during maximal

stimulation.

Step 4. Muscle Models. A detailed list of equations

describing the behavior of the muscle and metabolic perturbation

models can be found in Appendix S1. The text that follows is a

general description of the model formulation procedures.

The activation signal from step 3 was input to a standard Hill

muscle model that included contractile (CE) and series elastic

(SEE) elements [18]. In keeping with the control structure of the

model, 120 independent muscle models correspond in a 1:1

fashion with 120 MNs. This coordination was intended to

reproduce the physiological recruitment of MUs. Peak force-

generating capacity of each muscle model (fmax) was coordinated

with muRT such that the unit with the lowest RT had the lowest

force. Forces were distributed across 120 MNs through a 100-fold

range. The sum of fmax from all muscle models was 1433.4 N, a

value derived from an optimization routine that determined

specific tension from the study population [26]. Total myotendo-

nus muscle length was held constant as all modeled contractions

were isometric, but CE and SEE length were free to change and

behaved according to the equations in Appendix S1. All muscle

models included components for eccentric and concentric force

development, pennation angle, velocity and length (Equations 13–

20 in Appendix S1).

The modeled change in CE and SEE length, along with

resulting changes in pennation angle, were based on in vivo

ultrasound measures obtained from the study participants. Briefly,

ultrasound imaging (Acuson 128XP real-time ultrasonic scanner

with linear-array probe, Siemens, Munich Germany) was used to

measure the tibialis anterior muscle and tendon while subjects

were seated in an isokinetic dynamometer (Biodex, Inc., Shirley

New York USA). The ankle was fixed with the foot at 105u relative

to the tibia, and subjects performed a torque-tracking task by

matching their effort to visual feedback. The subjects steadily

increased dorsiflexion torque from rest to maximum voluntary

isometric contraction (MVC) over a period of 30-s. During this

time, fascicle pennation angle (Figure 3A) and stretch of the tibialis

anterior tendon was recorded on videocassette for subsequent

analysis using custom-written Matlab software [37].

Step 4a. Metabolic Perturbation. The model used current

activation level to predict changes in the concentration of

intracellular metabolites related to the production of adenosine

triphosphate (ATP). The metabolic perturbations associated with

active dorsiflexion were modeled after measures of phosphorus-

containing metabolites and pH, as described elsewhere [23,38].

Briefly, 31P MRS was used to measure the concentrations of

phosphocreatine (PCr) and inorganic phosphate (Pi) using a

3?5 cm surface coil, centered over the tibialis anterior muscle

(,8.4 cm3 sample volume) in a 4.0 tesla superconducting magnet

(Bruker Biospin, Rheinstetten, Germany). The recovery of PCr

following a 12-s MVC was used to calculate the in vivo capacity

for oxidative phosphorylation [23,39] while the chemical shift

between Pi and PCr was used to calculate intracellular pH [40],

ATP synthesis rates by the creatine kinase reaction, non-oxidative

glycolysis and oxidative phosphorylation were estimated from

changes in [PCr], [Pi], and pH during contractions at a range of

intensities (20%, 50%, and 100% MVC) [23].

Metabolite concentrations were determined every 4 s during

contraction and recovery, based on line-fits of each peak using

NUTS software (Acorn NMR, Livermore CA). Using these

metabolite data, model functions were created to reflect the cost

of force production (See Appendix S2) and the subsequent change

in cytosolic pH across a range of activation levels (See Appendix

S1). The rate of PCr depletion during contractions at 20, 50 and

100% MVC was best fit linearly. The slopes of these lines were

used to define the relationship between activation level and the

rate of the appearance of Pi (equations 21 and 22 in Appendix S1).

This procedure is possible because a constant phosphate pool ([Pi]

Figure 3. In vivo Muscle Imaging. A: Ultrasound image of the
anterior compartment of the lower limb. The horizontal line matches
the orientation of the apponeurosis of the tibialis anterior muscle, and
the angled line matches the pennation angle of visible fascicles under
the ultrasound probe. B: Magnetic Resonance Image (MRI) in the Axial
Plane. The dotted line represents the region of interest (ROI) for
subsequent analysis of anterior compartment muscle size.
doi:10.1371/journal.pone.0056013.g003
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+ [PCr] = 42.5 mM) and ATP concentration ([ATP] = 8.2 mM)

can be assumed under these experimental conditions [41,42]. A

three-parameter exponential decay was fit to the data using

SigmaPlot software (Systat Software Inc. San Jose, CA) to derive

coefficients used to formulate rates of Pi accumulation during

activation (equation 1 in Appendix S2).

Intracellular pH was calculated for each muscle model, based

on rates of change in [Pi], buffering capacity, and protons

produced from the conversion of pyruvate to lactate (H+).

Glycolytic ATP production rates were estimated from the

Michaelis-Menten relationship between Pi and glycogen phos-

phorylase, where Km was assumed to be 18.94 mM [43,44], and

the maximum rate of non-oxidative glycolysis was distributed

exponentially per MN over a 4-fold range (0.48 to 1.92 mM s21,

see details in Appendix S1). This range was chosen to reflect rates

of glycolysis observed in vivo [45,46] and resulted in an average

across muscle models, weighted to fmax (a direct correlate of

muscle volume), of 1.5 mM ATPNs21. The rate of H+ produced by

non-oxidative glycolysis was equal to two-thirds the observed rate

of glycolysis, which reflects the rate of proton production for each

ATP produced through glycolysis. In vivo, the observation of

cytosolic H+ production from non-oxidative glycolysis is offset to

some extent by the protons consumed in the creatine kinase

reaction (net breakdown of PCr). The latter was calculated from

the product of a proton stoichiometry coefficient (h) and the rate of

Pi accumulation (equivalent to PCr breakdown). The net change

in [H+] was divided by the current buffering capacity and used to

calculate the pH at each time point (equations 29 and 30 in

Appendix S1). Finally, the portion of inorganic phosphate in

diprotonated form [H2PO4
2] was calculated based on current pH

and [Pi] (equation 31 in Appendix S1).

Step 5. Musculoskeletal Model. The musculoskeletal mod-

el was parameterized with data from the group of 8 young men.

Muscle architecture measures were performed using ultrasound

and magnetic resonance imaging (MRI; 3.0-Tesla MRI system;

Siemens, Munich, Germany). To measure muscle volume, serial

images (T1-weighted spin echo axial images; 4 mm slice thickness,

210 mm field of view, 5126512 matrix) were collected along the

total shank length. Custom-written Matlab software was used to

first identify a region of interest (ROI) representing the tibialis

anterior muscle, and then partition the pixels populating this ROI

into contractile and non-contractile tissue based on signal intensity

[47]. A sample MRI slice with defined ROI is shown in Figure 3B.

Total muscle volume (m3) was determined by integrating over the

fat-free muscle cross-sectional areas along the length of the muscle.

The forces generated by all simulated motor units were summed

linearly to predict force at the tendon (Ft).

Ft~
XMUnum

m~1

fsee(m) ð9Þ

Consistent with in vivo observations [48–50], we modeled force-

sensitive changes in muscle moment arm length. Force in the

dorsiflexor muscles causes the extensor retinaculum to stretch,

allowing anterior displacement of the tendon. Thus, muscle

moment arm is lengthened as force increases [19]. In our model,

current moment arm length (Lma) was dependent on force Ft such

that greater Ft resulted in a larger Lma.

Lma~Lma0z((Lma0
:LmaR)=(Fmax=Ft)) ð10Þ

where Lma0 is the moment arm length at rest, and LmaR (0.249) is

the relative range of extension past resting length of the moment

arm (0.027 m). Increased moment arm above resting values are

scaled by the ratio of current force (Ft) to the highest possible force

(Fmax). The range of moment arm values were based on

experimental observation of a single participant using the MRI

collection procedures described above. These values were in good

agreement with results from Maganaris et al [19]. Tc was

calculated at the final step.

Tc~Ft
:Lma ð11Þ

This value was then compared with Tt to obtain Tdiff (equation 1).

Simulation and Evaluation Procedures
Equations describing the behavior of each modeled component

were run for each MU at each time step (t), for a range of

simulated conditions. As an initial test of the validity of model

predictions concerning excitation and contractile dynamics, a

series of simulated torque-frequency curves were generated.

Briefly, a train of stimuli delivered at a constant frequency was

simulated by setting S = 1 for the first 0.023 s of each IPI. This

procedure was performed across a range of simulated stimulation

frequencies. In this paradigm, predicted torque depended on the

combined response of many model components to step input

changes in S as described, and was not parameterized as a discrete

function of the model. As a result, the activation and contractile

kinetics of the model, as well as musculoskeletal (Lma and SEE

stiffness) components were evaluated simultaneously. Simulated

torque was compared with literature values [27] to evaluate the

effectiveness of these components in predicting torque-frequency

relationships observed in vivo.

Next, a range of voluntary contraction intensities were

simulated, for comparison with the experimental data used to

parameterize the model as well as literature values. Under these

conditions, Tt was set to increase from zero, 1 s into the simulation

and remain at 110%, 50%, and 20% of predicted maximal Tc

until second 13 of the simulation, thus simulating a 12-s

contraction. The Tt value for the maximal stimulation condition

was set in excess of 100% to ensure that muscle activation was

maximal. Model performance was controlled by auto-regulation of

S according to equations 1, 2 and 3. Simulated torque, [Pi], [pH]

and [H2PO4
2] were compared with experimental and literature

values and considered valid if the root mean squared difference

between them was within one standard deviation of the

experimental value in question.

Results

Torque – Frequency
The recruitment and activation values produced by the model

agreed well with experimental data. Figure 4A shows model results

for neuromuscular stimulation at 20 Hz. The model exhibited

pulsatile activation kinetics and wave-summation behavior of

torque similar to that observed in vivo. Figure 4B illustrates the

simulated torque response to a range of stimulation frequencies

between 10 and 50 Hz. The peak torque at each frequency,

predicted by the model, is compared with experimental data our

laboratory [27] in Figure 4C. Again, the results from the model

agreed well with in vivo torque production at all frequencies. The

mean squared difference between simulated and observed torque

was 5.3% (between 10 and 45 Hz) with a maximal difference of

7.1% at 30 Hz.

Comprehensive Model of Voluntary Torque Production
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Figure 4. Simulated Torque-Frequency Relationship. A: Simulated stimulation protocol was a square wave with pre-determined frequency
(20 Hz). Simulated activation responses for the 1st and 60th motor unit are plotted in dark and light grey dashed lines respectively. Total simulated
torque for the combined model is plotted in black. B: Simulated torque traces in response to stimulation at a range of frequencies (10, 15, 20, 25, 30,

Comprehensive Model of Voluntary Torque Production
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Maximum Voluntary Contraction
During a simulated MVC, Tt was set to 110% of expected peak

torque output to promote full excitation in the model (dashed line,

Figure 5A). The model (Figure 5A) predicted peak torque within

5.0% of measured torque in our study group of young men.

Similar to the in vivo results, the model achieved ,97% of peak

torque within 250 ms. Changes in intracellular [Pi], pH, and

[H2PO4
2] during the 12-s MVC are compared with in vivo data

in Figure 5B–D. Predicted output from the model was within one

standard deviation of in vivo measures for all but one time point

(pH, 8-s).

Submaximal Contractions
To investigate the accuracy with which the model matched Tc

with Tt during submaximal activations, Tt was set to 50% and

20% of predicted maximum torque capacity. All other aspects of

submaximal simulations were identical to MVC simulations.

Results from these simulations are shown in Figures 6A and 7A for

contractions at 50% and 20% of MVC respectively (note

difference in y-axis scales). Torque predicted by the model was

within 2.1% of the experimental means for the middle 90% of

contraction time in both submaximal simulations. The large

amplitude oscillations of Tc about Tt during approximately the first

second of torque production (Figures 6A and 7A) reflect the

limited resolution of the controller upon a large and rapid change

in S. While in principle it would be possible to add damping to

lessen the oscillations upon activation of the model, torque

overshoot followed by an overcorrection is actually a common

observation in empirical torque data. Moreover, high-gain

functions were necessary to predict accurate metabolic character-

istics during deactivation. Thus, the present controller represented

a reasonable compromise for simulating both activation and

35, 40, and 45 Hz). Stimulation for each simulation began at 0.2 s. C: Comparison between simulated and experimental torque output in response to
stimulation at frequencies between 10 and 50 Hz. Simulated torque values (closed symbols) were typically within one standard deviation of mean
experimental values (open symbols 6 SD).
doi:10.1371/journal.pone.0056013.g004

Figure 5. Simulated Maximum Voluntary Contraction. A: Simulated torque during 12-s MVC in thin black line with experimental data (open
symbols 6 SD). Blue line is the target torque (Tt) for the model to approximate. It was set to increase from zero to 110% of expected peak torque
output to ensure full activation at t = 1 s. B: Simulated (black line) and experimental (open symbols 6 SD) inorganic phosphate concentration (mM)
during 12-s maximum voluntary contraction. C: Simulated (black line) and experimental (open symbols 6 SD) pH during 12-s maximum voluntary
contraction. D: Simulated (black line) and experimental (open symbols 6 SD) H2PO4- during 12-s maximum voluntary contraction.
doi:10.1371/journal.pone.0056013.g005
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deactivation. In contrast to the initial oscillations observed upon

activation of the model, the small amplitude fluctuations of Tc

during the remaining 11 seconds of these simulations reflected

variations in torque production associated with recruitment and

rate coding in the model, and mirrored torque variability often

observed in submaximal experimental conditions (c.f. Figure 1a in

Yoshitake et al. [51]).

Predicted [Pi], pH, and [H2PO4
2] are shown along with in vivo

measures during the 12-s contraction at 50% MVC in Figure 6 B,

C, and D, respectively. Figure 7 illustrates the same variables

during the 12-s contraction at 20% MVC. For [Pi] (Figures 6B

and 7B), agreement with experimental data was good, and within

the expected physiologic range. The mean squared error for [Pi]

was greatest at 12-s in the 50% MVC simulation at 9.8% above in

vivo measures. The average error for [Pi] was 6.9% for the

duration of the simulated 12-s 50% MVC contraction. There was

excellent agreement with predictions of [H2PO4
2] during the 50%

contraction, with an average error of 2.0% and a peak of error of

4.0% at 12-s. Estimates of [Pi] were slightly elevated during the

simulation of a 20% MVC contraction when compared with in

vivo data. On average, estimates of [Pi] were 9.7% greater than in

vivo measurement with a peak difference of 19.7% at 8-s. This

variance was within the standard deviation of the measured mean

at all time points, however. Note that the alkalosis normally

observed during a brief contraction was slightly under-predicted

by the 12-s time-point in the 20% MVC simulation (Figures 7C).

Average [H+] during this simulation was within 2.3% of measured

values with a peak difference of 7.0% at 12-s. Predictions for

[H2PO4
2] were also reasonable, given physiologic variability, with

an average error of 6.5% and a peak difference of 13.9% at 8 s.

Discussion

By synthesizing existing and de novo models of neuromuscular

function and bioenergetics, the work presented here significantly

advances our ability to investigate the relationships between

individual events in the pathway of voluntary torque production

and estimate their relative impact on in vivo function. Several

computational models have been developed that provide unique

insights into the function of individual components of neuromus-

cular function [3,4,7,20]; however, few modeling studies have

attempted to integrate across such a wide range of physiological

functions. This level of integration is necessary to represent the

interrelated nature of the physiological events involved in

Figure 6. Simulated Submaximal Voluntary Contraction at 50% MVC. Simulated response of Torque (A) inorganic phosphate (B), pH (C),
and H2PO4- (D) during 12-s contraction (black line). In vivo data (open symbols 6 SD) are shown for comparison.
doi:10.1371/journal.pone.0056013.g006
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voluntary torque generation. The fidelity of model simulations

with experimental data over a range of conditions demonstrates

the utility of this model in future applications that might provide a

deeper understanding of the relative effect of failure or enhance-

ment at multiple points in the pathway of voluntary torque

production. A particularly useful feature of the present model is

the manner in which the output of individual components

corresponding to MU activity, intracellular bioenergetics and

joint torque (2, 4a, and 5 in Figure 2 respectively) can be

compared with relevant in vivo data. Because overall model

behavior depends on the integrated function of these components,

manipulation of a single component within the model allows for

exploration of the impact of that component on overall behavior.

Although the bioenergetics component of the model is its most

novel aspect, its synthesis with other components of neuromuscu-

lar function allow us to apply the present model to a range of

questions, not just those related to intracellular metabolism. The

formerly established, but newly combined models of neural

excitation, muscle activation, muscle contraction, and joint torque

production, based on the work of Fuglevand et al [11,42], He et al.

[21], van Soest et al. [18], and Manganaris et al [19] accurately

predicted the magnitude and kinetics of torque production, as

demonstrated collectively in Figure 4 (a, b, and c). The combined

function of these components results in muscle forces and joint

torque estimates that can be readily compared with in vivo

experimental observation. Adjustment of model parameters

related to muscle fiber type distribution, tendon stiffness, and

joint architecture (moment arm length and distension with force)

could yield useful data related to the pathophysiology of disease

processes or the effects of old age. Similarly, questions related to

neural (dys)function in clinical populations might be addressed

using the present model. Because alterations in neural function

that accompany pathologies such as stroke or multiple sclerosis are

also associated with changes observed at the muscle and joints,

determining the etiology of reduced voluntary torque capacity is

very complicated. The present model might be used to discrim-

inate between multiple factors that impact voluntary joint torque

production in these populations and by doing so, identify targets

for intervention that most effectively promote improved neuro-

muscular function.

Valuable information was gleaned during the process of

formulating the model functions and determining parameter

Figure 7. Simulated Submaximal Voluntary Contraction at 20% MVC. Simulated response of torque (A) inorganic phosphate (B), pH (C), and
H2PO4- (D) during 12-s contraction (black line). In vivo data (open symbols 6 SD) are shown for comparison.
doi:10.1371/journal.pone.0056013.g007
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values to create the modules presented here. While parameters

describing physiological behavior were based on a combination of

literature values and our own experimental results, it is important

to note that most model inputs were adjusted to ensure realistic

predictions by each module or component. For example,

adjustment of bioenergetic functions within the model to ensure

accurate predictions of pH and phosphate metabolites provided a

novel insight: The value h is a coefficient that relates to the amount

of H+ produced or consumed in the creatine kinase reaction, and h
varies with cytosolic pH. Using values reported by Walter et al

[46] caused an underestimate of alkalosis during contraction. We

found that buffering capacity and h had the greatest impact on

overall predictions of pH during contraction. While our final

parameter value was within the range of values observed

experimentally, it was necessary to increase the value h by 40%

relative to that reported by Walter et al [46]. Our model suggests

therefore, that inherent buffering capacity and the breakdown of

PCr likely have the greatest impact on intracellular pH during

brief, isometric contractions. This prediction agrees with experi-

mental observations [52] but allows for the individual assessment

of inherent buffering capacity in ways that are not possible in vivo.

Changes to buffering capacity in vivo are accompanied by a host

of other intracellular metabolic adaptations that complicate

assessment of its singular impact on intracellular bioenergetic

function.

While the present model formulation successfully predicts the

neural, contractile, and bioenergetic responses to voluntary torque

generation during relatively short contractions, it lacks any

consideration for the maintenance of bioenergetic homeostasis or

the consequence of metabolic changes on force production

capacity. Although this limitation is unlikely to impact predictions

of maximal torque during brief contractions, prolonged contrac-

tions will cause intracellular metabolic alterations that reduce force

generating capacity [53]. Acidosis and increased [Pi] are well

known mechanisms of muscle fatigue, due to their impact on

contractile protein function, both in vitro [54,55] and in vivo [56].

When muscle activation ceases, the present model will not predict

recovery of metabolic homeostasis (eg: proton efflux from the

cytosol, or resynthesis, of PCr) limiting its application to

simulations involving intermittent, repeated contractions. Adding

these features related to metabolic function would increase the

utility of the present model by allowing for adjustment of force

output in response to a changing metabolic milieu, and therefore

provide realistic predictions of changes in joint torque production

during prolonged, or repeated intermittent contractions. In the

same way, the effects on torque output due to adjustments in MU

recruitment and firing rate patterns that occur in vivo in response

to metabolic feedback from the muscle to the nervous system also

could be captured and examined using the comprehensive

approach presented here. It should be noted that the present

model has been evaluated only under isometric conditions. While

our results correspond very well to a wealth of in vivo studies of

neuromuscular function, in the future the model could be

extended to simulate shortening and lengthening muscle actions.

It should be noted that, while the model contains functions that

accurately describe the determinants of pH and [H2PO4
2], it does

not include explicit functions related to the kinetics of oxidative

phosphorylation during activation, nor the role oxidative phos-

phorylation plays in re-establishing [PCr] following contraction.

The generation of H+ from oxidative phosphorylation is negligible

compared with the amounts produced or consumed through

glycolysis or the creatine-kinase reaction, but oxidative phosphor-

ylation plays a critical role in synthesizing ATP and maintaining

[PCr] during prolonged muscle activation. Both the relatively slow

onset kinetics of oxidative phoshphorylation and the very good

agreement between the simulated and experimental data

(Figures 5, 6, 7) suggest that the lack of an oxidative phosphor-

ylation function in the present model does not limit its utility

during the relatively brief (12-s) simulated contractions used here.

However, future applications of the present model to the study of

neuromuscular function during longer contraction protocols will

likely require incorporation of oxidative metabolism as a model

component. A model of oxidative ATP production could provide a

novel approach to estimating the maintenance of cellular

homeostasis during intermittent and submaximal contractions, in

addition to simulating the recovery of intracellular metabolite

concentrations to resting levels after contractions cease. Such a

model would be useful in addressing questions related to cellular

energetics and the impact of specific metabolites on muscle torque

production during fatigue.

The novel contributions of the work presented here are twofold:

1) a single, comprehensive model that employs a unique, modular

structure capable of predicting the neuromuscular response to a

variety of contractile tasks; and 2) the integrated components

within the model that allow for prediction of, and interrelationship

among multiple physiological responses. The model’s agreement

with experimentally-derived, in vivo data, across a range of

contraction intensities, highlights its utility as an adaptable tool for

simulating neural, contractile and metabolic responses to a variety

of conditions. Specifically, future studies might be directed at

dissecting the roles of interrelated components of neuromuscular

activation and bioenergetics in muscle weakness due to pathology

or age, or during repetitive, fatiguing skeletal muscle contractions.

For example, neurological disorders such as multiple sclerosis

affect multiple aspects of neuromuscular function whose relative

impact on torque producing capacity might be better estimated

using the present model. Similarly, the aging process promotes

systemic changes in neuromuscular function whose individual

contributions to age-related declines in physical dysfunction are

frequently debated. Our model provides a unique, theoretical

foundation upon which to estimate the relative impact of changes

at one or many points in the pathway of voluntary joint torque

production and inform these debates.
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