The University of Massachusetts Amherst

Martin, Perry and Peyton Join International Team to Develop Device for High Purity and Low-Cost mRNA

Craig Martin, professor of chemistry, will lead a UMass team that will spend the next three years developing a process that can deliver the quantity and quality of messenger RNA (mRNA) demanded by a new class of medicines, including the COVID vaccines, faster, cheaper and more effectively than any other method. Martin and his colleagues will be joining Wellcome’s R3 program, which seeks to create a global network of “biofoundaries” capable of producing high quality, low-cost mRNA, increasing global access to these new therapies, wherever they’re needed.

Martin whose co-principal investigators include Sarah Perry and Shelly Peyton, both professors of chemical engineering at UMass Amherst, is at the cutting edge of a new approach to medicine. Traditionally, illnesses have been cured by medicines that come from outside the human body: herbs, chemicals and vaccines. Recently, there’s been a new approach, using biologics, or therapies that delivers missing proteins to the human body and which can be used to treat a very wide range of illnesses that result from missing or damaged cell proteins. 

But, says, Martin, this process can be taken one step further. “Instead of making the protein in some other organism and delivering it to humans,” he says, “we can make the RNA that encodes the protein, deliver that RNA as the biologic, and the patient’s own cells then make that protein from the delivered RNA.” The result is that, when the body makes the protein itself, “everything gets done correctly.” Furthermore, says Martin, “once you know how to make the RNA for one disease, it’s comparatively easy to swap in a different RNA so it can treat another disease. You don’t have to reinvent the wheel, saving money, and, crucially, saving time.”

mRNA used in the cornavirus vaccine