### **Genomics Resource Laboratory**



umass.edu/ials/genomics

Located on the 3<sup>rd</sup> floor in the Morrill Science Center, the Genomics Resource Laboratory (GRL) provides services and advanced instrumentation support for nucleic acid (DNA and RNA) analysis.

The GRL provides a suite of services to address your highthroughput next-generation sequencing (NGS), including solutions for sample processing such as nucleic-acid isolation. nucleic-acid quantitative and qualitative analysis, NGS library preparation, quantitative-PCR analysis, etc.

GRL provides sample processing and library preparation such as whole genome sequencing, shotgun metagenomics, metatranscriptomics, targeted amplicon sequencing, RNA-Seq, Single Cell Genomics, etc., to address genomics research projects.

The facility accepts samples and will perform requested analysis. We offer training to users to conduct experimentation for use on a fee for service basis to both internal and external researchers, academic or industry based. Following an initial consultation, covering experimental parameters training and access is arranged through the director.

#### **ACCESS**

To request access, training, or additional information please contact Ravi Ranjan at ranjan@ umass.edu.

Our rates are competitive and tiered based on needs and usage. Visit our website at umass.edu/ials/ genomics for current listing.

#### TRAINING

Training for new users consists of:

- lab safety training as mandated by UMass EH&S,
- operation of the instrument and associated software.
- use of data analysis software.

Once the training is complete. researchers may schedule their experiments through the director of the GRL (Ravi Ranjan) or online through CORUM at corum.umass. edu.

#### UMassAmherst | Core Facilities

Institute for Applied Life Sciences University of Massachusetts Amherst Life Science Laboratories 240 Thatcher Road Amherst, MA 01003

UMassAmherst | Core Facilities

# **Genomics Resource Laboratory**

Institute for Applied Life Sciences University of Massachusetts Amherst



**Genomics Resource Inquiries** Ravi Ranjan, PhD Genomic Resource Director N330 Morrill Science Center I 637 North Pleasant Street ranjan@umass.edu (413) 577-4501

umass.edu/ials/genomics

**UMass Core Facilities Inquiries** Andrew Vinard Core Facilities Director S307 Life Science Laboratories avinard@umass.edu (413) 577-4582

umass.edu/ials/core-facilities

State-of-the-Art Instrumentation Support for Next-Generation Sequencing Services

**UMassAmherst** 

MP &

#### **CAPABILITIES**

#### **Next-Generation Sequencing (NGS)**



#### BluePippin, DNA Size selection system



## Single Cell Genomics: 10x Genomics Chromium Controller





#### Agilent 2100 Bioanalyzer



#### CFX96 Touch Real-Time PCR Detection System







#### **Bioruptor Pico Sonicator System**







#### What Makes Us Unique

- Library preparation for NGS Projects
  - 1. RNA-Seq (polyA mRNA, rRNA depletion)
  - 2. Whole genome and metagenome
  - 3. Metatranscriptomics
  - 4. Targeted 16S/18S rRNA amplicon
  - 5. Small RNA and ChIP-Seq
  - 6. Custom library preparation
- DNA and RNA isolation from different sample types
- Single Cell Genomics Projects
- DNA and RNA quality assessments
- Limited data analysis
- Offer instrumentation training, project consultation, technical assistance, and documentation for grants application/manuscripts.

#### Nexcelom Cellometer K2 Cell Counter



AO is permeable to live and dead cells
AO binds to DNA and fluoresces

Cellometer K2 can use Acridine Orange

and Propidium lodide to highlight nucleated cells and provide viability

- PI can only enter dead cells
  Binds to DNA of the dead cells
  Absorbs the green fluorescence of AO
  Produces bright orange / red color
- No signal is generated from nonnucleated cells and debris
- Imaging channels: Brightfield, Green and Red fluorescence channels.
- Optics: Cellometer K2 4x objective,
   Sample volume: 20 uL / sample
- Image up to 8 areas per slide for best statistical sampling.
- Timing: ~60 seconds / count

Cellometer K2 with AOPI accurately counts Spleen cells





A significant portion of core equipment has been purchased through MLSC grant funding support.