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Mechanisms of in vivo muscle fatigue in humans:
investigating age-related fatigue resistance with
a computational model

Damien M. Callahan, Brian R. Umberger and Jane A. Kent

Department of Kinesiology, University of Massachusetts, Amherst, MA, USA

Key points

e Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response
to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular
system that are difficult to evaluate simultaneously in humans.

e The skeletal muscle of older adults fatigues less than that of young adults during static contra-
ctions. The potential sources of this difference are multiple and intertwined.

e To evaluate the individual mechanisms of fatigue, we developed an integrative computational
model based on neural, biochemical, morphological and physiological properties of human
skeletal muscle.

® Qur results indicate first that the model provides accurate predictions of fatigue and second that
the age-related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism
during contraction.

e This model should prove useful for generating hypotheses for future experimental studies into
the mechanisms of muscle fatigue.

Abstract During repeated or sustained muscle activation, force-generating capacity becomes
limited in a process referred to as fatigue. Multiple factors, including motor unit
activation patterns, muscle fibre contractile properties and bioenergetic function, can impact
force-generating capacity and thus the potential to resist fatigue. Given that neuromuscular
fatigue depends on interrelated factors, quantifying their independent effects on force-generating
capacity is not possible in vivo. Computational models can provide insight into complex systems
in which multiple inputs determine discrete outputs. However, few computational models to
date have investigated neuromuscular fatigue by incorporating the multiple levels of neuro-
muscular function known to impact human in vivo function. To address this limitation, we
present a computational model that predicts neural activation, biomechanical forces, intra-
cellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions.
This model was compared with metabolic and contractile responses to repeated activation using
values reported in the literature. Once validated in this way, the model was modified to reflect
age-related changes in neuromuscular function. Comparisons between initial and age-modified
simulations indicated that the age-modified model predicted less fatigue during repeated iso-
metric contractions, consistent with reports in the literature. Together, our simulations suggest
that reduced glycolytic flux is the greatest contributor to the phenomenon of age-related fatigue
resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contra-
ctions and inherent buffering capacity had minimal impact on predicted fatigue during isometric
contractions. The insights gained from these simulations cannot be achieved through traditional
in vivo or in vitro experimentation alone.
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Introduction

The mechanisms of muscle fatigue, defined here as
the acute decline in force-generating capacity that
accompanies repeated or sustained muscle contraction,
are not completely understood because of the interrelated
nature of the processes that influence this phenomenon.
These processes are typically segregated as central or
peripheral in nature. The term ‘central fatigue’ is used
to describe a range of neural responses that ultimately
reduce the ability to excite skeletal muscle volun-
tarily (Taylor et al. 2000). Inhibition of ¢-motor neurons
may result in decreased discharge rate or derecruitment of
motor units, starting with the largest, highest-threshold
motor units (Kamen et al. 1995). Peripheral fatigue
mechanisms are those located distal to the central nervous
system and include reduced excitability at the motor end-
plate, smaller cytosolic Ca?* transients, reduced Ca’t
sensitivity and inhibited actin—myosin force generation
(Fitts & Balog, 1996; Galea, 2001). The byproducts of
bioenergetic processes that maintain [ATP] in the face
of changing energetic demands have been implicated for
some time in the development of fatigue during repeated
or prolonged contractions (Hill, 1929). Through multiple
mechanisms, increased intracellular concentrations of
inorganic phosphate (P;) and H' alter the contractile
behaviour of skeletal muscle. Their combined effects
ultimately lower force (Debold et al. 2013), rates of
relaxation and, possibly, shortening velocity (Fitts & Balog,
1996). Data from in vitro studies suggest that P; and H*
also reduce force-generating capacity at the level of the
cross-bridge (Debold et al. 2012, 2013), but the extent
to which these results reflect the behaviour of the intact
neuromuscular system is not clear. Data from in vivo
studies provide inconsistent results regarding metabolites
such as [H"] and [ADP] (Kent-Braun et al. 2002;
Rico-Sanz, 2003), but most support a strong association
between diprotonated inorganic phosphate ([H,PO,7])
and fatigue (Cooke et al. 1988; Miller et al. 1988; Wilson
et al. 1988; Kent-Braun, 1999, 2002; Lanza et al. 2006,
2007).

Although in vitro experiments provide explicit details
about systems in isolation, and in vivo studies can
describe the combined function of multiple systems,
neither approach provides the opportunity to study intra-
cellular metabolites, neural activation and contractile
variables directly and simultaneously. Thus, both in vivo

and in vitro approaches have limitations for addressing
the mechanisms of fatigue. Computational models, on
the contrary, can be used to predict the responses of
complicated systems whose interrelated components pre-
clude direct measurement or control. Computational
models have been developed that successfully predict
the function of multiple biophysical systems, ranging
from nervous tissue (Heckman & Binder, 1991) to
individual sarcomeres within skeletal muscle (Huxley,
1971). However, few models have been proposed that
encompass the full range of physiological processes, from
neural activation to intracellular bioenergetics, implicated
in neuromuscular fatigue. We present a computational
model meant to represent this range of physiological
processes. In the present work, we extend a pre-
viously validated, integrative model of muscle torque
production (Callahan et al. 2013) to predict the return to
resting metabolite concentrations following contractions
and the relationships that exist between bioenergetic
perturbation and limitations on force-generating capacity
(i.e. fatigue).

Evidence in the literature suggests that during isometric
or low-velocity contractions, skeletal muscle fatigue occurs
to a lesser extent in the muscles of older adults than
young (Narici et al. 1991; Ditor & Hicks, 2000; Bilodeau
etal 2001; Callahan & Kent-Braun, 2011), an observation
first termed the ‘fatigue paradox’ by (Narici ef al. 1993).
Recent analyses indicate that age-related fatigue resistance
is observed least often during dynamic contractions
(Callahan & Kent-Braun, 2011) and most often during
sustained (Hunter et al. 1999; Bazzucchi et al. 2005;
Mademli & Arampatzis, 2008b) or intermittent isometric
contractions (Ditor & Hicks, 2000; Kent-Braun et al.
2002; Chung et al. 2007). These results are supported
by meta-analysis of relevant findings in the literature
(Christie et al. 2011). Several mechanisms have been
proposed to explain age-related fatigue resistance during
isometric contractions, including alterations in motor
neuron (MN) behaviour (Allman et al. 2004; Tevald
et al. 2010), greater reliance on oxidative metabolism
(Kent-Braun et al. 2002; Lanza et al. 2007), increased
metabolic economy (Hepple et al. 2004; Lanza et al. 2007)
and lower net production of fatigue-inducing metabolites
(Coggan et al. 1993; Chilibeck et al. 1998; Kent-Braun et al.
2002; Lanza etal. 2007) in old compared with young adults.
However, conclusive evidence indicating the primacy of
any of these potential mechanisms is lacking. This is likely

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society



J Physiol 00.00

to be the result of the many difficulties associated with
performing such relative comparisons and the inability
to modify any single aspect of the neuromuscular system
independently in vivo.

The goal of the present study, therefore, was to
formulate a computational model capable of making
accurate predictions of neuromuscular fatigue and
the attendant physiological responses observed during
repeated voluntary contractions in vivo. We then adapted
this model to make predictions regarding the effect of
age on fatigue to gain insight into potential physio-
logical mechanisms explaining the phenomenon of
age-related fatigue resistance. To accomplish this goal,
various components in the model representing specific
aspects of neuromuscular function were adjusted to reflect
corresponding processes evaluated experimentally in the
ankle dorsiflexors of older men. The overall prediction
of fatigue in the age-adapted model was confirmed by
comparison with an independent data set available in
the literature. Comparisons between the two versions of
the model revealed new insights into the mechanisms
of fatigue and suggest that higher glycolytic flux and
metabolic cost in younger adults have the greatest impact
on age-related fatigue resistance.

Methods
Computational approach

The modular nature of the present model shares
components with our previously published model
(Callahan et al. 2013), which was based on in vivo
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data from the human ankle dorsiflexor muscle group
during isometric contractions. To arrive at the simulations
presented here, the previous model was extended
with new functions representing the following: (i) the
bioenergetic cost of activation and torque generation;
(ii) the recovery of metabolic homeostasis following
activation; and (iii) the influence of these competing
processes on torque-generating capacity. Specifically, the
present model contains additional functions describing
the efflux of H' resulting from the development of
acidosis, synthesis of phosphocreatine (PCr) following
each contraction, and a mechanism whereby [H,PO,™]
limits force-generating capacity. The system of equations
that dictate neural excitation, muscle activation, contra-
ctile kinetics and metabolic perturbations associated with
the development of force is identical to our previously
published model (Callahan et al. 2013), unless noted
otherwise. Experimental, in vivo data have been reported
previously (Callahan et al 2013; Lanza et al. 2007);
all experiments from these studies were carried out in
compliance with the Institutional Review Board at the
University of Massachusetts Amherst and in accordance
with guidelines set forth in the Declaration of Helsinki. All
simulations were run using Matlab software (MathWorks,
Natick, MA, USA).

The model presented here was parameterized using
neural, contractile, bioenergetic and musculoskeletal data
from a group of healthy young men (21-35 years old,
n = 8; Callahan et al. 2013). Briefly, all steps in the
forward integration routine in this model began with a
single parameter meant to represent voluntary excitation
(S; Fig. 1, step 1). This value serves as the input for a

1 3
Excitation Motor Unit Pool Muscle Activation
Neural excitation (value Recruitment of Sarcolemma depolarization and
between 1 and 0) representative motor calcium transients
neuron pool based on (EfﬂUX driven by inter-pulse
Henneman size principle interval)
(MU activation & Firing
Rate)
4a
6 5 . .
Bioenergetics
Controller Joint Torque Muscle Model

Comparison of time point
between joint torque and

target adjusts excitation .
joint torque

Sum of muscle model forces
calculates moment arm and

Activation- and time-

dependent fluctuation

of metabolic response
to activation

(modified Hill model,
including length and
velocity parameters)

Figure 1. Computational approach and literature sources for model components

A control function (step 1) dictates excitation to a pool of 60 motor neurons (step 2). Each motor neuron is
associated with corresponding fibre-type-specific muscle activation kinetics (step 3) and a Hill muscle model (step
4), whose function is modified by predicted concentrations of intracellular metabolites (step 4a). The sum of forces
predicted by the Hill muscle models is used in a musculoskeletal model to predict joint torque (step 5), which is
compared with a task defined a priori. The result of this comparison is then used to modify excitation (step 6).

Abbreviation: MU, motor unit.
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modelled pool of 60 MNs (Fig. 1, step 2), which closely
follows a model by Fuglevand ef al. (1993) and predicts
a firing rate (FR) for each simulated neuron. A calcium
transient model of activation follows (Fig. 1, step 3),
providing input into a standard Hill muscle model (Fig. 1,
step 4). Calculations related to the activation-dependent
fluctuation in metabolite concentrations are integrated
with the muscle model to allow for prediction of the
metabolic cost of contractions and return to homeo-
stasis with rest. At each stage, this cellular bioenergetic
model (Fig. 1, step 4a) interacts with the muscle model
by affecting activation (Fig. 1, step 3). The linear sum
of forces produced by all muscle models is input to a
musculoskeletal model of the ankle joint and current joint
torque (Tc¢) at the ankle is predicted (Fig. 1, step 5).
Finally, Tcis compared with the ‘target’ torque, as defined
a priori, at each point in time (Tt) for the duration of the
fatigue protocol. A difference between Tcand Tt causes an
increase or decrease of S such that the difference between
Tc and Tt is minimized (Fig. 1, step 6). In this model,
functions receive no input beyond initial conditions
and Tt

Fatigue model parameters

Derivation of the functions describing the control
parameter (S), MN activation, force generation in
Hill models representing multiple motor units, torque
generation and bioenergetic cost have been described
previously (Callahan et al. 2013). Additional functions,
unique to the present model, were included to reflect the
response of the previously published model to repeated
activation in young adult males (Y-Model). In addition,
several components of the model were adjusted to
reflect age-related changes in neuromuscular function
that have been identified as factors that might mediate
the phenomenon of age-related fatigue resistance; these
adjustments to Y-Model define the age-adapted model
(O-Model). Differences between O-Model and Y-Model
are given in Table 1 and described in relevant sections
below. Additional differences between O-Model and
Y-Model relating to neural activation and intracellular
metabolism are indicated in Table 2.

Modelling intracellular bioenergetics, fatigue and
recovery. Fatigue was dependent on the predicted
accumulation of H,PO,~ through a negative, linear
association between [H,PO,~] and activation (step 3; see
eqn 3). This is meant to reflect the inverse relationship
between [H,PO,~] and Ca**-mediated force generation
observed in vitro (Nosek et al. 1987) and in vivo (Wilson
et al. 1988; Kent-Braun et al. 2002; Lanza et al. 2006). The
model predictions for P; accumulation were activation
dependent. This rate was limited by the square root of

J Physiol 00.00

Table 1. Contractile properties and activation kinetics for young
and age-adapted versions of the model

Parameter Model MM; MMgy Weighted average

Fmax (N) Y-Model 0.57 54.51 28.06
O-Model 0.53 50.73 26.11

Vimax (Leeo s~1)  Y-Model 12.00 18.00 16.43
O-Model 12.00 15.75 14.84

Tdeact (MS) Y-Model 92 64.6 70.2
O-Model 120 84.3 91.6

Tact (MS) Y-Model 60 39 43.4
O-Model 60 45 48.2

Contractile element parameters are as follows: maximal
force-generating capacity (Fmax); maximal shortening velocity
(Vmax); deactivation time constant (rgeact); and activation time
constant (zat). Data are presented for the young (Y-Model)
and old (O-Model) parameters of the muscle model (MM).
To illustrate the range within each variable across all MMs
representing the 60 modelled motor units, values are shown
for the first (MM;) and last (MMgg) individual muscle models
(step 4 in Fig. 1) within the overall model, along with their
average, weighted by MM force-generating capacity (Fmax) in
order to provide a relevant comparison with in vivo measures.
Lceo, Optimal contractile element length.

the percentage of PCr remaining during contraction, as
follows:

(PCr/PCries)*? (1)

A model of glycolysis based on the Michaelis—Menten
relationship between [P;] and glycogen phosphorylase
(Chasiotis et al. 1982) was used to predict the rate of
proton generation from this metabolic pathway. The Ky,
of this relationship was assumed to be 18.94 mm (Chasiotis
et al. 1982; Ren et al. 1988). Protons were produced from
non-oxidative glycolysis, consumed by the creatine kinase
reaction (reflected by the rate of P; accumulation) and
buffered by several intracellular processes as previously
described (Callahan et al. 2013).

Following each contraction in which modelled intra-
cellular pH was more acidic than the initial value of 7.05,
[H"] returned to baseline through a model representing
the multiple processes that return postactivation intra-
cellular pH to resting levels (predominately cellular efflux
of [H*]). The calculation used to predict efflux was based
on reported experimental values (van den Broek ef al.
2007) and expressed mathematically by the following
equation:

Efflux = E.. x pH? (2)

where E,,. was the linear rate constant for proton efflux
(Kemp et al. 1997) and “pH was the difference between
current pH and baseline pH.

Recovery of [P;] to baseline following activation
was modelled after our own experimental observations.

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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Table 2. Variable and parameter values
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Parameters Model MM; MMsgo Weighted Average
Intracellular metabolic variables PCr (mwm) Y-Model 38.6 38.6 38.56
O-Model 37 37 37.01
Glycolytic capacity Y-Model 0.49 1.92 1.5
O-Model 0.24 0.95 0.7443
pH Y-Model 7.01 7.01 7.01
O-Model 7.03 7.03 7.03
Intracellular buffering capacity () Beo, (Slykes) Y-Model 11.8 11.8 11.8
O-Model 11.8 11.8 11.8
Binherent (Slykes) Y-Model 5 5 55
O-Model 15 15 15*
Bp; (Slykes) Y-Model 2.99 2.99 2.99
O-Model 4.09 4.09 4.09
Motor unit discharge rates Peak firing rate (Hz) Y-Model 55.6 46 n.a.*
O-Model 44.6 35
Minimal firing rate (Hz) Y-Model 8 8 n.a.*
O-Model 8 8

Values for intracellular metabolic, buffering and motor unit variables and parameters (latter denoted by *) for the range of muscle
models (MMj_gp) meant to reflect motor units in young (Y-Model) and older (O-Model) neuromuscular systems. Values reflect those
used at time = zero in all simulations. By definition, variables varied during the simulation, while parameters remained constant.
The weighted average reflects the average of all MMs, scaled by MM force-generating capacity, thus providing relevant comparison to

in vivo measures.

In vivo, phosphorus magnetic resonance spectroscopy was
used to monitor the recovery to baseline of [P;] and [PCr]
following contractions at multiple intensities in young and
older men (Christie ef al. 2014). Recovery rates of [P;] and
[PCr] were fit with a third-order exponential decay or
rise to maximum, for P; and PCr, respectively. The first
derivatives of these equations were used to calculate rates
of change for [P;] in the model.

Experimental observation revealed that the recovery
kinetics of [P;] depended on the extent of [PCr]
depletion and was independent of pH at the end of the
contraction. These effects were reflected in the model
by coefficients that related the rate of recovery to the
extent of P; accumulation. Throughout the simulated
contraction protocol, [H,PO,~] was calculated from [P;]
and pH at each time point, according to the following
equation:

H,PO,~ =P/ (1+ 10(pH—6.75)) 3)

The accumulation of [H,PO,~] limited force in the
model and thus simulated fatigue by limiting voluntary
excitation (S), and muscle activation (Act) to the motor
unit recruitment and muscle models, respectively. These
limits (ActLim) were based on literature values (Lanza
et al. 2007) and expressed mathematically by the following
equation:

ActLim = —0.022 x (H,PO,~ + 1.05) (4)

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society

Modelling the motor neuron pool. The modelled pool
of MNs was adjusted to reflect changes in discharge
properties of «-MNs of older adults. Peak firing rates for
recruited MNs were reduced from 56 Hz in Y-Model to
45 Hz (Rubinstein & Kamen, 2005). The range of peak
firing rates across 60 simulated MNs was also limited from
10 to 8 Hz (Rubinstein & Kamen, 2005). The minimal
firing rate was set to 8 Hz; activation thresholds were
identical in Y-Model and O-Model. A more detailed
explanation of the MN model is presented by Callahan
etal. (2013).

Modelling activation kinetics. The equations defining
activation and deactivation (i.e. Ca’") kinetics were
altered slightly from those previously based on He et al.
(1991). Evidence for age-related changes in activation
kinetics has been described in rodents (Larsson & Salviati,
1989; Weisleder et al. 2006; Russ et al. 2014) and, to a
lesser extent, in humans (Delbono et al. 1997; Lamboley
et al. 2015). However, it is likely that the magnitude
of age-related changes in activation kinetics is relatively
minor when compared with differences in kinetics
between muscle fibres of different myosin heavy chain iso-
forms. It is likely that muscle fibre-type-dependent rates of
calcium efflux (Calderon et al. 2009) may lead to an overall
slowing of activation in older adults, based on their small
shift towards a greater population of type I muscle fibres
(Jakobsson et al. 1990). To reflect a fibre-type-dependent
shift in activation kinetics, the average time constant for
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activation (60 ms) was not changed in O-Model, but the
35% range of activation time constants was reduced to
25%. In contrast to the limited evidence for age-related
changes in activation kinetics, ample evidence supports
the notion of prolonged deactivation in older muscle.
Although the rate of calcium uptake from the cytosol
varies by muscle fibre type (Stephenson & Williams, 1981),
calcium resequestration within a given fibre type can be
as much as 35% slower in older compared with younger
human skeletal muscle (Hunter et al. 1999). This slowing
of deactivation was described mathematically by Thelen
(2003) and has been accomplished here by an increase in
the average deactivation time constant from 92 (Y-Model)
to 120 ms (O-Model). Further revision of the model
included a 0.004 s increase of the ‘on’ transient period
of the Ca’" signal (from 0.023 to 0.027 s). This was
done primarily to ensure that the model was capable of
achieving complete activation, despite lower MN firing
rates, and is consistent with in vivo data (Chung et al.
2007).

Modelling contractile kinetics. Several variables were
altered in the O-Model to reflect age-related changes
in contractile characteristics (Narici et al. 1991; Ng &
Kent-Braun, 1999), independent of activation (Ca’")
kinetics. These alterations are listed in Table 1. Contra-
ctile slowing has been observed in vivo (Narici et al.
1991; Allman et al. 2004; Tevald et al. 2010). Reduced
rates of force development have been attributed to
altered fibre-type distribution (Larsson et al. 1997) and
age-related contractile slowing that occurs within fibres of
the same type (Ochala et al. 2007). In our approach, this
contractile slowing was expressed across the population
of muscle models (MMs), each of which corresponds to
and receives its activation signal from one of 60 MNs.
These were co-ordinated such that the MN recruited first
corresponded to the slowest, least forcefully contracting
muscle model, MM;. Although MM, had similar maximal
shortening velocities (Vinax) to MM, in Y-Model, Vj,.x in
the muscle model associated with the highest threshold
MN (MM ) was reduced by 12.5% compared with MMg
in Y-Model, based on previous reports (Thelen, 2003)
and modified to yield adequate force fusion at relevant
physiological firing rates (Fig. 2). Given that the range of
force-generating capacities assigned to these models was
not linearly distributed, the overall V,,,,, of all 60 muscle
models was not equal to the arithmetic mean V,, of
the models; rather, the overall Vi,.x [expressed in terms
of optimal contractile element lengths (L..,) per second]
was weighted according to muscle fibre force-generating
capacity such that the model contributing the greatest
force had the greatest influence on Vi, The Vi
was 16.43L.., s~! in Y-Model and 14.84L., s~! in
O-Model.

J Physiol 00.00

In addition to alterations made to the range of Vi
across the contractile elements, maximal force-generating
capacity (Fmax) was reduced by 4.6% for O-Model.
This alteration was based on a similar reduction in
anterior compartment fat-free muscle cross-sectional area
observed experimentally (Christie ef al. 2014).

Simulation procedures and evaluation

The quality of the model excitation and contractile pre-
dictions in an aged neuromuscular system were evaluated
by simulating a traditional force—frequency analysis
in vivo, as described previously (Callahan et al. 2013).
Briefly, a train of ‘stimuli’ was simulated by setting S =1
for the first 0.029 s of the duration between subsequent
MN firings (duration = 1/stimulation frequency) to
mimic stimulation of the Ca®" transient. This simulation
was repeated for frequencies between 1 and 50 Hz in
Y-Model and O-Model. The resulting force—frequency
relationships were fitted by five-parameter asymmetrical
sigmoid functions (Prism; GraphPad Software, La Jolla,
CA, USA) and compared with in vivo measures from the
literature (Tevald et al. 2010).

To test the ability of the model to predict torque,
activation and metabolic changes, a 12 s maximal
voluntary contraction (MVC) was simulated using both
models. In this case, Ttwas set to 110% to ensure the Tcwas
always <Tt, thus producing maximal activation. A 180 s
recovery period was simulated following this contraction
to allow for testing of recovery dynamics in the model.
The output from these simulations was then compared
with in vivo data from older men to test the validity

104 . ge=====
0.8 1
¥
(0]
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53
g O OMin vivo
a 0.4 1 L
- ® YM in vivo
02 --+ OM Sim
’ — YM Sim
0.0 H T T r r

0 10 20 30 40 50
Stimulation Frequency (Hz)

Figure 2. Torque—frequency relationships in young and older
men

Comparison of experimental torque in response to electrical
stimulation of the peroneal nerve with that simulated using the
model. Experimental data are indicated by filled (young males, YM)
and open circles (older males, OM) representing mean values + SD
at several frequencies. Continuous and dashed lines are
five-parameter sigmoid curves fitted to simulated torque predicted
by the Y-Model and O-Model, respectively.

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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of metabolic predictions using the newly formulated
model.

To test the ability of the model to predict fatigue,
a simulation of six 12 s contractions was run using
both Y-Model and O-Model. Fach contraction was
separated by 12 s of rest. This protocol was designed
to match published data from our laboratory, which
were used for the comparison of fatigue and intra-
cellular metabolites in healthy young and older male
cohorts (Lanza et al. 2007). To investigate further
which properties of neuromuscular function had the
most profound impact on predicted fatigue, multiple
simulations were run in which single components of the
model were altered and the results compared between
Y-Model and O-Model. Specifically, equations describing
activation-dependent PCr depletion rate, PCr recovery
following activation, inherent intracellular buffering
capacity and activation-dependent glycolytic flux were
each exchanged between Y-Model and O-Model. Finally,
to predict fatigue in ischaemic conditions, during which
oxidative metabolism is negligible, simulations were run
in Y-Model and O-Model for which the parameters pre-
dicting PCr synthesis between activations were excluded.
Fatigue predicted by these latter simulations was compared
with fatigue reported by Lanza et al. (2007), who used
cuff occlusion to eliminate blood flow and thus the
oxidative recovery of PCr between contractions. All
simulations produced data for 135 s with 0.001 s time
resolution.

Results

Y-Model: fatigue

Metabolic perturbations from the Y-model simulation and
corresponding in vivo measures of a single 12 s MVC are
illustrated in Fig. 3A—C. Simulated depletion and recovery
of intracellular metabolites compared well with in vivo
measures (Lanza et al. 2006), in both rate and amplitude.
Similar results were observed in the prediction of pH
through the contraction and recovery cycle. Repeated
voluntary contractions were simulated, and the responses
of selected metabolites are illustrated in Fig. 4A-C
with corresponding in vivo observations (Fig. 4D-F)
for comparison (Lanza et al. 2007). The simulated
fatigue response to repeated contractions showed strong
concordance with in vivo results (Fig. 5A; Lanza et al.
2006).

O-Model: activation and metabolic perturbation

Adjustments made to the model to reflect age-related
changes to activation and contractile characteristics were
evaluated for accuracy by comparison with in vivo data
(Tevald et al. 2010; Callahan et al. 2013). Comparisons

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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were made by simulating a stimulation pattern meant
to emulate neuromuscular stimulation at a range of
discrete frequencies. The results from these simulations
were compared with in vivo data from the literature for
both young and older males (Tevald et al. 2010) and are
illustrated in Fig. 2. Torque predicted from O-Model was,
in some instances, below observed torque, but within
1 SD of nearly all measured values. Compared with
Y-Model, simulations from O-Model demonstrated a left-
ward shift in the torque—frequency relationship, as is
reported in studies of the effects of age on the force—
frequency relationship (Narici et al. 1991; Tevald et al.
2010).

A simulation of the metabolic responses to a single
12 s MVC using O-Model are illustrated in Fig. 3D-F. As
with Y-Model, bioenergetic perturbation and restitution
to baseline values for intracellular metabolites agreed well
with previously published in vivo measures (Lanza et al.
2007) and unpublished observations from the same data
set. A slight over-prediction of [H,PO,~] was observed
following the contraction (Fig. 3F), although this may
have been an artifact of the spectroscopy measure itself
(see Discussion). The simulated bioenergetic response to
repeated MVCs predicted by O-Model are illustrated in
Fig. 4D-F and agree well with in vivo data from the
literature (Lanza et al. 2006, 2007; Larsen et al. 2009;
Christie et al. 2014), demonstrating reduced acidosis and
accumulation of H,PO,~ when compared with Y-Model
and similar PCr depletion (Fig. 4).

O-Model: age-related fatigue resistance

The magnitude of fatigue predicted by both models was
consistent with in vivo measures (Lanza et al. 2007), as
illustrated in Fig. 5A and B. Comparison of O-Model
with Y-Model revealed less fatigue in O-Model (81.1% of
initial) than that predicted by Y-Model (75.2% of initial).
This level of fatigue and degree of age-related resistance
agree well with earlier in vivo work using a similar protocol
(Lanza et al. 2006, 2007; Chung et al. 2007).

Multiple simulations were run to compare the fatigue
response in Y-Model and O-Model, with parameters
related to glycolytic flux, metabolic cost of contraction
and inherent buffering capacity switched between them
to investigate the relative impact of each parameter on
the fatigue response without altering other age-related
differences. The fatigue predictions for each simulation are
presented in Table 3. Although each parameter compared
in these analyses affected the fatigue prediction to some
extent, switching the parameters that estimated glycolytic
flux had the greatest impact on predicted fatigue in
Y-Model and O-Model. This parameter switch resulted
in lesser and greater fatigue predicted from Y-Model and
O-Model, respectively (Table 3). Switching the rate of P;
recovery between models, such that rate of P; recovery
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was reduced in Y-Model and increased in O-Model,
had the expected result of increasing fatigue in Y-Model
and decreasing fatigue in O-Model. Changes to inherent
buffering capacity and the cost of contraction (rate of
PCr depletion) resulted in minimal changes to over-
all fatigue predicted in both Y-Model and O-Model.
Finally, eliminating the capacity to resynthesize PCr
between activations, thus simulating ischaemia, increased
fatigue predicted in both models. These predictions were
consistent with in vivo results previously reported by our
group (Lanza et al. 2007). In the case of O-Model, the
predictions of fatigue were within 0.1% of the in vivo
observation.
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Discussion

Simulations generated by our model and presented here
suggest that although multiple age-related changes in
neuromuscular function contribute to fatigue, lesser
reliance on glycolytic metabolism is the greatest single
factor explaining the phenomenon of age-related fatigue
resistance. The simulations presented here are the first to
predict the intracellular bioenergetic responses and sub-
sequent fatigue during repeated isometric contractions
in vivo, while presenting accurate activation and contra-
ctile kinetic components reflective of the neuromuscular
systems of young and older adults.

i {H{, %H‘
el R

t ﬁﬁ}“;ﬁgﬁgﬁ

Figure 3. Simulated metabolic response to a 12 s maximal voluntary contraction

A-C, simulated data from Y-Model (continuous line) are compared with in vivo observations in young men (filled
circles; means =+ SD); data are shown for PCr (A), pH™ (B) and H,PO,4~ (C). D-F, the same data are provided for
older men (open circles; means & SD) and simulated by the O-Model (dashed line). Shaded rectangles indicate
duration of the contraction.

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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Although previous models have been developed
successfully to capture the effects of age on activation
and contractile function (Thelen, 2003; Hasson et al.
2009, 2011) and others have predicted fatigue during
prolonged or repeated contractions (Rohmert, 1960; Levin
& Mizrahi, 1999; Ding et al. 2000; Xia & Frey Law, 2008;
Dideriksen et al. 2011), ours is the first model to do both
simultaneously. This approach is necessary to interrogate
the multiple potential contributors to fatigue resistance
and, ultimately, to estimate their relative contribution
to the overall neuromuscular behaviour. Simulations
produced by O-Model and Y-Model predicted age-related
differences in metabolic variables implicated in fatigue
resistance. Comparisons with in vivo data confirm the
predictions made using these models and support their
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use as predictive tools to measure the relative impact of
specific physiological variables on neuromuscular fatigue.
These claims are substantiated by additional simulations
that demonstrate the adaptability of the present model;
namely, the ability to predict fatigue in ischaemic
conditions.

Predictions of voluntary and stimulated force

Predicted voluntary force during a single 12 s contraction
agreed with in vivo observation for both Y-Model (within
0.2% of in vivo observation; Callahan et al. 2013) and
O-Model (within 3.9% of in vivo observation; Christie
et al. 2014). The kinetics of force generation and
relaxation in Y-Model and O-Model were demonstrated
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Figure 4. Simulated repeated maximal voluntary contraction protocol
A-C, model output from a simulation of repeated maximal voluntary contractions reveals predicted metabolic

responses of intracellular metabolites PCr (A), H* (B) and H,PO4~

(C). Output from Y-Model (continuous line) is

compared with that from O-Model (dashed line). D-F, experimental data (Lanza et al. 2007) for PCr (D), H* (E)

and HyPO4~ (F)

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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via simulation of torque—frequency relationships and
compared with in vivo observation (Fig. 2). These
comparisons confirmed accurate reproduction of torque
output with increasing stimulation frequency, as well as
the age-related leftward shift in the torque—frequency
relationship. These relationships are important in the
context of fatigue prediction because the limits (ActLim)
on stimulation (S) in the model will decrease motor unit
discharge rates and thus reduce force production in a
manner consistent with in vivo observations (Rubinstein
& Kamen, 2005).

Age-related fatigue resistance

The present models demonstrate both accuracy and
flexibility by predicting age-related fatigue resistance as
well as metabolic responses to relatively brief, maximal
activation patterns. The declines in peak torque over the

D. M. Callahan and others

J Physiol 00.00

entire sequence of contractions were especially well pre-
dicted for both Y-Model and O-Model (Fig. 5). It is
worth noting, however, that fatigue within each simulated
contraction was relatively less than that observed
in vivo. This within-contraction discrepancy could not
be resolved unless model parameter values were adjusted
such that intracellular metabolic predictions were well
outside the range of in vivo observation. In addition,
these parameter adjustments yielded simulations with
less accurate fatigue predictions across the entirety of the
contraction protocol. Given the necessary simplification
inherent in any computational model, the lesser rate of
fatigue within contractions is likely to reflect one or more
secondary factors (altered Ca’>" sensitivity or membrane
excitability) that, while not explicitly represented in
the present model, nevertheless contribute to fatigue in
vivo. Although there would be trade-offs associated with
adding to the complexity of the model, identifying these
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Table 3. Fatigue results from in vivo observations and model simulations

Fatigue (% initial TTI)

Lanza et al. (2007) Standard model

Parameter switch

In vivo Simulated Inherent buffering  Activation-dependent P;j recovery  Glycolytic
Model In vivo  (ischaemic) Simulated (ischaemic) capacity P; kinetics kinetics flux
Y-Model 75.1 62.8 75.2 67.5 76.1 76.0 73.0 80.0
O-Model 84.1 76.0 81.1 75.9 80.4 80.4 82.2 77.1

Fatigue data from in vivo observations (Lanza et al. 2007) and multiple simulations performed by Y-Model and O-Model. Fatigue
is presented as the time tension integral (TTI) of the last contraction, expressed as a percentage of the TTI of the first contraction.
In standard simulations, model parameters were assigned as described in the Methods. In simulations indicated by the ‘parameter
switch’ column, the model component indicated in the subheading was altered in Y-Model to match the corresponding component
in O-Model and vice versa. Simulations were run for all models, and fatigue was calculated as described in the Methods. Switching
the glycolytic parameters was the only approach to reverse the prediction of age-related fatigue resistance fully.

factors and their relative contributions could be fruitful
targets for future extensions of the model.

An important aspect of this study is the result of
simulations in which components of one model were
substituted with the other in order to evaluate their
impact on age-related fatigue resistance. As shown in
Table 3, our model suggests that a greater reliance
on glycolytic ATP production has the greatest impact
on differences in fatigue predicted by Y-Model and
O-Model. This observation is consistent with pre-
vious hypotheses related to fatigue resistance in ageing
(Kent-Braun et al. 2002; Lanza et al. 2005, 2007). However,
our predictions are in apparent contrast to investigations
suggesting that oxidative metabolism and metabolic
economy explain the most variation in fatigue (Nakagawa
et al. 2005; Sirikul et al. 2007). In our models, substituting
the P; kinetics during activation (an index of metabolic
cost of contraction) of O-Model with those of Y-Model
did little to increase glycolytic flux in O-Model. Therefore,
we performed a simulation inspired by published
in vivo work from our laboratory (Lanza et al. 2007),
in which PCr recovery was inhibited. It was expected
that in O-Model, increased glycolytic flux would result
in greater fatigue during ischaemia. These simulations,
in which PCr recovery was inhibited in order to mimic
contractions in ischaemic conditions, were consistent with
experimental results where fatigue (and glycolytic flux)
increased substantially compared with conditions in which
PCr was allowed to recover. As with the experimental
data, simulated fatigue in O-Model remained less than
the fatigue generated by Y-Model in the same conditions.
Interestingly, fatigue within each simulated contraction in
conditions of no PCr recovery (i.e. modelled ‘ischaemic’
conditions) was closer to in vivo observations than pre-
dictions for contractions in which PCr recovery was not
inhibited (i.e. modelled ‘free-flow’ conditions; data not
shown). This result suggests that blood flow may be
one potential source of the modest discrepancy between

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society

in vivo and simulated within-contraction fatigue. Overall,
these simulations provide further support for the notion
that a greater reliance on glycolysis is the greatest single
contributor to the phenomenon of age-related fatigue
resistance.

It is important to note that non-oxidative glycolytic
flux itself does not directly cause fatigue but instead
produces HT, thus facilitating the formation of H,PO,~
by combination with P;. Accumulation of H,PO4~ has
been suggested to limit force-generating capacity. The
precise mechanisms by which these metabolic byproducts
influence fatigue include altered Ca®* sensitivity (Debold
et al. 2013), inhibition of excitation—contraction coupling
(Lee & Allen, 1991) and reduced force production by
actin—myosin cycling (Debold et al. 2008). Our model is
not designed to determine which of these mechanisms
ultimately causes fatigue, but experimental evidence
(Nelson et al. 2014) and models specifically formulated to
investigate fatigue at the cross-bridge level (Shorten et al.
2007) suggest that elevated [H"] and [P;] are likely to have
additive effects that both reduce force at the cross-bridge
and inhibit Ca®" sensitivity. Our approach, which uses a
Hill-type model of muscle contraction, was not developed
at the scale necessary to investigate fatigue at the level of
the sarcomere. Instead, we focused on factors contributing
to altered neural activation and intracellular environment
and suggest that, among the myriad differences between
the neuromuscular systems of young and older adults, a
tendency for the young to rely on the glycolytic provision
of ATP is the greatest contributor to age-related differences
in acute neuromuscular fatigue.

Methodological considerations

A number of methodological decisions were necessary
during the development of this model, and these decisions
should be considered when interpreting its results. Values
for the parameters incorporated into the model and
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used to predict metabolic and contractile behaviour
fall within the range of in vivo data available from
the literature and our own unpublished observations.
However, these measures will vary between individuals,
and some may depend on factors other than age, such as
muscle group or habitual patterns of use (Larsen et al
2009). In addition, in vivo measures of the intracellular
environment depend on multiple factors, not all of which
can be quantified precisely. These include, but are not
limited to, calcium concentration, buffering capacity and
resting metabolic rate. Therefore, our range of inputs
were meant to reflect what is currently known about the
range of various physiological characteristics and will best
reflect group mean responses rather than individual sub-
ject characteristics. Likewise, errors in any model can
offset one another and lead to reasonable pre-
dictions through flawed means. However, the process
of developing this phenomenological model included
systematic, stepwise comparisons of model output and
experimental data at each step (Fig. 1). These comparisons
indicated that our inputs produced predictions that were
consistent (<2 SD variance in all cases, and <1 SD in
the vast majority) with the in vivo functions they were
meant to represent. Finally, an advantage of the modular
approach taken here is that individual parameters may
be revised independently, thus allowing evaluation of the
impact of each on force and fatigue.

An explicit prediction of oxidative ATP production
is absent from our model. Instead, the contribution
of oxidative metabolism to ATP production during
contraction and the PCr resynthesis during recovery are
implied by predictions of PCr and P; kinetics, as PCr
synthesis following contraction is accomplished primarily
via oxidative phosphorylation (Quistorff et al. 1993). At
the same time, production of H* by oxidative metabolism
during PCr synthesis following contraction is accounted
for in our model. In the simulations presented here, our
model provided predictions of metabolic changes entirely
consistent with in vivo measures (Kent-Braun et al. 2002;
Lanza et al. 2007).

Despite our attempts to incorporate a wide range of
physiological components that might influence fatigue,
the complexity of the model does not approach that
of the human neuromuscular system. As with all
computational models, the interest in fully describing
complex relationships was balanced with necessary
simplification of computational aspects for which precise
experimental descriptions are unavailable. For example,
variations in age-related changes to central activation can
be found in the literature, with some finding greater failure
in older subjects (Bilodeau et al. 2001; Stackhouse et al.
2001) and others reporting minimal or no difference
(Chung et al. 2007; Mademli & Arampatzis, 20084;
Callahan & Kent-Braun, 2011). The same can be said
of inherent buffering capacity (Parkhouse et al. 1985;

J Physiol 00.00

Lanza et al. 2005), which itself is difficult to measure
directly. Future incarnations of the present model might
be adapted to include varying degrees of central activation
failure, motor unit behaviour, fibre-type changes, inherent
buffering capacity and control of oxidative metabolism.
Although the present model was constrained to isometric
contractions, it can easily be extended to simulate dynamic
contractions in future work.

Finally, the contributions of altered Ca?t sensitivity,
excitation—contraction coupling and reduced actin—
myosin cycling to fatigue are implicit components in
this model but do not have explicit mathematical
representations in the model formulation. This limits our
ability to interrogate the relative contribution of these
sites to fatigue. A multiscale model incorporating both
musculoskeletal and sarcomeric representations, which
has been a persistent challenge in the field, has recently
been addressed (Rohrle et al. 2012; Mordhorst et al. 2015).
Although these studies addressed different experimental
questions from those we have focused on in the pre-
sent study, our future efforts may benefit from these
examples.

Future directions

The present model has been parameterized to represent
the function of healthy, physically active younger men, as
well as a group of healthy, relatively sedentary older men.
The inputs to the model used to characterize these sub-
ject groups can be adapted to represent other populations
without significant alterations to the computational
approach. Clinical populations characterized by altered
neural function (multiple sclerosis), cellular metabolism
(McCardle’s disease or diabetes) or skeletal muscle atrophy
(cancer or human immunodeficience virus) could be
investigated with the present version of the model simply
by changing the model parameter values. The model could
also be applied to questions of sex-specific differences
in fatigue or provide expectations for altered fatigue
characteristics following disuse or exercise training.

Conclusion

We have presented a novel computational model that
accurately predicts fatigue in response to MVC in humans.
This model was used to perform simulations, and the
results indicate that a greater reliance on glycolytic
phosphorylation in younger men is the greatest single
contributor to the phenomenon of age-related fatigue
resistance during isometric contractions. Perhaps most
importantly, in establishing the utility of this model, we
provide a valuable tool that can be used to guide study
design and further our understanding of human neuro-
muscular function.

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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