Gain the Competitive Edge

with Incentives from the State of Massachusetts at the University of Massachusetts Amherst

Request for Information

UMass Amherst Core Facilities Voucher Program

A new state voucher program funded by the Massachusetts legislature gives small and medium-sized businesses (<50 FTEs) access to the University’s leading-edge research facilities at reduced rates. Over thirty core facilities, from 3D printing to x-ray scattering, are available for use with the voucher program.

    • Eligibility

      • Start-ups and companies with 10 or fewer employees receive a 75% subsidy.
      • Start-ups and companies with 11-50 employees receive a 50% subsidy.
    • UMass Core Facilities benefits:

      • Highly competitive rates
      • Managed by full-time experienced professionals
      • Companies retain intellectual property (IP)
      • Tiered access to equipment and services
      • Streamlined contracts
      • State-of-art facilities and equipment
    • Application Process

      • To obtain a voucher applicants must develop a scope of work and quote with the Core Facility utilizing this form.
      • This completed form will be routed to the 5-campus review committee who will determine whether the request meets the programs goals.
      • If the voucher request is approved by the 5-campus review committee, a notification letter will be sent to the applicant identifying the total voucher amount, amount to be paid by customer, voucher start date, and voucher expiration date.
      • Vouchers will expire 90 days from date of award. Any funds not used will be returned to the general pool for reallocation.
    • As a small business seeking ways to compete and develop in a global market, the MA innovation voucher program has been an invaluable assistance to our company we have gained exposure to both knowledgeable staff and excellent capabilities that we would have not have been able to afford our own. This voucher program has enabled Volo Aero MRO to implement solutions and deliver 3D printed fixtures into our production processes quickly and efficiently.

      Utilizing this program we have opened our employees to the opportunities and applications of 3D printing, and aided our recruitment process. The voucher program will definitely assist us in our growth and profitability in the future few years.

      —Andrew Walmsley, President, Volo Aero MRO

    • The program gave us capital relief to finally move our research ahead centered around our novel orthopedic biomaterial. We had been tied up for the last two years asking scientific questions about the amorphous/crystal identify and structure of the biomaterial and how it evolves over time under hydrated and biological systems. During this recent cycle, the state voucher program allowed us to tap into the human capital resources and equipment at UMASS-Amherst to finally receive many answers to our basic questions. We look forward to publishing this research in peer-reviewed journals and sharing this information with reviewers at the FDA during our future regulatory submissions.

      —Brian Hess, Chief Executive Officer & Founder, LaunchPad Medical, LLC

    • I approached the lab this past summer with a single objective in mind: to reduce the cost and labor involved in the manufacture of a low-volume part that is a necessary component for a fraction of our customers. Dave and interns took an active interest in this project and helped with the design of a suitable 3-D printed replacement. The final design achieved all the objectives and helps improve the profitability of Etesian.

      As I worked with Dave and the lab and came to understand the possibilities, I looked at several components and asked myself the question “Would this part be better manufactured using additive processes?” In may cases the answer was yes, and we now have 4 or 5 components being fabricated by the ADDFab. I doubt I would have undertaken developing prototypes and getting started without the generous MA Innovation Voucher Program.

      —William M. Stein, CEO, Etesian Technologies LLC

    • As a startup with limited cash, it is important that we make every dollar go as far as possible. Using the voucher program has allowed us to tap into the vast opportunities that the core facilities at UMass have to offer, at very affordable rates.

      Being able to work directly with professional staff members like Dave Follette, who directs ADDFab, to conceptualize designs and fabricate prototypes, has given us an advantage not only in product development but in presenting our materials, data, and results quickly and effectively to potential investors.

      —Barrett Mully, Co-founder, Aclarity Water

Call Today | Funds are Limited
(413) 577-4582

The voucher funding is now available.
Applications will be accepted until funds are exhausted.

3D printing to support new technologies in biosensors and medical devices

This facility conducts research using live animal imaging technologies. Equipment is capable of fluorescence and luminescence imaging independent of or concurrent with CT imaging.

Provides transgenic, gene targeting, and other services to the research community

Provide analytical and high resolution scanning probed based microscopy, including Atomic Force Microscopy (AFM) related techniques as well as force measurements.

Discovery-Based Research and Assay Development for Translational Applications

State-of-the-art facilities for fermentation and separation/purification of biomolecules.

Two cell culture facilities for both biological and bio-engineering approaches. Biosafety cabinets, incubators and general wet lab supplies.

Provides consultative and collaborative service in computational and molecular modeling.

Gold-standard verification of wearable and point-of-care devices.

Designed to have CMOS processing technologies serve as a key enabler towards personalized healthcare and preemptive medicine. We aim to develop smart and miniature devices with biomedical applications.

Transmission (TEM) and Scanning (SEM) Electron Microscopes as well as related sample preparation equipment.

Provides state-of-the-art characterization related to photoluminescent, semiconductor, and conducting materials, including device fabrication and methods for determining charge carrier mobility and solar cell efficiency.

Perform clinical participant intake and evaluation, bone densitiometry & body composition, exercise testing, and exercise training

Enables researchers to image structures ranging from single molecules to whole model organisms and performs microscope-based high-throughput screens.

Provides solutions for Next-Generation Sequencing (NGS) and advances instrumentation for DNA, RNA analysis. Facility is equipped with instruments including Illumina NextSeq 500 and MiSeq.

World Class Measurement Capability for Frequencies into the Terahertz Range and Beyond

Provides world-class computational infrastructure, indispensable in the increasingly sensor and data-rich environments of modern science and engineering discovery.

Whole-body non-invasive imaging and spectroscopy technologies for academic and industry-based research.

High precision assessment of human movement, balance control and muscle activity with and without robot interaction. Used in both the assessment of human health and the calibration/validation of new sensor technologies.

Nine different Nikon microscopes available that enable a full range of light microscopy methods and applications. Expert support offered for acquisition and analysis of data.

Built home environment with kitchen and dining/living space. Allows for the evaluation of biosensor and human behavior in a natural environment.

Expertise measuring molecular weights of small molecules, biological and synthetic macromolecules, qualitative and quantitative proteomics, protein dynamics.

Develops algorithms and processes for large scale wearable sensor networks to support the development of novel hardware.

Device design, modeling and prototype testing in functional architectures taking best advantage of the specific hierarchical nanomanufacturing capabilities.


Elucidates structure, conformation, dynamics and interactions between the molecules

Isolates and concentrates bioactives, thermally treats them by ultrahigh pasteurization and agitating retort, produces emulsion systems by homogenization, and encapsulates by freeze or spray drying.

Custom, moving web-based tools for translational advanced materials & nanomanufacturing processes

Two separate chambers-including the largest single chamber in the U.S-used to conduct long duration (24 hours +) assessments of energy expenditure as well as the calibration/validation of wearable technologies.

Miniaturizing systems in preparation for human testing.

Equipped with EEG systems for recording sleep physiology (sleep staging). A central control room will allow for on-line observation and monitoring of sleep in populations from infants to the elderly.

The Small Molecule Screening Facility assists researchers in developing high-throughput (HT) screening assays, performs HT screens of chemical libraries to identify new small molecules that can be used to probe biological processes of interest.

Housing several instruments dedicated to the structural analysis of crystalline materials, the determination of highly periodic morphologies in self-assembled systems over a large length scale range.