Light Microscopy

Light Microscopy Facility

Announcements

Core Facilities Seminar

Joseph DiPietro, PhD, Nikon–Automating Your Experiments with NIS-Elements

Replay on YouTube

New for 2024
Slide Scanning Tele-Microscopy Service

Learn more


Located on the 5th floor in the Life Science Laboratories the Light Microscopy Facility provides powerful resources for imaging model organisms, tissue, cells, biomaterials, and artificial structures and houses state-of-the-art equipment including almost every light microscopy imaging modality presently available. Cell culture facilities are also available nearby as well as other routine items necessary for biological imaging and material imaging. This facility has been designated a Nikon Centers of Excellence, thus providing a unique opportunity for training, demonstration, instrument development, and research.

The Light Microscopy Facility accepts samples and will perform requested analysis for both on-campus users as well as off-campus academic and industrial partners. We excel in the use of telemicroscopy through the use of remote imaging sessions, remote control of all instruments, and remote data analysis sessions available to all users. Further, we provide training to all users that plan to conduct experimentation. Following an initial consultation in which experimental requirements, expected outcomes, and careful scrunity of feasibility, training and/or access is arranged through the Director.

Industry Sponsorship
The benefits of working with Nikon as an industry collaborator are that users of the UMass Light Microscopy Facility receive both formal and informal training from Nikon engineers, frequent on-site technical support, access to new hardware and software technology, and assistance with cutting-edge experimental set ups. It is a very fruitful partnership.

  • A1R25: Nikon Ti2 stand with A1HD(1024) Resonant Scanning Confocal

    This microscope is very versatile and can be used for live or fixed samples. The resonant scanner allows for very fast acquisitions and the GaAsP detectors are extremely sensitive. It has a larger field of view than older microscopes, resulting in faster imaging of large and small samples alike.  This system also has JOBS, GA3, and NIS.ai.

    • Objectives: 4x, 20x, 60x
    • Colors: Blue, Green, Red, Far-Red,
    • Lasers: 405, 488, 561, 640nm
    • Detector: GaAsP PMTs
    • Automated imaging enabled?  Yes
    • Fixed and “thick” samples?  Yes
    • Live cell work?  Yes
    • Slide scanning?  Yes
  •  

  • A1R-SIMe: Nikon TiE stand with A1 Resonant Scanning Confocal and N-SIM Structured Illumination Super-Resolution

    This microscope is very versatile and can be used for live or fixed samples. The resonant scanner allows for very fast acquisitions and the GaAsP detectors are extremely sensitive. The SIM side of the microscope is extremely easy to use with no special sample preparation required for super-resolution imaging. This system also has JOBS.

    • Objectives: 10x, 20x, 40x, 60x, 100x
    • Colors: Blue(A1R), Cyan(A1R), Green, Yellow (A1R), Red, Far-Red, Lasers: 405, 445, 488, 514, 561, 640nm
    • Detector: sCMOS and GaAsP PMTs
    • Automated imaging enabled? Yes
    • Fixed and “thick” samples? Yes
    • Slide scanning? Yes
  •  

  • A1SP-FLIM: Nikon TiE stand with A1 Spectral Detector Confocal and FLIM/FCS Module

    This microscope is great for fixed samples and is especially useful when experimenters may have overlapping emissions from fluorophores or autofluorescence or want to investigate FLIM or FCS measurements. Researchers can perform exquisite measurements of materials as well as live cells. This system also has JOBS and Nikon FLIM module.

    • Objectives: 10x, 20x, 40x, 60x, 100x
    • Colors: Blue, Green, Red, Far-Red
    • Lasers: 405(both), 445(FLIM), 488(both), 561(both), 640nm(A1
    • Detector: GaAsP PMTs and hybrid TCSPC detectors (2)
    • Automated imaging enabled? Yes
    • Fixed and “thick” samples? Yes
    • Live cell work?  If need be for FLIM/FCS
  •  

  • A1R-TIRF: Nikon TiE stand with A1HD(1024) Resonant Scanning Confocal and TIRF Module

    This microscope is highly versatile and can be used for live or fixed samples. The resonant scanner allows for very fast acquisitions and the GaAsP detectors are extremely sensitive. This microscope has 6 lasers and the full gamut of objectives and software modules which can also be used in TIRF mode. This system also has JOBS.

    • Objectives: 10x, 20x, 40x, 60x, 100x
    • Colors: Blue, Cyan, Green, Yellow, Red, Far-Red
    • Lasers: 405, 445, 488, 514, 561, 640nm
    • Detector: sCMOS camera and GaAsP PMTs
    • Fixed and “thick” samples? Yes
    • Slide scanning? Yes
  •  

  • A1RMP: Nikon FN1 stand with A1HD(1024) Resonant Scanning Multi-Photon Confocal

    This microscope is an upright, manual microscope that is suited for in vivo, intravital imaging as well as imaging in and through thick tissues and samples. It uses a tunable infrared pulsed laser to excite fluorophores at the focal volume and features a resonance scanner that can image very quickly along with a fast moving piezo nosepiece. We also have visible lasers for standard upright confocal microscopy. This system also has JOBS.

    • Objectives: 10x, 20x, 25x. 40x
    • Colors: Blue, Green, Red, Far-Red(using visible lines)
    • Lasers: 405, 488, 561, 640, and 760-1040nm pulsed laser
    • Detector: IR CCD and GaAsP PMTs NDD and descanned
    • Automated imaging enabled? Yes
    • Fixed and “thick” samples? Yes
    • Live cell/tissue/organism work? Yes
  •  

  • CrestV2 with 2xTIRF: Nikon Ti2 stand with spinning disk confocal and 2 camera TIRF system

    This microscope is great for live cells as it is a low-light technique. With six laser lines we can easily image dynamic movements in live cells, stimulating/bleaching in real time. Two camera TIRF system allows simultaneous 2 color imaging. This system also has JOBS and GA3.

    • Objectives: 20x, 100x
    • Colors: Blue, Cyan(Crest), Green, Yellow(Crest), Red, Far-Red
    • Lasers: 405, 445, 488, 514. 561, 640nm
    • Detector: sCMOS (x3)
    • Automated imaging enabled? Yes
    • Fixed samples? Yes
    • Live cell work? Yes
    • Slide scanning? Yes
  •  

  • Spinning disk (SD): Nikon TiE stand with Yokogawa Spinning Disk Confocal and FRAP/PA unit for perturbations

    This microscope is great for live cells as it is a low-light technique. With four laser lines and an additional mini-scanner for PA/FRAP/etc., we can easily image dynamic movements in live cells, stimulating/bleaching in real time.

    • Objectives: 20x, 40x water immersion, 40x oil immersion, 60x, 100x
    • Colors: Blue, Green, Red, Far-Red, [Near Infra-Red]
    • Lasers: 405, 488, 561, 640nm
    • Detector: EMCCD (Princeton Instruments)
    • Automated imaging enabled? Yes
    • Fixed samples? Yes
    • Live cell work? Yes
  •  

  • SMZ-18: Nikon stereoscope

    This microscope is great for large samples such as plants, insects, and other macro-scaled items.

    • Objectives: 0.5x and 1.6x
    • Colors: Green, Red
    • Excitation: 488, 561nm
    • Detector: color CCD
    • Fixed and “thick” samples? Yes
  •  

  • HCA: Nikon TiE with High Content software and robotic hardware

    This microscope is truly amazing for its ability to collect and automatically analyze data from live or fixed samples. The intuitive and adaptive software can be programed to count cells, monitor growth, take high-resolution pictures when a certain feature is found, scan slides, scan multi-well plates, etc. A robot can even load your multi-well plates. When it is done, you can have the microscope send you a text message that contains any key variables that you need to know right away. This system also has JOBS.

    • Objectives: 4x, 10x, 20x, 40x, 60x
    • Colors: Blue, Cyan, Green, Yellow, Red, Far-Red
    • LEDs: 405, 445, 488, 514, 561, 640nm
    • Detector: sCMOS camera
    • Automated imaging enabled? Yes
    • Fixed samples? Yes
    • Live cell work? Yes
    • Slide scanning? Yes
  •  

  • N-STORM: Nikon TiE stand with N-STORM/TIRF

    This microscope makes doing 3D STORM imaging straightforward. This includes a cylindrical lens to provide z-information on your molecules of interest. This also has the option to change not only the TIRF angle with the click of a button, but also the direction of the laser entering the back aperture of the objective.

    • Objectives: 20x, 60x. 100x
    • Colors: Blue, Green, Red, Far-Red
    • Lasers: 405, 488, 561, 640nm
    • Detector: sCMOS camera
    • Automated imaging enabled? Yes
    • Fixed samples? Yes
    • Live cell work? Yes
  •  

  • LCMD: Nikon TiE stand with Arcturus Laser Capture Micro-Dissection

    This microscope is really a cellular robot. You can find cells or regions using brightfield or fluorescence that you are interested on tissue slices and draw a line around them, cut them out, move them to a cap and then process the cap for downstream experiments (sequencing, proteomics, etc.).

    • Objectives: 4x, 10x, 40x
    • Colors: Blue, Green, Red, Far-Red
    • Lasers: UV (cut), IR (remove)
    • Detectors: Color camera
  •  

  • Keyence BZ-X800

    This microscope is simple to use. Intuitive interface, fully motorized. Great microscope fo infrequent users or novices or when you just need some basic data on a few samples.

    • Objectives: 4x, 10x, 20x
    • Colors: Blue, Green, Red, Far-Red
    • Excitation: 405, 488, 561, 640nm
    • Detector: Color camera
    • Automated imaging enabled? Yes
    • Fixed samples? Yes
    • Live cell work? Maybe
    • Slide scanning? Yes
  •  

  • Ephys: Nikon TiE with patch clamp electrophysiology rig including Axopatch 200B and micromanipulators

    This microscope is can record minuscule currents and voltages in cells and devices using patch clamp circuitry.

    • Objectives: 10x, 20x
    • Colors: NA
    • Lasers: NA
    • Detector: Axopatch 200B
  •  

Additional Resources

Analysis Workstations

  • • 6 PC workstations (WS0-5) with NIS-Elements and other analysis/computational software available via remote access

Incubators

Service (Per Hour) Internal External Academic External Industry
Point Scanning Confocal: Nikon A1R-TIRF $23.15 $30.87 $40.79
Point Scanning Confocal: Nikon A1SP $25.36 $34.18 $44.10
Point Scanning Confocal: Nikon AIR-SIMe $23.15 $30.87 $40.79
Point Scanning Confocal Microscope - AXR-NSPARC $39.90 $53.95 $69.39
Widefield Microbe System $13.23 $17.60 $23.25
Cellcyte Live Cell Microscope $2.10 $2.79 $3.68
Slide Scanning Microscope $15.75 $20.95 $27.56
Spinning Disk Microscope $23.15 $30.87 $40.79
Multiphoton Microscope $35.28 $46.31 $60.64
High Content Microscope $25.36 $34.18 $44.10
Nikon STORM Microscope $35.28 $46.31 $60.64
Electrophysiology Rig $14.33 $18.74 $24.26
Basic 1-on-1 Training $88.20 $110.25 $154.35
Dedicated Imaging Assistance $144.43 $191.84 $251.37
Spinning Disk Microscope 2 $23.15 $30.87 $40.79
Keyence BZX800 $12.13 $15.44 $20.95
Point Scanning Confocal Microscopy-A1R $27.56 $35.28 $46.31
Analysis Workstations Access (per month) $10.00/month $14.00/month $18.00/month
CO2 Air Supply $0.56 $0.78 $1.00
Rates are subject to change, contact facility to verify current fees.
FY25 Specialized Service Center Approved Fees
Services

Training for new users consists of:

  • lab safety training,
  • operation of the instrument and associated software,
  • use of data analysis software,
  • exporting or presenting data,
  • clean up and shutdown of the instrumentation.

Once the training is complete, researchers may schedule their experiments through the director of Light Microscopy (James Chambers) or online through CORUM at corum.umass.edu.

Training generally consists of 2-4 hours per new user and depends on the user's previous microscopy experience.  All are welcome, even if you have never used a microscope!

Training #1 can be accomplished with 1-4 people and consists of a demonstration of the microscope hardware and software, discussions of light paths, digital image acquisition, saturation, and features of the microscope.

Training #2 is one-on-one and usually is a brief refresher of training #1 followed by the new user on the microscope acquiring images of a facility-provided sample.  Advanced users can bring their own samples.

Training #3+ is one-on-one and is the time for the user to use the microscope for their samples.  The Trainer will be there to make suggestions/corrections and to be sure the Trainee is going to be able to acquire the data that she/he needs for the project.

Because most of our imaging microscopes run the same software, NIS-Elements, the training for one microscope is transferable to all of the other microscopes.

Advanced Training

The Light Microscope Facility offers free advanced training sessions.  Be sure to be on CORUM at corum.umass.edu to be alerted to these free offering as well as free “pilot data days.”

Light Microscopy Core Facility: The instruments in this facility allow for all means of biological and material light-based imaging. Current equipment includes a Nikon A1R Resonant Scanning 6-color Confocal; Nikon A1Si Scanning 4-color Spectral Confocal with 4-color FLIM/FCS module; Nikon A1R Resonant Scanning 6-color Confocal with Structured Illumination module; Nikon upright Multiphoton Confocal system; Nikon N-STORM/TIRF super-resolution system; Nikon Wide-field High Content Acquisition Well Plate Scanning System; Nikon Ti-E with Andor Spinning Disc Confocal System; Laser capture microdissection system; electrophysiology station; three offline workstations with NIS elements software. Services include equipment and training support for sample preparation, imaging, and image analysis. Accessory stage-top incubators, large cell culture incubators, refrigeration, BSC hoods, phase contrast tissue culture light microscopes, and other needs for cell-based work are provided.

FY25 Specialized Service Center Approved Fees

User Agreement

  1. When you have questions about anything, ask the director James Chambers.
  2. Treat all equipment with respect.
  3. Do not rush when using the equipment as this leads to breakage/damage that you and your PI will be responsible for replacing.
  4. Use your allotted time and finish on time when someone is on after you.
  5. If you know you will not use your reservation, cancel it ASAP.
  6. Acknowledge use of UMass IALS LMF in all publications. Please use some variant of: “The microscopy data was gathered in the Light Microscopy Facility and Nikon Center of Excellence at the Institute for Applied Life Sciences, UMass Amherst with support from the Massachusetts Life Sciences Center.”
  7. Adhere to the EH&S-approved live cell standard operating procedure when using live samples.
  8. No liquids on the microscope air table.
  9. You are responsible for your data – this means that you should arrange for moving it and backing it up. We will do our best to back it up and preserve it, but it is ultimately the user’s responsibility.

Publications resulting from use of the IALS Nikon Center of Excellence Light Microscopy Facility at UMass Amherst

Publications with LMF staff authorship:

  1. Castellani, C. M.; Torres-Ocampo, A. P.; Breffke, J.; White, A. B.; Chambers, J. J.; Stratton, M. M.; Maresca, T. J. Live-Cell FLIM-FRET Using a Commercially Available System. In Methods in Cell Biology; 2020; Vol. 158, pp 63–89. https://doi.org/10.1016/bs.mcb.2020.02.002.
  2. Jiang, Z.; Liu, H.; He, H.; Yadava, N.; Chambers, J. J.; Thayumanavan, S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconjug. Chem. 2020, 31 (5), 1344–1353. https://doi.org/10.1021/acs.bioconjchem.0c00079.
  3. Eriksen, M. S.; Nikolaienko, O.; Hallin, E. I.; Grødem, S.; Bustad, H. J.; Flydal, M. I.; Merski, I.; Hosokawa, T.; Lascu, D.; Akerkar, S.; Cuéllar, J.; Chambers, J. J.; O’Connell, R.; Muruganandam, G.; Loris, R.; Touma, C.; Kanhema, T.; Hayashi, Y.; Stratton, M. M.; Valpuesta, J. M.; Kursula, P.; Martinez, A.; Bramham, C. R. Arc Self-Association and Formation of Virus-like Capsids Are Mediated by an N-Terminal Helical Coil Motif. FEBS J. 2020. https://doi.org/10.1111/febs.15618.
  4. Afonso, O.; Castellani, C. M.; Cheeseman, L. P.; Ferreira, J. G.; Orr, B.; Ferreira, L. T.; Chambers, J. J.; Morais-De-Sá, E.; Maresca, T. J.; Maiato, H. Spatiotemporal Control of Mitotic Exit during Anaphase by an Aurora B-Cdk1 Crosstalk. Elife 2019, 8. https://doi.org/10.7554/eLife.47646.
  5. Melzer, E. S. E. S.; Sein, C. E. C. E.; Chambers, J. J.; Sloan Siegrist, M. DivIVA Concentrates Mycobacterial Cell Envelope Assembly for Initiation and Stabilization of Polar Growth. Cytoskeleton 2018, 75 (12), 498–507. https://doi.org/10.1002/cm.21490.
  6. Combs-Bachmann, R. E. R. E.; Johnson, J. N. J. N.; Vytla, D.; Hussey, A. M. A. M.; Kilfoil, M. L. M. L.; Chambers, J. J. Ligand-Directed Delivery of Fluorophores to Track Native Calcium-Permeable AMPA Receptors in Neuronal Cultures. J. Neurochem. 2015, 133 (3), 320–329. https://doi.org/10.1111/jnc.13051.
     

Publications from LMF usage

2021 (as of Feb 8, 2021)

  1. Cuadra, A. E.; Hwang, F.-J.; Burt, L. M.; Edmonds, W. C.; Chobany, A. V.; Li, G.-L. Phase-Locking Requires Efficient Ca 2+ Extrusion at the Auditory Hair Cell Ribbon Synapses . J. Neurosci. 2021, JN-RM-1324-18. https://doi.org/10.1523/jneurosci.1324-18.2020.
  2. Dutta, K.; Kanjilal, P.; Das, R.; Thayumanavan, S. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew. Chemie - Int. Ed. 2021, 60 (4), 1821–1830. https://doi.org/10.1002/anie.202010412.
  3. Park, Y.; Cheong, E.; Kwak, J. G.; Carpenter, R.; Shim, J. H.; Lee, J. Trabecular Bone Organoid Model for Studying the Regulation of Localized Bone Remodeling. Sci. Adv. 2021, 7 (4). https://doi.org/10.1126/sciadv.abd6495.
  4. Cui, W.; Cheong, A.; Wang, Y.; Tsuchida, Y.; Liu, Y.; Mager, J.; Sciences, A.; Facility, M. C.; Regulation, R.; Normal, F. HHS Public Access. 2021, 159 (1), 1–13. https://doi.org/10.1530/REP-19-0334.MCRS1.

2020

  1. Castellani, C. M.; Torres-Ocampo, A. P.; Breffke, J.; White, A. B.; Chambers, J. J.; Stratton, M. M.; Maresca, T. J. Live-Cell FLIM-FRET Using a Commercially Available System. In Methods in Cell Biology; 2020; Vol. 158, pp 63–89. https://doi.org/10.1016/bs.mcb.2020.02.002.
  2. Jiang, Z.; Liu, H.; He, H.; Yadava, N.; Chambers, J. J.; Thayumanavan, S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconjug. Chem. 2020, 31 (5), 1344–1353. https://doi.org/10.1021/acs.bioconjchem.0c00079.
  3. Gao, J.; Wu, P.; Fernandez, A.; Zhuang, J.; Thayumanavan, S. Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. Angew. Chemie - Int. Ed. 2020, 59 (26), 10456–10460. https://doi.org/10.1002/anie.202002748.
  4. Zhang, L.; Gopalakrishnan, S.; Li, K.; Wang, L. S.; Han, Y.; Rotello, V. M. Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal Treatment in Fluorous Media. ACS Appl. Mater. Interfaces 2020, 12 (5), 6590–6597. https://doi.org/10.1021/acsami.9b18256.
  5. Miao, X.; Sun, T.; Golan, M.; Mager, J.; Cui, W. Loss of POLR1D Results in Embryonic Lethality Prior to Blastocyst Formation in Mice. Mol. Reprod. Dev. 2020, 87 (11), 1152–1158. https://doi.org/10.1002/mrd.23427.
  6. Gao, J.; Dutta, K.; Zhuang, J.; Thayumanavan, S. Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. Angew. Chemie - Int. Ed. 2020, 59 (52), 23466–23470. https://doi.org/10.1002/anie.202008272.
  7. Nguyen, A.; Ramesh, A.; Kumar, S.; Nandi, D.; Brouillard, A.; Wells, A.; Pobezinsky, L.; Osborne, B.; Kulkarni, A. A. Granzyme B Nanoreporter for Early Monitoring of Tumor Response to Immunotherapy. Sci. Adv. 2020, 6 (40), 1–17. https://doi.org/10.1126/sciadv.abc2777.
  8. Eriksen, M. S.; Nikolaienko, O.; Hallin, E. I.; Grødem, S.; Bustad, H. J.; Flydal, M. I.; Merski, I.; Hosokawa, T.; Lascu, D.; Akerkar, S.; Cuéllar, J.; Chambers, J. J.; O’Connell, R.; Muruganandam, G.; Loris, R.; Touma, C.; Kanhema, T.; Hayashi, Y.; Stratton, M. M.; Valpuesta, J. M.; Kursula, P.; Martinez, A.; Bramham, C. R. Arc Self-Association and Formation of Virus-like Capsids Are Mediated by an N-Terminal Helical Coil Motif. FEBS J. 2020. https://doi.org/10.1111/febs.15618.
  9. Velle, K. B.; Fritz-Laylin, L. K. Conserved Actin Machinery Drives Microtubule-Independent Motility and Phagocytosis in Naegleria. J. Cell Biol. 2020, 219 (11). https://doi.org/10.1083/JCB.202007158.
  10. Ren, K.; Wu, R.; Karunanayake Mudiyanselage, A. P. K. K.; Yu, Q.; Zhao, B.; Xie, Y.; Bagheri, Y.; Tian, Q.; You, M. In Situ Genetically Cascaded Amplification for Imaging RNA Subcellular Locations. J. Am. Chem. Soc. 2020, 142 (6), 2968–2974. https://doi.org/10.1021/jacs.9b11748.
  11. Dunphy, K. A.; Black, A. L.; Roberts, A. L.; Sharma, A.; Li, Z.; Suresh, S.; Browne, E. P.; Arcaro, K. F.; Ser-Dolansky, J.; Bigelow, C.; Troester, M. A.; Schneider, S. S.; Makari-Judson, G.; Crisi, G. M.; Jerry, D. J. Inter-Individual Variation in Response to Estrogen in Human Breast Explants. J. Mammary Gland Biol. Neoplasia 2020, 25 (1), 51–68. https://doi.org/10.1007/s10911-020-09446-3.
  12. Lee, Y. W.; Luther, D. C.; Goswami, R.; Jeon, T.; Clark, V.; Elia, J.; Gopalakrishnan, S.; Rotello, V. M. Direct Cytosolic Delivery of Proteins through Coengineering of Proteins and Polymeric Delivery Vehicles. J. Am. Chem. Soc. 2020, 142 (9), 4349–4355. https://doi.org/10.1021/jacs.9b12759.
  13. Graham, J. B.; Sunryd, J. C.; Mathavan, K.; Weir, E.; Larsen, I. S. B.; Halim, A.; Clausen, H.; Cousin, H.; Alfandari, D.; Hebert, D. N. Endoplasmic Reticulum Transmembrane Protein TMTC3 Contributes to O-Mannosylation of E-Cadherin, Cellular Adherence, and Embryonic Gastrulation. Mol. Biol. Cell 2020, 31 (3), 167–183. https://doi.org/10.1091/mbc.E19-07-0408.
  14. Shechter, J.; Atzin, N.; Mozaffari, A.; Zhang, R.; Zhou, Y.; Strain, B.; Oster, L. M.; De Pablo, J. J.; Ross, J. L. Direct Observation of Liquid Crystal Droplet Configurational Transitions Using Optical Tweezers. Langmuir 2020, 36 (25), 7074–7082. https://doi.org/10.1021/acs.langmuir.9b03629.
  15. Ren, K.; Keshri, P.; Wu, R.; Sun, Z.; Yu, Q.; Tian, Q.; Zhao, B.; Bagheri, Y.; Xie, Y.; You, M. A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angew. Chemie - Int. Ed. 2020, 59 (49), 21986–21990. https://doi.org/10.1002/anie.202010106.
  16. Majhi, P. D.; Sharma, A.; Roberts, A. L.; Daniele, E.; Majewski, A. R.; Chuong, L. M.; Black, A. L.; Vandenberg, L. N.; Schneider, S. S.; Dunphy, K. A.; Jerry, D. J. Effects of Benzophenone-3 and Propylparaben on Estrogen Receptor–Dependent r-Loops and Dna Damage in Breast Epithelial Cells and Mice. Environ. Health Perspect. 2020, 128 (1). https://doi.org/10.1289/EHP5221.
  17. Kim, H.; Hight-Huf, N.; Kang, J. H.; Bisnoff, P.; Sundararajan, S.; Thompson, T.; Barnes, M.; Hayward, R. C.; Emrick, T. Polymer Zwitterions for Stabilization of CsPbBr3 Perovskite Nanoparticles and Nanocomposite Films. Angew. Chemie - Int. Ed. 2020, 59 (27), 10802–10806. https://doi.org/10.1002/anie.201916492.

2019

  1. Ardestani, G.; West, M. C.; Maresca, T. J.; Fissore, R. A.; Stratton, M. M. FRET-Based Sensor for CaMKII Activity (FRESCA): A Useful Tool for Assessing CaMKII Activity in Response to Ca2 Oscillations in Live Cells. J. Biol. Chem. 2019, 294 (31), 11876–11891. https://doi.org/10.1074/jbc.RA119.009235.
  2. Cheong, A.; Degani, R.; Tremblay, K. D.; Mager, J. A Null Allele of Dnaaf2 Displays Embryonic Lethality and Mimics Human Ciliary Dyskinesia. Hum. Mol. Genet. 2019, 28 (16), 2775–2784. https://doi.org/10.1093/hmg/ddz106.
  3. Ramesh, A.; Kumar, S.; Nandi, D.; Kulkarni, A. CSF1R- and SHP2-Inhibitor-Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor-Associated Macrophages. Adv. Mater. 2019, 31 (51), 1–11. https://doi.org/10.1002/adma.201904364.
  4. Afonso, O.; Castellani, C. M.; Cheeseman, L. P.; Ferreira, J. G.; Orr, B.; Ferreira, L. T.; Chambers, J. J.; Morais-De-Sá, E.; Maresca, T. J.; Maiato, H. Spatiotemporal Control of Mitotic Exit during Anaphase by an Aurora B-Cdk1 Crosstalk. Elife 2019, 8. https://doi.org/10.7554/eLife.47646.
  5. Wang, L. S.; Gopalakrishnan, S.; Rotello, V. M. Tailored Functional Surfaces Using Nanoparticle and Protein “Nanobrick” Coatings. Langmuir 2019, 35 (34), 10993–11006. https://doi.org/10.1021/acs.langmuir.8b03235.
  6. Xu, M.; Ross, J. L.; Valdez, L.; Sen, A. Direct Single Molecule Imaging of Enhanced Enzyme Diffusion. Phys. Rev. Lett. 2019, 123 (12). https://doi.org/10.1103/PhysRevLett.123.128101.
  7. Das, R.; Landis, R. F.; Tonga, G. Y.; Cao-Milán, R.; Luther, D. C.; Rotello, V. M. Control of Intra- versus Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. ACS Nano 2019, 13 (1), 229–235. https://doi.org/10.1021/acsnano.8b05370.
  8. Xiong, Z.; Hwang, F. J.; Sun, F.; Xie, Y.; Mao, D.; Li, G. L.; Xu, G. Spectrally Filtered Passive Si Photodiode Array for On-Chip Fluorescence Imaging of Intracellular Calcium Dynamics. Sci. Rep. 2019, 9 (1). https://doi.org/10.1038/s41598-019-45563-8.
  9. Paudel, B.; Gervasi, M. G.; Porambo, J.; Caraballo, D. A.; Tourzani, D. A.; Mager, J.; Platt, M. D.; Salicioni, A. M.; Visconti, P. E. Sperm Capacitation Is Associated with Phosphorylation of the Testis-Specific Radial Spoke Protein Rsph6a. Biol. Reprod. 2019, 100 (2), 440–454. https://doi.org/10.1093/biolre/ioy202.
  10. Navarrete, F. A.; Aguila, L.; Martin-Hidalgo, D.; Tourzani, D. A.; Luque, G. M.; Ardestani, G.; Garcia-Vazquez, F. A.; Levin, L. R.; Buck, J.; Darszon, A.; Buffone, M. G.; Mager, J.; Fissore, R. A.; Salicioni, A. M.; Gervasi, M. G.; Visconti, P. E. Transient Sperm Starvation Improves the Outcome of Assisted Reproductive Technologies. Front. Cell Dev. Biol. 2019, 7. https://doi.org/10.3389/fcell.2019.00262.
  11. Tavares, E. R.; Silva-Gotay, A.; Riad, W. V.; Bengston, L.; Richardson, H. N. Sex Differences in the Effect of Alcohol Drinking on Myelinated Axons in the Anterior Cingulate Cortex of Adolescent Rats. Brain Sci. 2019, 9 (7). https://doi.org/10.3390/brainsci9070167.
  12. Cao, X.; Ma, C.; Zhao, J.; Musante, C.; White, J. C.; Wang, Z.; Xing, B. Interaction of Graphene Oxide with Co-Existing Arsenite and Arsenate: Adsorption, Transformation and Combined Toxicity. Environ. Int. 2019, 131. https://doi.org/10.1016/j.envint.2019.104992.
  13. Wu, R.; Karunanayake Mudiyanselage, A. P. K. K.; Shafiei, F.; Zhao, B.; Bagheri, Y.; Yu, Q.; McAuliffe, K.; Ren, K.; You, M. Genetically Encoded Ratiometric RNA-Based Sensors for Quantitative Imaging of Small Molecules in Living Cells. Angew. Chemie - Int. Ed. 2019, 58 (50), 18271–18275. https://doi.org/10.1002/anie.201911799.
  14. Szatkowski, L.; Merz, D. R.; Jiang, N.; Ejikeme, I.; Belonogov, L.; Ross, J. L.; Dima, R. I. Mechanics of the Microtubule Seam Interface Probed by Molecular Simulations and in Vitro Severing Experiments. J. Phys. Chem. B 2019, 123 (23), 4888–4900. https://doi.org/10.1021/acs.jpcb.9b03059.
  15. Ricketts, S. N.; Francis, M. L.; Farhadi, L.; Rust, M. J.; Das, M.; Ross, J. L.; Robertson-Anderson, R. M. Varying Crosslinking Motifs Drive the Mesoscale Mechanics of Actin-Microtubule Composites. Sci. Rep. 2019, 9 (1). https://doi.org/10.1038/s41598-019-49236-4.
  16. Kang, J. H.; Kim, H.; Santangelo, C. D.; Hayward, R. C. Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction. Adv. Mater. 2019, 31 (39), 1–6. https://doi.org/10.1002/adma.201903006.
  17. Ramesh, A.; Natarajan, S. K.; Nandi, D.; Kulkarni, A. Dual Inhibitors-Loaded Nanotherapeutics That Target Kinase Signaling Pathways Synergize with Immune Checkpoint Inhibitor. Cell. Mol. Bioeng. 2019, 12 (5), 357–373. https://doi.org/10.1007/s12195-019-00576-1.
  18. Li, C. H.; Chen, X.; Landis, R. F.; Geng, Y.; Makabenta, J. M.; Lemnios, W.; Gupta, A.; Rotello, V. M. Phytochemical-Based Nanocomposites for the Treatment of Bacterial Biofilms. ACS Infect. Dis. 2019, 5 (9), 1590–1596. https://doi.org/10.1021/acsinfecdis.9b00134.
  19. Kuenstler, A. S.; Kim, H.; Hayward, R. C. Liquid Crystal Elastomer Waveguide Actuators. Adv. Mater. 2019, 31 (24). https://doi.org/10.1002/adma.201901216.
  20. Chen, W.; Allen, S. G.; Qian, W.; Peng, Z.; Han, S.; Li, X.; Sun, Y.; Fournier, C.; Bao, L.; Lam, R. H. W.; Merajver, S. D.; Fu, J. Biophysical Phenotyping and Modulation of ALDH+ Inflammatory Breast Cancer Stem-Like Cells. Small 2019, 15 (5). https://doi.org/10.1002/smll.201802891.
  21. Cheng, C.; Yu, X.; McClements, D. J.; Huang, Q.; Tang, H.; Yu, K.; Xiang, X.; Chen, P.; Wang, X.; Deng, Q. Effect of Flaxseed Polyphenols on Physical Stability and Oxidative Stability of Flaxseed Oil-in-Water Nanoemulsions. Food Chem. 2019, 301. https://doi.org/10.1016/j.foodchem.2019.125207.
  22. Belonogov, L.; Bailey, M. E.; Tyler, M. A.; Kazemi, A.; Ross, J. L. Katanin Catalyzes Microtubule Depolymerization Independently of Tubulin C-Terminal Tails. Cytoskeleton 2019, 76 (3), 254–268. https://doi.org/10.1002/cm.21522.
  23. Lariviere, P. J.; Mahone, C. R.; Santiago-Collazo, G.; Howell, M.; Daitch, A. K.; Zeinert, R.; Chien, P.; Brown, P. J. B.; Goley, E. D. An Essential Regulator of Bacterial Division Links FtsZ to Cell Wall Synthase Activation. Curr. Biol. 2019, 29 (9), 1460-1470.e4. https://doi.org/10.1016/j.cub.2019.03.066.
  24. Munkhbat, O.; Canakci, M.; Zheng, S.; Hu, W.; Osborne, B.; Bogdanov, A. A.; Thayumanavan, S. 19 F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019, 20 (2), 790–800. https://doi.org/10.1021/acs.biomac.8b01383.

2018

  1. Advani, S.; Maresca, T. J.; Ross, J. L. Creation and Testing of a New, Local Microtubule-Disruption Tool Based on the Microtubule-Severing Enzyme, Katanin P60. Cytoskeleton 2018, 75 (12), 531–544. https://doi.org/10.1002/cm.21482.
  2. Tourzani, D. A.; Paudel, B.; Miranda, P. V.; Visconti, P. E.; Gervasi, M. G. Changes in Protein O-GlcNAcylation during Mouse Epididymal Sperm Maturation. Front. Cell Dev. Biol. 2018, 6 (JUN). https://doi.org/10.3389/fcell.2018.00060.
  3. Mann, B. J.; Wadsworth, P. Distribution of Eg5 and TPX2 in Mitosis: Insight from CRISPR Tagged Cells. Cytoskeleton 2018, 75 (12), 508–521. https://doi.org/10.1002/cm.21486.
  4. Melzer, E. S.; Sein, C. E.; Chambers, J. J.; Sloan Siegrist, M. DivIVA Concentrates Mycobacterial Cell Envelope Assembly for Initiation and Stabilization of Polar Growth. Cytoskeleton 2018, 75 (12), 498–507. https://doi.org/10.1002/cm.21490.
  5. Landis, R. F.; Li, C. H.; Gupta, A.; Lee, Y. W.; Yazdani, M.; Ngernyuang, N.; Altinbasak, I.; Mansoor, S.; Khichi, M. A. S.; Sanyal, A.; Rotello, V. M. Biodegradable Nanocomposite Antimicrobials for the Eradication of Multidrug-Resistant Bacterial Biofilms without Accumulated Resistance. J. Am. Chem. Soc. 2018, 140 (19), 6176–6182. https://doi.org/10.1021/jacs.8b03575.
  6. Ricketts, S. N.; Ross, J. L.; Robertson-Anderson, R. M. Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation. Biophys. J. 2018, 115 (6), 1055–1067. https://doi.org/10.1016/j.bpj.2018.08.010.
  7. Gervasi, M. G.; Xu, X.; Carbajal-Gonzalez, B.; Buffone, M. G.; Visconti, P. E.; Krapf, D. The Actin Cytoskeleton of the Mouse Sperm Flagellum Is Organized in a Helical Structure. J. Cell Sci. 2018, 131 (11), jcs215897. https://doi.org/10.1242/jcs.215897.
  8. Romarowski, A.; Velasco Félix, Á. G.; Rodrıguez, P. T.; Gervasi, M. G.; Xu, X.; Luque, G. M.; Contreras-Jiménez, G.; Sánchez-Cárdenas, C.; Ramırez-Gómez, H. V.; Krapf, D.; Visconti, P. E.; Krapf, D.; Guerrero, A.; Darszon, A.; Buffone, M. G. Super-Resolution Imaging of Live Sperm Reveals Dynamic Changes of the Actin Cytoskeleton during Acrosomal Exocytosis. J. Cell Sci. 2018, 131 (21). https://doi.org/10.1242/jcs.218958.
  9. Hayashi, J. M.; Richardson, K.; Melzer, E. S.; Sandler, S. J.; Aldridge, B. B.; Siegrist, M. S.; Morita, Y. S. Stress-Induced Reorganization of the Mycobacterial Membrane Domain. MBio 2018, 9 (1). https://doi.org/10.1128/mBio.01823-17.
  10. Zhang, Y.; Qu, P.; Ma, X.; Qiao, F.; Ma, Y.; Qing, S.; Zhang, Y.; Wang, Y.; Cui, W. Tauroursodeoxycholic Acid (TUDCA) Alleviates Endoplasmic Reticulum Stress of Nuclear Donor Cells under Serum Starvation. PLoS One 2018, 13 (5). https://doi.org/10.1371/journal.pone.0196785.
  11. Matamoros-Volante, A.; Moreno-Irusta, A.; Torres-Rodriguez, P.; Giojalas, L.; Gervasi, M. G.; Visconti, P. E.; Treviño, C. L. Semi-Automatized Segmentation Method Using Image-Based Flow Cytometry to Study Sperm Physiology: The Case of Capacitation-Induced Tyrosine Phosphorylation. Mol. Hum. Reprod. 2018, 24 (2), 64–73. https://doi.org/10.1093/molehr/gax062.
  12. García-Heredia, A.; Pohane, A. A.; Melzer, E. S.; Carr, C. R.; Fiolek, T. J.; Rundell, S. R.; Lim, H. C.; Wagner, J.; Morita, Y. S.; Swarts, B. M.; Carr, C. R.; Siegrist, M. S. Peptidoglycan Precursor Synthesis along the Sidewall of Pole-Growing Mycobacteria. bioRxiv 2018. https://doi.org/10.1101/292607.
  13. Jiang, Y.; Hardie, J.; Liu, Y.; Ray, M.; Luo, X.; Das, R.; Landis, R. F.; Farkas, M. E.; Rotello, V. M. Nanocapsule-Mediated Cytosolic SiRNA Delivery for Anti-Inflammatory Treatment. J. Control. Release 2018, 283, 235–240. https://doi.org/10.1016/j.jconrel.2018.06.001.
  14. Harris, B. J.; Ross, J. L.; Hawkins, T. L. Microtubule Seams Are Not Mechanically Weak Defects. Phys. Rev. E 2018, 97 (6). https://doi.org/10.1103/PhysRevE.97.062408.
  15. Ouchi, T.; Yang, J.; Suo, Z.; Hayward, R. C. Effects of Stiff Film Pattern Geometry on Surface Buckling Instabilities of Elastic Bilayers. ACS Appl. Mater. Interfaces 2018, 10 (27), 23406–23413. https://doi.org/10.1021/acsami.8b04916.

2017

  1. Luo, X.; Zhou, Y.; Bai, L.; Liu, F.; Zhang, R.; Zhang, Z.; Zheng, B.; Deng, Y.; McClements, D. J. Production of Highly Concentrated Oil-in-Water Emulsions Using Dual-Channel Microfluidization: Use of Individual and Mixed Natural Emulsifiers (Saponin and Lecithin). Food Res. Int. 2017, 96, 103–112. https://doi.org/10.1016/j.foodres.2017.03.013.
  2. Bickel, K. G.; Mann, B. J.; Waitzman, J. S.; Poor, T. A.; Rice, S. E.; Wadsworth, P. Src Family Kinase Phosphorylation of the Motor Domain of the Human Kinesin-5, Eg5. Cytoskeleton 2017, 74 (9), 317–330. https://doi.org/10.1002/cm.21380.
  3. Zhang, R.; Kumar, N.; Ross, J. L.; Gardel, M. L.; De Pablo, J. J. Interplay of Structure, Elasticity, and Dynamics in Actin-Based Nematic Materials. Proc. Natl. Acad. Sci. U. S. A. 2017, 115 (2), E124–E133. https://doi.org/10.1073/pnas.1713832115.
  4. Puga Molina, L. C.; Pinto, N. A.; Torres Rodríguez, P.; Romarowski, A.; Vicens Sanchez, A.; Visconti, P. E.; Darszon, A.; Treviño, C. L.; Buffone, M. G. Essential Role of CFTR in PKA-Dependent Phosphorylation, Alkalinization, and Hyperpolarization During Human Sperm Capacitation. J. Cell. Physiol. 2017, 232 (6), 1404–1414. https://doi.org/10.1002/jcp.25634.
  5. Luo, X.; Zhou, Y.; Bai, L.; Liu, F.; Deng, Y.; McClements, D. J. Fabrication of β-Carotene Nanoemulsion-Based Delivery Systems Using Dual-Channel Microfluidization: Physical and Chemical Stability. J. Colloid Interface Sci. 2017, 490, 328–335. https://doi.org/10.1016/j.jcis.2016.11.057.
  6. Qu, P.; Qing, S.; Liu, R.; Qin, H.; Wang, W.; Qiao, F.; Ge, H.; Liu, J.; Zhang, Y.; Cui, W.; Wang, Y. Effects of Embryo-Derived Exosomes on the Development of Bovine Cloned Embryos. PLoS One 2017, 12 (3). https://doi.org/10.1371/journal.pone.0174535.
  7. Mout, R.; Ray, M.; Yesilbag Tonga, G.; Lee, Y. W.; Tay, T.; Sasaki, K.; Rotello, V. M. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano 2017, 11 (3), 2452–2458. https://doi.org/10.1021/acsnano.6b07600.

2016

  1. Cui, W.; Dai, X.; Marcho, C.; Han, Z.; Zhang, K.; Tremblay, K. D.; Mager, J. Towards Functional Annotation of the Preimplantation Transcriptome: An RNAi Screen in Mammalian Embryos. Sci. Rep. 2016, 6. https://doi.org/10.1038/srep37396.
  2. Reid, T. A.; Schuster, B. M.; Mann, B. J.; Balchand, S. K.; Plooster, M.; McClellan, M.; Coombes, C. E.; Wadsworth, P.; Gardner, M. K. Suppression of Microtubule Assembly Kinetics by the Mitotic Protein TPX2. J. Cell Sci. 2016, 129 (7), 1319–1328. https://doi.org/10.1242/jcs.178806.
  3. Sasikala, S. P.; Henry, L.; Yesilbag Tonga, G.; Huang, K.; Das, R.; Giroire, B.; Marre, S.; Rotello, V. M.; Penicaud, A.; Poulin, P.; Aymonier, C. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. ACS Nano 2016, 10 (5), 5293–5303. https://doi.org/10.1021/acsnano.6b01298.
  4. Abbruzzese, G.; Becker, S. F.; Kashef, J.; Alfandari, D. ADAM13 Cleavage of Cadherin-11 Promotes CNC Migration Independently of the Homophilic Binding Site. Dev. Biol. 2016, 415 (2), 383–390. https://doi.org/10.1016/j.ydbio.2015.07.018.

2015

  1. Combs-Bachmann, R. E.; Johnson, J. N.; Vytla, D.; Hussey, A. M.; Kilfoil, M. L.; Chambers, J. J. Ligand-Directed Delivery of Fluorophores to Track Native Calcium-Permeable AMPA Receptors in Neuronal Cultures. J. Neurochem. 2015, 133 (3), 320–329. https://doi.org/10.1111/jnc.13051.
  2. Abbruzzese, G.; Gorny, A. K.; Kaufmann, L. T.; Cousin, H.; Kleino, I.; Steinbeisser, H.; Alfandari, D. The Wnt Receptor Frizzled-4 Modulates ADAM13 Metalloprotease Activity. J. Cell Sci. 2015, 128 (6), 1139–1149. https://doi.org/10.1242/jcs.163063.