

GRADUATE STUDENT HANDBOOK

University of Massachusetts-Amherst
Department of Mechanical and Industrial Engineering
September 2025

Cover: People's Choice Image Awardee of Graduate Gallery Competition (2025)

by Sahil Wankhede (Advisor: Associate Professor Xian Du)

Submissions for the 2025 competition are closed. Look out for announcements to send your 2026 contributions to Ms. Jordan Hart: jordanhart@umass.edu. See [Section 9](#) for details.

Contents

1 WELCOME	2
2 THE FIRST STEP FOR NEW STUDENTS	2
3 ACADEMIC HONESTY	4
4 THE MASTERS PROGRAMS	6
4.1 Entrance Requirements.....	6
4.2 Course Requirements for a Master of Science in Mechanical Engineering	6
4.3 Course Requirements for a Master of Science Degree in Industrial Engineering and Operations Research.....	7
4.4 Course Requirements for a Master of Science Degree in Engineering Management	9
4.4.1 Graduate Certificate Options.....	11
4.5 Course Requirements for a Master of Science Degree in Manufacturing Engineering	12
4.6 Thesis Option or Coursework Only Option	13
4.6.1 Thesis Option for both ME and IEOR.....	13
4.6.2 Master of Science in Mechanical Engineering, Coursework Only Option	13
4.6.3 Master of Science in Industrial Engineering & Operations Research, Course-work Only Option.....	14
4.7 Minimum Required GPA	15
4.8 Academic Dismissal.....	15
4.9 M.S. Thesis.....	16
4.10 Thesis Defense	16
4.11 M.S. Thesis Timeline.....	16
5 THE PH.D. PROGRAM	18
5.1 General Requirements.....	18
5.2 Graduate School Enrollment (Full-Time) Status.....	18
5.3 Graduate School Residency Requirement	18
5.4 Curricular Components for Ph.D. Degree	18
5.4.1 Ph.D. in ME	18
5.4.2 Ph.D. in IEOR.....	19
5.5 The MIE Ph.D. Qualifying (Preliminary Comprehensive) Exam.....	19
5.5.1 Format and Scope	19
5.5.2 Outcomes.....	19
5.6 MIE Ph.D. Dissertation	19
5.7 Other Requirements and Procedures applicable to all PhD students	20
5.8 Ph.D. Timeline	20
6 GENERAL INFORMATION FOR THESIS-OPTION MS AND ALL PHD STUDENTS	22
6.1 Other Requirements and Procedures	22
6.2 Role of the Graduate Program Directors	22
6.3 Graduate Teaching Assistants.....	22
6.4 Graduate Research Assistants.....	23
7 PHD QUALIFYING EXAM	26
8 DISCRIMINATION AND SEXUAL MISCONDUCT RESOURCES	28

9 MIE GRADUATE GALLERY COMPETITION	30
10 MECHANICAL ENGINEERING GRADUATE SEMINAR COURSE - MIE 689	31
11 LIST OF COURSES	32
11.1 Mechanical Engineering Topic Area: Fluid Dynamics and Wind Energy	32
11.2 Mechanical Engineering Topic Area: Bioengineering.....	33
11.3 Mechanical Engineering Topic Area: Dynamics and Controls	34
11.4 Mechanical Engineering Topic Area: Materials Engineering	35
11.5 Mechanical Engineering Topic Area: Manufacturing.....	36

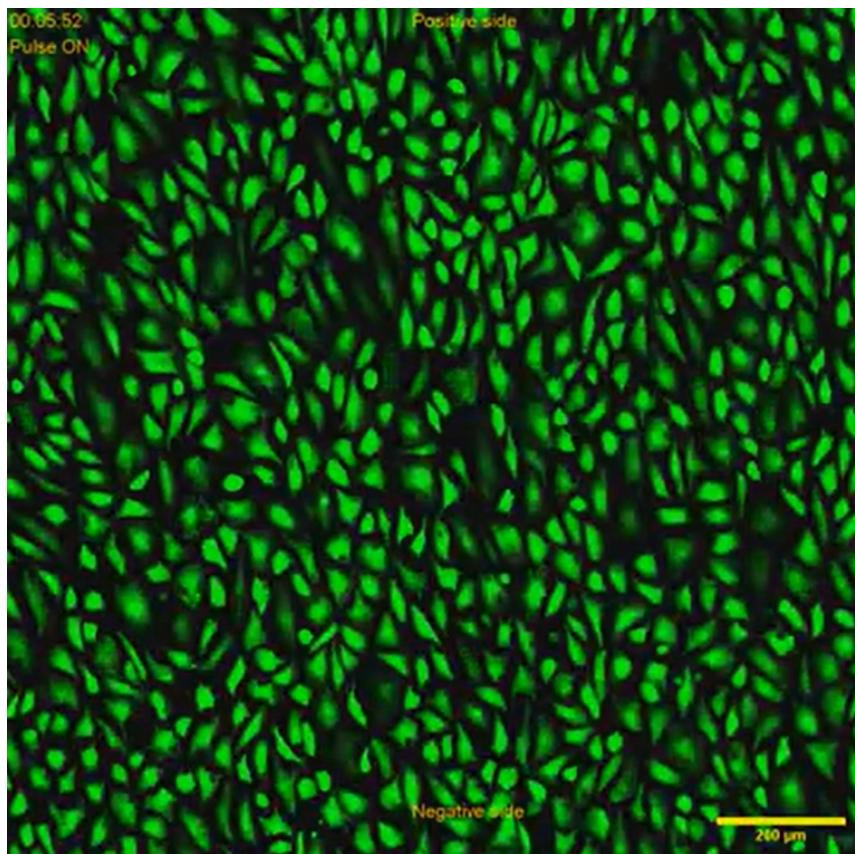


Image: Contribution to the Graduate Gallery Competition (2025)
by Nareej Raghuraman Rajagopalan (Advisor: Associate Professor Govind Srimathveeravalli)

GRADUATE STUDENT HANDBOOK

1 WELCOME

Welcome to the Department of Mechanical and Industrial Engineering at the University of Massachusetts Amherst! We are thrilled that you have chosen to pursue your graduate studies with us. This *handbook* is designed to provide you with essential information about our department's regulations and policies for the graduate program. It is important that you *carefully review* this booklet, along with the Graduate Catalog and the "Graduate School Handbook." Our aim is to support you throughout your program, so please don't hesitate to reach out to your advisor or the Graduate Program Directors (GPDs) if you have any questions or concerns. If you are a coursework only MS student, you do not require an assigned faculty advisor. Your questions pertaining to your graduate studies can be sent to Nauman Tazeem. Professor Ana Muriel is the Graduate Program Director for Engineering Management and Industrial Engineering programs, and specific curriculum questions for either program may be sent to her. Professor Govind Srinathveeravalli is the Graduate Program Director for Mechanical Engineering, and any Mechanical Engineering curriculum questions may be sent to him. Professor Jim Lagrant is the head of the Manufacturing Engineering program, and specific curriculum questions may be sent to him. Remember, it is *your* responsibility to adhere to the guidelines set by the Graduate School and the Department. We wish you great success in your studies!

2 THE FIRST STEP FOR NEW STUDENTS

New students should regularly check their UMass email address for important messages pertaining to course enrollment, department announcements, degree requirements, etc. There is a mandatory orientation for all new graduate students in the MIE Department during the first week of classes.

Students should also familiarize themselves with the obligations to acknowledge their sources in all their class and research writing. Academic integrity requires that when we use the ideas or words of previous works, we use footnotes, endnotes, or quotation marks, as appropriate. At UMass, we must abide by the Code of Conduct which explicitly forbids plagiarism.

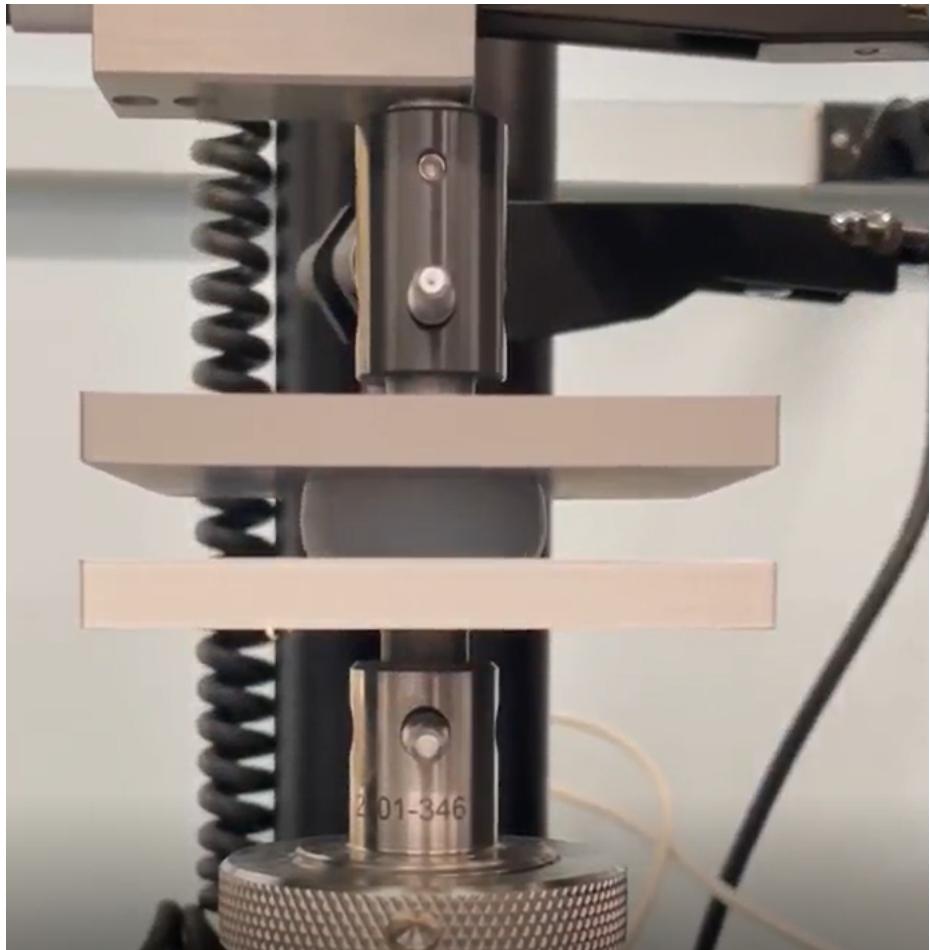


Image: People's Choice Video Awardee of Graduate Gallery Competition (2025)
by Yeji Han (Advisors: Assistant Professor Gina Olson)

3 ACADEMIC HONESTY

All students MUST read the [Academic Honesty Guide for Students](#):

Examples for Plagiarism & Academic Dishonesty

from the “Academic Honesty Guide for Students”:

- Copying 4+ words consecutively without using quotation marks or citing the source
- Summarizing or paraphrasing ideas or opinions without giving credit to the source
- Turning in the same work for more than one course without the consent of both instructors
- Purchasing, downloading, borrowing, reusing or hiring someone to do your work
- Using unauthorized materials or copying from another person during an exam
- Collaborating on work when you have been instructed to work independently
- Facilitating the academic dishonesty of another person

Good practices

from the “Academic Honesty Guide for Students”:

- Read your syllabus carefully
- Ask for help or clarification if you have any questions or concerns
- Be clear on what is acceptable collaboration and what is not
- Do your own work and cite all your sources (this includes ChatGPT, Bard, & any AI tools)
- Protect your work

Read the complete document [here](#).

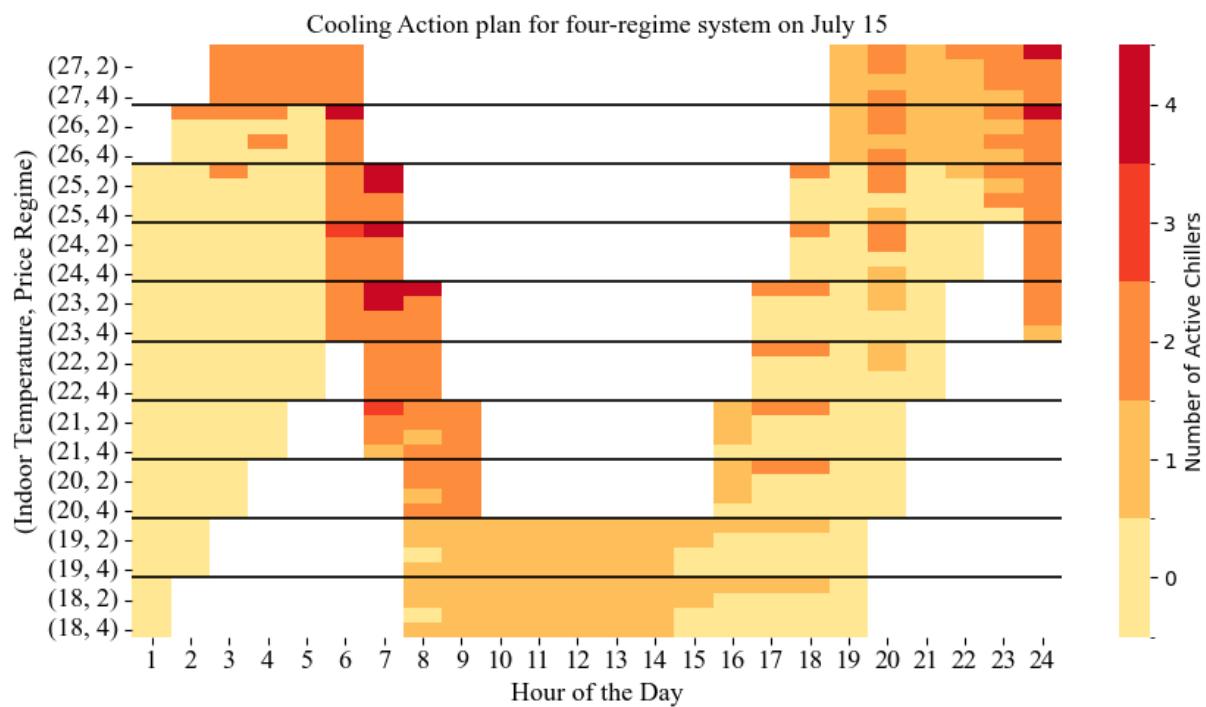


Image: Best Image Awardee of Graduate Gallery Competition (2025)
by Arash Khojaste (Advisor: Professor Golbon Zakeri)

4 THE MASTERS PROGRAMS

4.1 Entrance Requirements

M.S. Degree Programs may be entered directly by qualified students with B.S. degrees from any engineering discipline, or materials, PHYS, or mathematics. Students with degrees in other disciplines should consult the Graduate Program Director for advice on preparing for graduate courses.

4.2 Course Requirements for a Master of Science in Mechanical Engineering

In addition to the Graduate School requirements stated in the Graduate School Catalog, all M.S. students in the Mechanical Engineering program are required to take a minimum of four (4) Mechanical Engineering focused courses (if Thesis-Option) or seven (7) courses if Coursework-Only. Overall, at least 21 credits at the 600-level are required. All MS-Thesis and PhD students must also register for the **ME Graduate Seminar Course: MIE 689** (not required of coursework-only students). Note that all Accelerated Master's Mechanical Engineering students are Coursework-Only. Please see the List of Courses section at the end of this Handbook and sections [11.1 - 11.5](#) for Mechanical Engineering focused courses. Department Advisors Nauman Tazeem and Kevin Romani will send out a list of graduate courses offered in the upcoming semester during each registration advising period. These lists will clearly indicate which courses are Mechanical Engineering focused.

Coursework-Only	Thesis-Option
10 Classes Total (30 CR)	7 Classes Total (21 CR)
600-level (minimum 7 courses/ 21 credits)	600-level (minimum 4 courses/12 credits)
500-level (maximum 3 courses/ 9 credits allowed)	500-level (maximum 3 courses/9 credits allowed)
Independent Study (MIE 696; maximum 6 credits allowed); Optional	Thesis (9 CR); Required

Note Many students use earn a Graduate Certificate with their three allowable non-ME focused courses. See **Graduate Certificate Options**. If you do not wish to earn a certificate, that is fine, but your final three courses must be under a STEM topic at the graduate level. If a course you are interested in is outside of MIE and not listed at the end of the Handbook, please send the course title and description to the Graduate Program Director for approval.

TA positions in the MIE department are limited in number, and are generally reserved for PhD students. RA positions are decided by individual faculty based on their lab needs, and if you find on-going research that is a good match for your interests and expertise, you are welcome to reach out to see if they have openings. Please refer to Riccio College of Engineering and Graduate School assistantship and externship policies for additional guidelines.

4.3 Course Requirements for a Master of Science Degree in Industrial Engineering and Operations Research

The MS in IEOR is a 30-credit program. The coursework only option consists of 10 courses, whereas the thesis option requires 7 courses and a 9-credit thesis. In addition to the Graduate School requirements stated in the Graduate School catalog, all master's students in the Industrial Engineering and Operations Research program are required to take the following seven courses:

Mandatory Courses	
MIE 620	Linear Programming
MIE 622	Predictive Analytics and Statistical Learning
MIE 684	Stochastic Processes in Industrial Engineering
Human Factors Track (Choose One)	
MIE 627	Research Methods
MIE 657	Human Factors Design Engineering
Decision Making Track (Choose One)	
MIE 654 or 754	Economic Decision Making for Engineers
MIE 686X	Multicriteria Decision Making and Analysis
Additional Courses (Choose Two)	
Optimization Track	
MIE 532	Network Optimization
MIE 624	Machine Learning for Dynamic Decision-Making
MIE 724	Non-Linear Programming
SCH-MGMT 752	Business Process Optimization
SCH-MGMT 797AE	Stochastic Models
Human Factors Track	
MIE 627	Research Methods
MIE 657	Human Factors Design Engineering
Production Track	
MIE 578	Supply Chain Logistics
MIE 651	Advanced Production Planning
MIE 553/653	Industrial Automation
MIE 659	Intelligent Manufacturing Systems
MIE 697Q	Logistics
SCH-MGMT 758	Supply Chain Management
Decision Making Track	
MIE 654 or 754	Economic Decision Making for Engineers
MIE 686X	Multicriteria Decision Making and Analysis
Analytics Track	
MIE 621	Descriptive Analytics
MIE 623	Prescriptive Analytics
MIE 524/624	Machine Learning for Dynamic Decision-Making
MIE 659	Intelligent Manufacturing Systems

All entering MS students who are planning to enroll in the Industrial Engineering and Operations Research program are expected to have successfully completed courses in linear algebra and probability and statistics. Entering MS students who have not taken a course at the undergraduate level covering these topics must get permission from the instructor of a required course to enroll. The instructor, at his or her discretion, may require that the student take a pre-requisite (e.g., Linear Algebra may be required as a pre-requisite for Linear Programming). This pre-requisite will not count for credit towards the graduate program requirements if it is an undergraduate level course. Those students who need make up courses should expect to take at least one additional semester to complete their graduate degree.

The remaining elective courses can be chosen from that list as well as a large array of courses offered across the university in consultation with a program advisor. Coursework only students can work on independent studies with faculty for up to 6 credits towards the MS IEOR degree. Finally, to complete all Graduate School and departmental requirements, at least 21 credits must be within the MIE Department and at least 21 credits (i.e., either 7 courses or thesis plus 4 courses) must be at the 600 level or higher. Pass/fail credits will not count towards degree completion.

Note TA positions in the MIE department are limited in number, and are generally reserved for PhD students. RA positions are decided by individual faculty based on their lab needs, and if you find on-going research that is a good match for your interests and expertise, you are welcome to reach out to see if they have openings. Please refer to Riccio College of Engineering and Graduate School assistantship and externship policies for additional guidelines

4.4 Course Requirements for a Master of Science Degree in Engineering Management

The MS in Engineering Management is a 30-credit, 10-course program. In addition to the Graduate School requirements stated in the Graduate School Catalog, all M.S. in Engineering Management students are required to take the following courses:

Mandatory Courses	
MIE 622	Predictive Analytics and Statistical Learning
MIE 645	Project Budgeting and Finance for Engineers
MIE 670	Technical Project Management
Management Depth (Choose 2 courses at minimum)	
MIE 664	Engineering Leadership and Entrepreneurship
MIE 671	Product Management
MIE 672	Strategy-Driven Engineering Innovation
SCH-MGMT 636	Negotiations Theory and Practice
SCH-MGMT 783 / MIE 585	Business Law / Engineering Law and Ethics
Engineering/Analytics Depth (Choose 3 courses at minimum)	
MIE 532	Network Optimization *currently not offered*
MIE 578	Supply Chain Logistics
MIE 621	Descriptive Analytics
MIE 623	Prescriptive Analytics
MIE 624	Machine Learning for Dynamic Decision-Making
MIE 646	Introduction to Systems Engineering
MIE 550/650	Vehicle Automation
MIE 651	Advanced Production Planning
MIE 654	Economic Decision Making I
MIE 657	Human Factors Design Engineering
MIE 659	Intelligent Manufacturing Systems
MIE 686X	Multicriteria Decision Making and Decision Analysis
MIE 690D	Deep Learning for Engineering Application
MIE 754	Economic Decision Making II
SCH-MGMT 602	Database Management for Analytics

Electives (6 total credits)

- Additional courses from the lists above
- **Independent study** guided by faculty advisor (*up to 6 credits*)
- Courses at the 500-level or higher within the student's STEM field with advisor's approval
- or any of the following classes:

Mechanical & Industrial Engineering Courses	
MIE 553/653	Industrial Automation
MIE 556	Augmented and Virtual Reality Design
MIE 565	Operations Research in Healthcare
MIE 573	Engineering Windpower Systems
MIE 620	Linear Programming
MIE 627	Research Methods
MIE 684	Stochastic Processes
MIE 724	Non-Linear Programming

Isenberg School of Management Courses	
SCH-MGMT 601	Data Management for Business Leaders
SCH-MGMT 637	Analysis for General Managers
SCH-MGMT 650	Statistics for Business
SCH-MGMT 655	Machine Learning for Analytics
SCH-MGMT 660	Marketing Strategy
SCH-MGMT 663	Supply Chain Analytics
SCH-MGMT 670	Operations Management
SCH-MGMT 680	Leadership and Organizational Behavior
SCH-MGMT 752	Business Process Optimization
SCH-MGMT 758	Supply Chain Management

To complete the full program requirements, students must take at least five program courses from the MIE Department, and no more than three courses outside MIE and ISOM. Finally, the department requires 21 credits at the 600 level or higher and will not count any pass/fail credits towards the degree. Please contact Mr. Nauman Tazeem, Assistant Director of the MS-EM Program, with any questions.

TA positions in the MIE department are limited in number, and are generally reserved for PhD students. RA positions are decided by individual faculty based on their lab needs, and if you find on-going research that is a good match for your interests and expertise, you are welcome to reach out to see if they have openings. Please refer to Riccio College of Engineering and Graduate School assistantship and externship policies for additional guidelines.

4.4.1 Graduate Certificate Options

Within the 30 credits of MSEM studies, students can get certificate credentials along the way by choosing the appropriate sets of courses.

PML: Project Management and Leadership Certificate → 3 courses

MIE 645 Project Budgeting and Finance for Engineers
MIE 664 Engineering Leadership and Entrepreneurship
MIE 670 Technical Project Management

DAN: Decision Analytics Certificate → 3 courses

MIE 621 Descriptive Analytics
MIE 622 Predictive Analytics and Statistical Learning
MIE 623 Prescriptive Analytics

AI Engineering → 3 courses

Core 1: (Pick Only one)

CEE 601 Machine Learning Foundations and Applications
MIE 622 Predictive Analytics and Statistical Learning

Core 2: (Pick Only one)

ECE 601 Machine Learning for Engineers
CEE 616 Probabilistic Machine Learning
MIE 690D Deep Learning for Engineering Application

Electives: (Pick Only one, see the note below)

AI/ML Methods

CEE 790ST Advanced Probabilistic Machine Learning
MIE 624 Machine Learning for Dynamic Decision-Making

Engineering Applications

BME 615 AI in Biomedicine
ECE 627 Artificial Intelligence Based Wireless Network Design
ECE 629 Applied Machine Learning for the Internet of Things
MIE 659 Intelligent Manufacturing
MIE 650 Vehicle Automation

Hardware Design

ECE 662 Hardware Design for Machine Learning Systems
ECE 676 Neuromorphic Engineering

Signal Processing

ECE 746 Statistical Signal Processing
ECE 608 Signal Theory
BME 609 Biomedical Signals and Systems

Note: Any of the courses listed above can only be double counted towards a degree program and a graduate certificate. Triple counting of courses is not allowed. To earn two graduate certificates with an overlapping course, students pursuing the AI certificate must take an additional elective from the list above to meet the academic requirements.

4.5 Course Requirements for a Master of Science Degree in Manufacturing Engineering

The MS in Manufacturing Engineering is a 30-credit, 10-course coursework only program. In addition to the Graduate School requirements stated in the Graduate School Catalog, all M.S. Manufacturing Engineering students are required to take the following courses:

Core Courses

(12 credits; Choose at least one course from each of the three categories and at least four total courses)

Industrial Engineering

MIE 578	Supply Chain Logistics
MIE 651	Advanced Production Planning
MIE 657	Human Factors Engineering

Materials Science & Engineering

MIE 608	Adv. Polymer Manufacturing
MIE 611	Advanced Materials Characterization
MIE 618	Additive Manufacturing

Industry 4.0

MIE 553/653	Industrial Automation
MIE 643	Mechatronics
MIE 659	Intelligent Manufacturing
MIE 690STB	Industrial 4.0 Technology & Systems

Elective Courses (18 Credits)

Mechatronics

MIE 615	Robotics
MIE 640	Introduction to MEMS & Microscience
MIE 682	Highly Compliant Structures
MIE 685	Biorobotics

Materials Science & Engineering

MIE 609	Mechanical Properties of Materials
MIE 614	Optical Engineering & Photonics

Industrial Engineering

MIE 556	Augmented and Virtual Reality Design
MIE 686X	Multicriteria Decision Making and Analysis

Engineering Management

MIE 645	Project Budgeting and Finance for Engineers
MIE 664	Engineering Leadership and Entrepreneurship
MIE 670	Technical Project Management
MIE 671	Product Management
MIE 672	Strategy-Driven Engineering Innovation

Data Analytics

MIE 621	Descriptive Analytics
MIE 622	Predictive Analytics
MIE 623	Prescriptive Analytics

Practicum (max 6 credits)

MIE 696	Independent Study
MIE 698	Co-op/Practicum

Program Requirements Summary
10 Classes Total (30 CR)
600-level (min 7; 21 CR); X first table, 3 second table
500-level (max 9 CR of 30 allowed); first table
Independent Study (600-level; max 6 CR allowed); Optional

Note Students may take more than 12 credits from the core course options and substitute them for elective courses. Manufacturing students may be eligible for either the Project Management and Leadership or Data Analytics Certificates. See [Graduate Certificate Options](#).

TA positions in the MIE department are limited in number, and are generally reserved for PhD students. RA positions are decided by individual faculty based on their lab needs, and if you find on-going research that is a good match for your interests and expertise, you are welcome to reach out to see if they have openings. Please refer to Riccio College of Engineering and Graduate School assistantship and externship policies for additional guidelines.

4.6 Thesis Option or Coursework Only Option

Incoming students may choose one of the two options for earning their Master's of Science in Mechanical Engineering or Master's of Science in Industrial Engineering and Operations Research: (1) The Thesis option or the (2) Coursework Only option. Students must declare which option they are pursuing when applying to UMass. Students are not generally permitted to switch from one option to the other; they may only switch options with the permission of the MIE Graduate Program Director.

4.6.1 Thesis Option for both ME and IEOR

All M.S. students who choose the Thesis Option are required to plan and carry out a research, design, or development thesis (MIE 699) of nine credits, and 21 course credits.

M.S. - Thesis students in Mechanical Engineering must also enroll in the [1-cr 689 Graduate Seminar](#).

As M.S. - Thesis students conduct research through MIE 699, independent studies do not count towards their remaining 7 courses (21 CR), rather can be taken in addition to coursework/thesis.

4.6.2 Master of Science in Mechanical Engineering, Coursework Only Option

The requirements of the Coursework option are:

1. The student must complete at least 30 graduate (500 level or above) credits. Thesis or project credits do not count towards this total.
2. At least 21 credits must be at the 600 level or above.
3. At least 21 credits must be Mechanical and Industrial Engineering courses.
4. A maximum of 6 credits can be for independent study. Find the form [here](#).
5. The student must take at least four of the ME (not IE) courses at the 600-level or higher.

Students enrolled in coursework only graduate programs are typically not provided funding support. TA positions in the MIE department are limited in numbers, and are generally reserved for PhD students. RA positions are decided by individual faculty based on their lab needs, and if you find on-going research that is a good match for your interests and expertise, you are welcome to reach out to see if they have openings. In addition to our departmental policies, please refer to Riccio College of Engineering and Graduate School assistantship and externship policies for additional guidelines.

4.6.3 Master of Science in Industrial Engineering & Operations Research, Coursework Only Option

The requirements of the Coursework Only option are:

1. The student must successfully complete at least 30 graduate (500 level or above) credits. Thesis or project credits do not count towards this total.
2. At least 21 credits must be at the 600 level or above.
3. At least 18 credits must be Mechanical and Industrial Engineering courses.
4. A maximum of 6 credits can be for independent study. Find the form [here](#).
5. The student must take the seven named IEOR core courses required for the MS Thesis option.

Students enrolled in coursework only graduate programs are typically not provided funding support. TA positions in the MIE department are limited in numbers, and are generally reserved for PhD students. RA positions are decided by individual faculty based on their lab needs, and if you find on-going research that is a good match for your interests and expertise, you are welcome to reach out to see if they have openings. In addition to our departmental policies, please refer to Riccio College of Engineering and Graduate School assistantship and externship policies for additional guidelines.

4.7 Minimum Required GPA

All students must maintain a minimum cumulative GPA of 3.0 or above to graduate.

4.8 Academic Dismissal

Per the [Graduate School Handbook](#), “A graduate student who in any two semesters, consecutive or otherwise, has a GPA below 2.8 is subject to academic dismissal upon recommendation of the Graduate Program Director and approval by the Dean of the Graduate School.”

4.9 M.S. Thesis

An M.S. Thesis may be a research, design or development project. A copy of the Thesis outline must be approved by the student's committee and put on file with the GPD and forwarded to the Graduate School at least four months prior to the defense. The thesis guidelines prepared by the **Graduate School Handbook** must be followed.

4.10 Thesis Defense

- Thesis Advisor: Students must connect with their research advisor in the first semester.
- Thesis Committee: The student and advisor select the graduate faculty committee for the thesis defense. These names and departmental info are sent to Nauman Tazeem to submit to the Dean of the Graduate School for approval. The thesis committee comprises:
 - at least two MIE faculty members
 - at least one “outside member”, which are not in the MIE Department
 - more than 3 members are encouraged for optimal support and insights.
- Thesis Proposal: A thesis outline & proposal must be presented to the committee.
 - An oral presentation performed before the committee a min of 4 months prior to defense.
 - The committee must unanimously approve the proposal.
- Thesis Defense
 - Thesis Date: See the **Graduate School Handbook** for scheduling regulations.
 - Thesis Draft: The committee must receive the draft 14 days prior to the defense.
 - Oral Defense Notification: **Notice must be provided 7 days prior to the defense.**
 - Oral Defense: the defense must be held before the entire committee.
 - * only a unanimous vote results in a pass

4.11 M.S. Thesis Timeline

A suggested timeline for M.S. Thesis. Some deadlines are firm; others are more flexible.

1. First Semester: Select Permanent Advisor
2. First Semester: Prepare Program of Study
3. End of First Year: Register for Thesis Credit
4. End of First Year: Select Thesis Committee
5. End of Second Year: Complete Required Courses
6. Four Months Prior to Defense: Thesis Proposal
7. Set the Date of Defense.
8. Two Weeks Prior to Defense: Deliver Thesis to Committee
9. Seven days before the defense, send Nauman Tazeem the defense details and abstract.

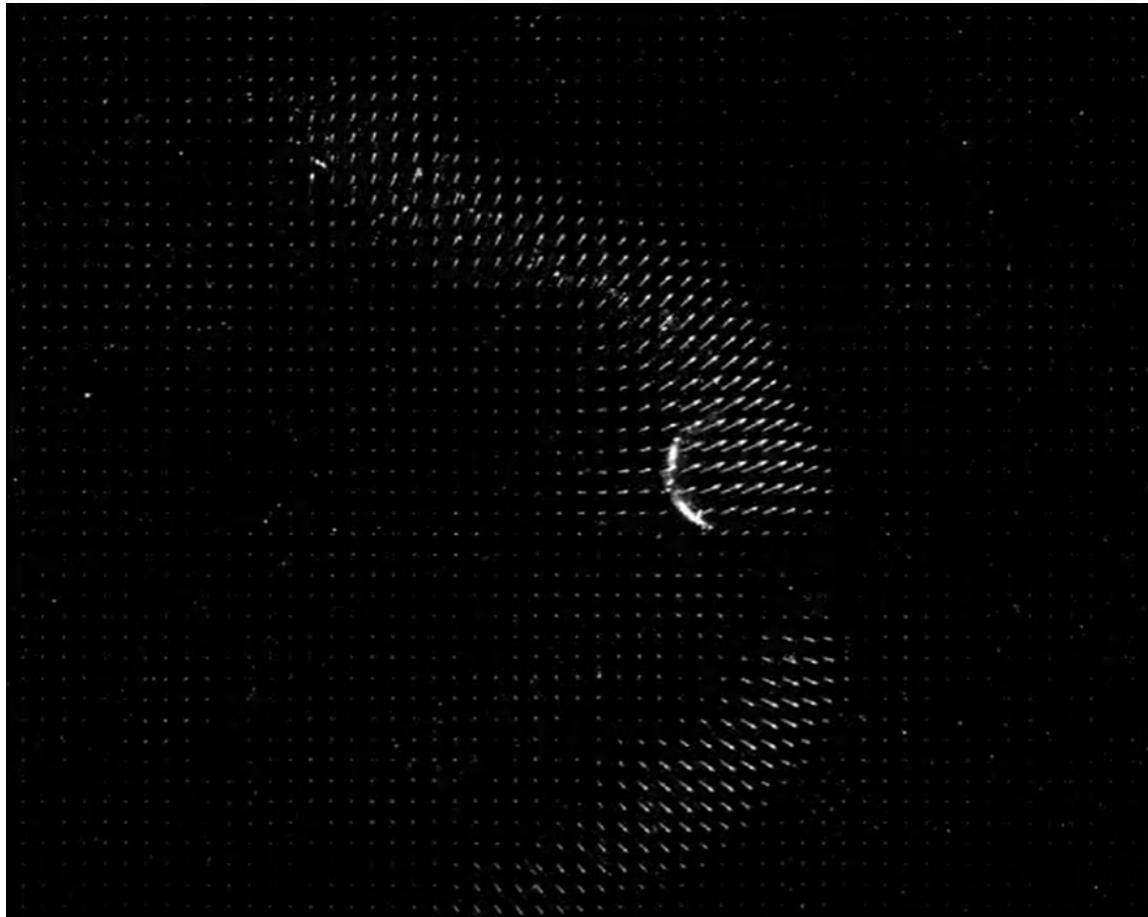


Image: Best Video Awardee of Graduate Gallery Competition (2025)
by Joe Joseph (Advisor: Professor Jonathan Rothstein)

5 THE PH.D. PROGRAM

5.1 General Requirements

The Ph.D. program is intended to prepare the student for a research career in industry, academia or national laboratories. A dissertation, presenting significant new information, is the primary requirement of the degree. Other requirements for the Ph.D. degree include:

- A minimum of one academic year in residency. Residency is defined as one continuous academic year of full-time graduate work (9 credits per semester).
- A certification by the candidate's Guidance Committee that the candidate is qualified to pursue the Ph.D. degree.
- Successful completion of a preliminary comprehensive examination.
- An approved dissertation proposal.
- Completion of an approved course curriculum
- A Ph.D. dissertation.
- A final oral examination.

Additional University requirements are listed in the **Graduate School Handbook**.

Students considering a doctoral degree are strongly encouraged to obtain an M.S. degree in Mechanical or Industrial Engineering before attempting to establish candidacy in the Ph.D. program. Although this is not a requirement, experience indicates that previous research experience provides better preparation for Ph.D. dissertation work.

5.2 Graduate School Enrollment (Full-Time) Status

Full-time status as a graduate student is defined by the **Graduate School Policy** as:

- a graduate student is enrolled for nine (9) or more credits.
- candidates working full-time (20 hr/wk) GRA/GTA on contract (as certified by the GPD).
- candidates in continuous enrollment working *full-time* on their doctoral dissertation research, *regardless of their funding status*.
- a candidate defending their thesis/dissertation in their final semester.

5.3 Graduate School Residency Requirement

“A doctoral candidate must spend the equivalent of at least one continuous academic year of full-time graduate work (nine credits per semester) in residence at the University. The residency year must be either in a Fall/Spring or Spring/Fall sequence. During this year, the student must spend some part of each week physically on campus.”

5.4 Curricular Components for Ph.D. Degree

The minimum course requirement for the Ph.D. degree is enrollment in 18 credits of MIE 899 (Doctoral Dissertation). Ph.D. students must also formulate a complete and coherent program of coursework approved by the student's Dissertation Committee and the GPD.

5.4.1 Ph.D. in ME

Approved programs must include at least 9 course credits beyond the requirements of M.S. Degree. All of the required courses must be at the 600 level. Students who do not hold a Masters degree will take a total of 30 credits which include the 9 PhD course credits. Students must also enroll in the **1-credit 689 Graduate Seminar**. Independent studies do not count towards 600-level course requirements for doctoral students.

5.4.2 Ph.D. in IEOR

Approved programs must include courses which have covered the material equivalent to that covered in the seven required courses for the M.S. degree in I.E.O.R. Normally, students receiving a master's degree in IE will have completed all required courses. To get program approval, all PhD students must draft a program proposal in consultation with the faculty advisor, who will get approval by the IE graduate program director. Syllabi and grades received for the courses taken must be provided. Independent studies do not count towards 600-level course requirements for doctoral students.

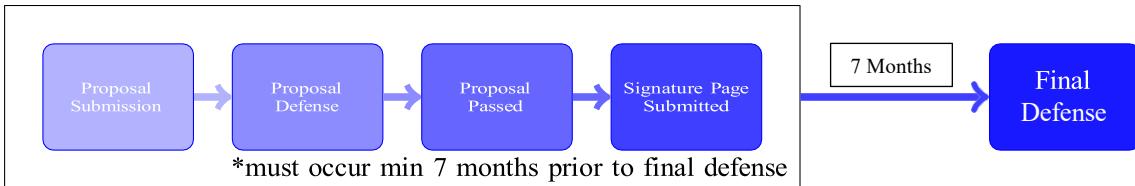
5.5 The MIE Ph.D. Qualifying (Preliminary Comprehensive) Exam

Each Student enrolled in the Ph.D. program must pass a qualifying exam prior to their fourth semester as a Ph.D. student. The purpose of the qualifying exam is to ensure that the student is qualified in both knowledge and critical thinking skills to pursue a Ph.D. in their field of study.

5.5.1 Format and Scope

See the [Qualifying Exam Section](#) for descriptions of the four possible formats of the qualifying exam. The format is established by the candidate's examining committee and the GPD to test general knowledge and critical thinking skills in their field of study.

5.5.2 Outcomes


The three possible outcomes of the exam are:

- Pass: The committee confirms the student holds the skills requisite of doctoral studies.
- Conditional Pass: The student qualifies if they address areas of weakness found in the exam.
- Fail: The committee finds multiple areas of weakness; doctoral studies are not recommended.

Remediation plans may include coursework, independent study projects, and subsequent focused examination. A Conditional Pass converts to Pass upon completion of the remediation plan within the specified time. Otherwise, a Conditional Pass is converted to Fail. Students who fail their first exam attempt may petition the Graduate Program Committee to retake the exam.

5.6 MIE Ph.D. Dissertation

- Dissertation Committee: After passing the Qualifying Exam, the candidate and advisor select the graduate faculty committee for the dissertation defense. These names and departmental info are sent to Nauman Tazeem to submit to the Dean of the Graduate School for approval. The dissertation committee comprises:
 - at least two MIE faculty members
 - at least one “outside member” who is not in the MIE Department
 - more than 3 members are encouraged for optimal support and insights.

Dissertation Proposal

- Written Proposal: A written proposal is submitted to the dissertation committee.
- Oral Presentation: The candidate presents their proposal before the committee.
 - The committee must unanimously approve the proposal.
 - The committee must all sign the proposal.
 - The signed proposal is submitted to Nauman Tazeem.
 - A request for formal appointment of the dissertation committee follows the proposal.
- These actions must take place seven (7 months) prior to the final oral examination.

Dissertation Defense

- Dissertation Date: **Scheduling of the Final Doctoral Oral Examination form** must be sent to Nauman Tazeem 30 days prior to defense.
- Dissertation Draft: The committee must receive the draft 14 days prior to the defense.
- Oral Defense Notification: Notice must be provided 7 days prior to the defense.
- Oral Defense: the defense must be held before the entire committee.
 - only a unanimous vote results in a pass
 - one negative vote results in the degree held in abeyance.
 - two negative votes results in a fail.

See the **Graduate School Handbook** for detailed regulations on preparation and submission of the dissertation copies, payments of fees, etc.

5.7 Other Requirements and Procedures applicable to all PhD students

- New Ph.D. students without a GRA or research advisor will be assigned the GPD as a Temporary Advisor until a Dissertation Committee Chairperson has been determined. Students are urged to immediately explore dissertation research topics with the faculty.
- All ME doctoral students must register for the Graduate Seminar Course (689) and attend the Departmental Seminar Series and M.S./Ph.D. defenses regularly.
- Fellowship and Assistantship holders are expected to commit to their studies full-time and not hold other part-time jobs or be enrolled in another degree program. Students not supported by the Department are required to notify the Department of any part-time employment.
- A final copy of the dissertation must be given to the Department for the internal records.
- Students must send defense date details to Mr. Nauman Tazeem with at least 7 days notice so a public announcement is sent to the Department community. Any delays in this announcement will postpone the defense, as a strict 7 days notice is required.

5.8 Ph.D. Timeline

The following is the suggested timeline.

1. First Semester: Select Permanent Advisor
2. First Semester: Prepare Program of Study
3. End of First Year: Register for Dissertation Credits
4. End of First Year: Select Dissertation Committee
5. End of Second Year: Take Comprehensive Exam
6. AT LEAST Seven Months Prior to Defense: Dissertation Proposal (2 years after the start for students without MSc, 1.5 years after the start for students with MSc)
7. Notify Graduate Program Office of Defense Date
8. Seven days before the defense, students must send Nauman Tazeem defense details and abstract.

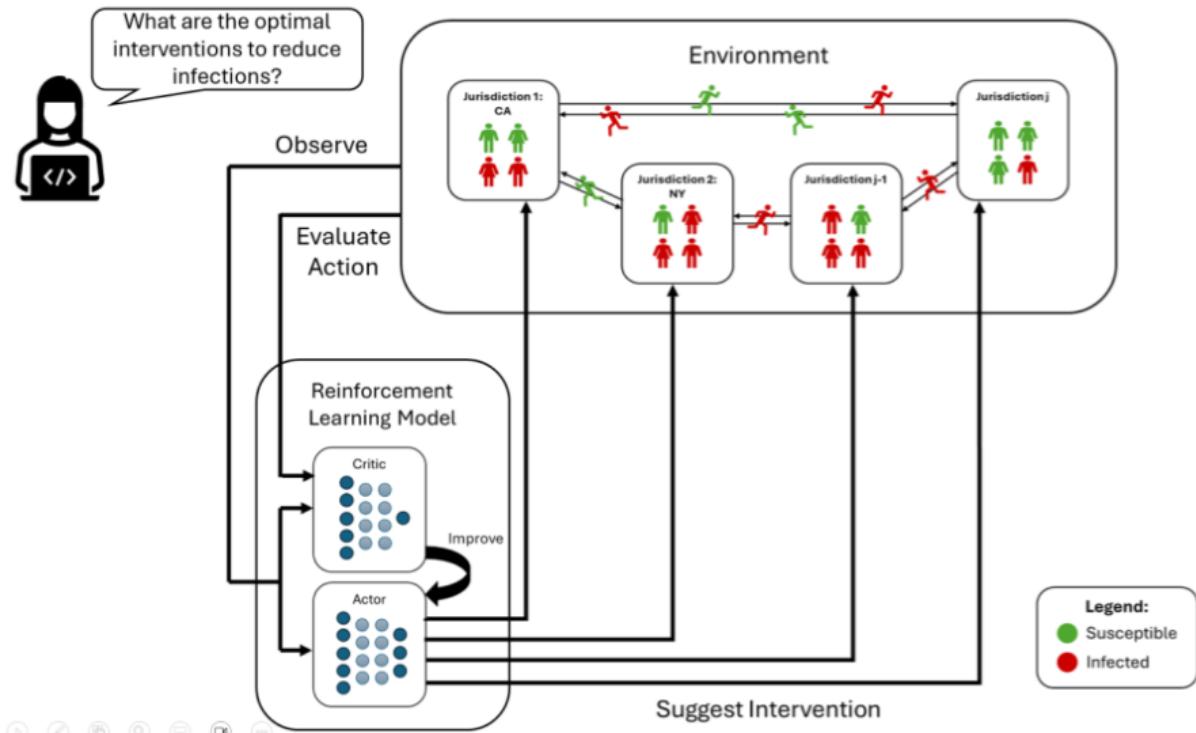


Image: Contribution to the Graduate Gallery Competition (2025)
by Sonza Singh (Advisor: Associate Professor Chaitra Gopalappa)

6 GENERAL INFORMATION FOR THESIS-OPTION MS AND ALL PHD STUDENTS

6.1 Other Requirements and Procedures

1. Students must ideally select a permanent thesis advisor before registering for classes for the first time. A student arriving with support in the form of a research assistantship will have their project director as their thesis committee chairperson and also their advisor. Other students with fellowship support or teaching assistantship or non-supported students should find a permanent thesis advisor within two months and in no case later than the end of their first semester. The GPD may act as a temporary advisor for new students who have not yet found a permanent advisor before first time registration. Registration must always have the approval of the student's advisor.
General information about the faculty and their research interests can be found on the Department's website.
2. Students are expected to prepare a coherent program of study during the first semester and before pre-registration for the second semester. This program of study should be approved by the student's advisor in consultation with the members of their M.S. committee. Curriculum programs which deviate from requirements specified herein must be approved in writing by the GPD and recorded on the student's curriculum form. The M.S. Thesis Committee members are selected by the student with advice and approval of the Committee Chairperson and the GPD. The Committees shall consist of three members of the Graduate Faculty, at least two of whom must be regular MIE faculty and at least one of whom must be outside the immediate area of specialization of the thesis. Thesis committee members must agree to serve before they are appointed to the committee.
3. Advisors will normally require that students register for three credits of Thesis in their first or second semester. Teaching Assistants may not register for more than a total of thirteen credits per semester.
4. A copy of a thesis outline must be approved by the student's committee and must be put on file in the Department office at least four months prior to the Thesis defense. The thesis outline must also be put on file in the Graduate School Office (see the Graduate School Handbook).
5. ASSISTANTSHIP AND FELLOWSHIP HOLDERS ARE NOT PERMITTED TO HOLD OTHER PART-TIME JOBS OR TO BE SIMULTANEOUSLY ENROLLED IN ANOTHER DEGREE PROGRAM WITHOUT THE WRITTEN PERMISSION OF THEIR ACADEMIC ADVISOR AND THE GPD. Students not supported by the Department or University are required to notify their advisors and the GPD of any part-time employment.

6.2 Role of the Graduate Program Directors

The MIE GPDs administer all MIE graduate degree programs. Subject to final approval by the Department Head, the GPDs are responsible for all aspects of the graduate programs and approve plans of study, Dissertation Committee appointments, recommendations for degrees, etc. Advisors and Dissertation Committees are subordinate to the GPDs though it is rare that the recommendations of the Advisor and Dissertation Committee are not accepted.

6.3 Graduate Teaching Assistants

Subject to the availability of qualified applicants, all graduate teaching assistantships (GTAs) are offered to Ph.D. students only. Graduate teaching assistantships are offered not only to fulfill immediate departmental needs, but also to advance the degree programs of graduate students and the teaching needs of the Department. Students who have appointments as GTAs will be assigned duties by the Department Head. This work will normally require between 10 and 20 hours of work each week. It is the policy of this Department not to renew teaching assistantships beyond the time period stated in the initial contract. All additional financial support is generally provided by a student's academic advisor, or through fellowships.

6.4 Graduate Research Assistants

All applicants for admission to the graduate program in MIE are automatically considered for teaching and research assistantships in the Department. Each applicant's qualifications are first reviewed by the Graduate Committee. The Graduate Committee then submits the application forms for the top candidates for further review by individual faculty members whose interests most closely parallel those of the applicants. The decision to offer a research assistantship is made by individual faculty members and is based upon the availability of funds and the qualifications of each applicant. The stipends received for this work vary with the type of work, the amount of time involved and the availability of funds. These details are normally worked out between the student and their advisor, and generally exclude the possibility of the student taking any part-time or full-time consulting jobs.

The topic or program of the GRA work will usually coincide with that of the student's thesis or dissertation, so the project's Principal Investigator will automatically assume the role of the student's advisor as well.

Continuation of the research assistantship is based upon the continued availability of funds and satisfactory performance by the student in both research and course work.

Graduate students who are already in the program and who do not have a research assistantship are encouraged to contact individual faculty members whose interests closely parallel those of the student and inform them of their interests and availability. The decision to offer an assistantship to a student always rests with the faculty member.

For timely completion of degrees, it is essential to follow the Graduate School's policies and deadlines. The table below outlines the required actions, timelines, and deadlines:

Action	Timeline	Deadline
Sign forms in black ink	—	Before submission to the Graduate School
GPD & Graduate School approves committee	—	Before the committee is official
Submit approved thesis/dissertation outline to the Graduate School	At least 7 months prior to final PhD oral exam	—
Submit approved thesis/dissertation outline to the Graduate School	At least 4 months prior to MS thesis defense	—

It is the student's responsibility to ensure that all memos and forms are sent to both the department and the [Graduate School website](#).

M.S. Programs

For M.S. programs, follow these steps:

- Obtain a Masters Graduation Eligibility Form from the [Graduate School website](#).
- Complete the form and submit it to the Graduate Program Office (ELAB 208F) for approval.
- Note that the form will only be accepted upon approval of the original M.S. thesis by all committee members.

Ph.D Program

For Ph.D. programs, follow the steps outlined for M.S. programs above. Additionally, complete any additional forms required by the Graduate School. These forms can be found at the Graduate School's website.

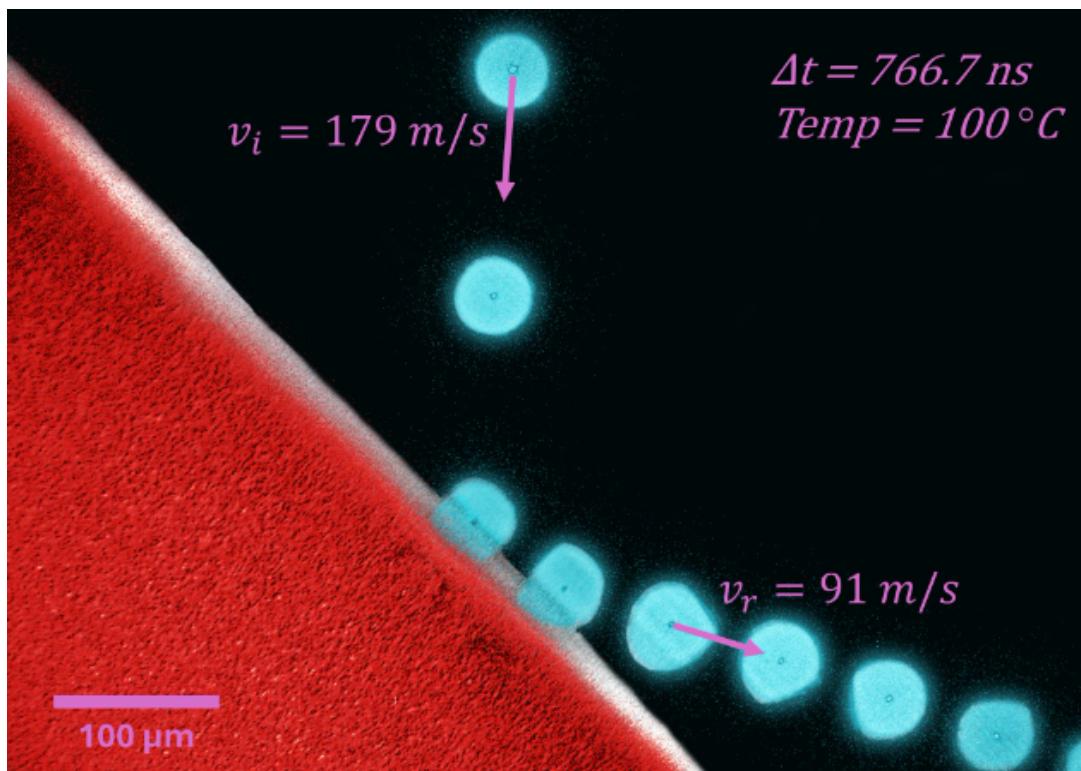


Image: Contribution to the Graduate Gallery Competition (2025)
by Anuraag Gangineri Padmanaban (Advisor: Associate Professor Jae-Hwang Lee)

7 PHD QUALIFYING EXAM

Exam Timing

Entry Pathway	Exam Deadline
Direct Entry into the PhD Program	Within two calendar years of program entry
Entry with a UMASS MS Degree	Within one and a half calendar years of program entry
Entry with a non-UMASS MS Degree	Within one and a half calendar years of program entry
Part-Time Students	After 18 credits or in two years, whichever occurs first
Transferred Students	May petition to waive or defer the exam

Exam Format

The MIE doctoral qualifying exam **MUST** contain a written and an oral component to satisfy candidacy at the Graduate School. Choose one of each below.

Written Component Options (Select One)	Timing
Questions in major interest area (take-home) <i>A detailed exam in your primary field of study taken at your own pace.</i>	1 week
Questions in major interest area (live) <i>An abridged, technical exam taken in a conventional manner.</i>	3 hours
Critical review (report) of two peer-reviewed journal articles <i>Analyze articles adjacent to field for strength/weakness & importance.</i>	2 weeks
Oral Component Options (Select One)	Timing
Open-ended questions <i>Committee asks broad, exploratory questions about your field.</i>	1 hour
Rounds of technical questions <i>Committee asks a series of questions to test general MIE knowledge.</i>	1 hour
Oral presentation (journal critical review) <i>Present critical review of articles, followed by committee discussion</i>	30 minutes + Q/A

Image: Contribution to the Graduate Gallery Competition (2025)
by Sahil Wankhede (Advisor: Associate Professor Xian Du)

8 DISCRIMINATION AND SEXUAL MISCONDUCT RESOURCES

The Policy Against Discrimination, Harassment, and Related Interpersonal Violence at the University of Massachusetts, Amherst provides comprehensive protection against unlawful discrimination, including sexual harassment and assault, as well as related forms of misconduct. It prohibits acts that deny or limit the educational, employment, residential, and social access, benefits, and opportunities of any member of the campus community based on protected characteristics. This includes race, color, religion, caste, creed, sex, age, marital status, national origin, disability, political belief or affiliation, pregnancy, veteran status, sexual orientation, gender identity and expression, genetic information, natural and protective hairstyle, and other legally protected classes. The policy explicitly addresses sexual harassment under Title IX, sexual assault, intimate partner violence, stalking, complicity, and retaliation. Violators may face disciplinary action, up to and including expulsion or termination. The University maintains specific procedures for reporting, investigating, and adjudicating violations of this policy, which are publicly available on the Office of Equal Opportunity and Access website.

Affirmative Action and Nondiscrimination Policy

Prohibits discrimination based on protected characteristics in all aspects of university programs, activities, and employment. Office of Equal Opportunity administers the policy. ([More information](#))

Code of Student Conduct

Defines expected student behavior, disciplinary procedures, and sanctions for misconduct. Administered by the Dean of Students Office. ([More information](#))

Disabilities - Rights and Responsibilities

People with disabilities have the right to equal access, reasonable accommodations, and confidentiality. They should meet qualifications, identify as individuals with disabilities, and follow procedures for obtaining accommodations. ([More information](#))

Diversity Mission Statement

UMass Amherst is committed to providing access, opportunities, and inclusiveness for all, valuing diversity in its students, faculty, and staff. Promotes social justice and respect for all. ([More information](#))

Graffiti Policy

UMass Physical Plant removes graffiti promptly but preserves it for investigations involving potential civil rights violations. ([More information](#))

Grievance Resolution

Comprehensive grievance systems are in place. Office of Equal Opportunity investigates discrimination grievances, and the Ombuds Office provides additional avenues for resolution. Union contracts may also have applicable procedures. ([More information](#))

Hate Crimes

UMass Police Department treats hate crimes seriously, safeguarding the rights of individuals and taking vigorous enforcement action. ([More information](#))

Native American Graves Protection and Repatriation Act (NAGPRA)

UMass Amherst consults with tribes and commits to repatriate human remains, funerary objects, and cultural artifacts. Aims to build respectful relationships with Native American tribes. [\(More information\)](#)

Policy Against Intolerance

Denounces intolerance that interferes with rights guaranteed by law or policy, while protecting the rights of free inquiry and expression. [\(More information\)](#)

Policy Against Discrimination, Harassment, & Related Interpersonal Violence

Maintains an environment that prohibits discriminatory behavior, provides equal opportunity, and fosters mutual respect and appreciation of divergent views. Office of Equal Opportunity administers the policy. [\(More information\)](#)

Religious Symbols, Decorations and Displays

Protects individuals' rights to freedom of religion and expression, while preventing the endorsement or favoritism of any religion. Individuals can celebrate religious holidays in personal spaces, but not promote religious observance on public property. [\(More information\)](#)

Restroom Policy

Promotes a supportive environment by providing safe and accessible restroom facilities. Individuals should use facilities corresponding to their sex or gender identity, or utilize designated gender-inclusive restrooms. [\(More information\)](#)

Trans Resource Guide

Includes gender identity and expression in the nondiscrimination policy. Provides comprehensive information on campus policies for transgender students. [\(More information\)](#)

9 MIE GRADUATE GALLERY COMPETITION

You are invited to participate in the Department's Annual Graduate Gallery Competition. Showcase your ongoing research by submitting either an image or a video. This is a fantastic opportunity to highlight your work and learn about other research happening in the Department.

Rules for Still Image Contribution:

- Submit one image that focuses on the main finding of your research.
- Limit the text to 75 words, including the title.
- Image resolution should be at least 400 dpi.
- Posters will be printed on 11" by 17" paper.

Rules for Video Contribution:

- Videos should be limited to 1 minute.
- No limitations on the number of images or length of text in the video.

Include the following information separately in the email:

- Contributor(s) name(s)
- Advisor(s) name(s)
- Acknowledgements
- References

You can make multiple contributions, but each should be on a separate topic or scientific paper. Email your contributions to Ms. Jordan Hart (jordanhart@umass.edu)

All contributions will be displayed during a ceremony where contributors and visitors can discuss their research projects. Judges from both the Department and non-Engineering Departments will evaluate the contributions based on the ability to communicate scientific ideas and aesthetic appeal. The winners will be announced and receive prizes at the end of the ceremony. The exact date will be announced during the academic year.

Don't miss this opportunity to showcase your research and be recognized for your hard work!

10 MECHANICAL ENGINEERING GRADUATE SEMINAR COURSE - MIE 689

The goal of this seminar is to introduce research active graduate students to various dynamic research projects taking place in our department and other institutions. It aims to promote interdisciplinary research collaboration and encourages students to attend departmental seminars and thesis defenses.

As part of the program, MS and PhD students have required attendance expectations.

Student Level	Minimum Defenses	Minimum Seminars
Thesis-based MS	4	6
PhD	6	10

Important Information

- The seminar is a ***mandatory 1-credit non-graded course***.
- Attendance will be recorded by Mr. Nauman Tazeem.
- Sign-up sheets will be provided during seminars and defenses.
- Attendance for Zoom sessions will be automatically recorded.
- Students receive a SAT (satisfactory) grade after meeting attendance requirements.
- Register for the course during the first semester as it is a one-time registration.
- Substituting seminars for defenses or vice versa is **not** allowed.
- All MS-Thesis and PhD students in Mechanical Engineering must take this course.

11 LIST OF COURSES

M.S. Degree Students

11.1 Mechanical Engineering Topic Area: Fluid Dynamics and Wind Energy

Course Offerings - Fluid Dynamics and Wind Energy

Courses Offered Every Year

Course Code	Course Title
sMIE 551	Thermal Environmental Engineering *currently not offered*
MIE 573	Engineering Windpower Systems
MIE 601	Advanced Thermodynamics
MIE 603	Advanced Numerical Analysis
MIE 607	Advanced Fluid Mechanics
MIE 666	Fluid-Structure Interactions
MIE 570	Solar and Direct Energy Conversion
MIE 605	Finite Element Analysis

Courses Offered Every Two Years

Course Code	Course Title
MIE 604	Computational Fluid Dynamics
MIE 649	Ocean and Coastal Waves
MIE 652	Ocean Renewable Energy
MIE 673	Wind Turbine Design
MIE 674	Offshore Wind Energy Systems
MIE 701	Advanced Thermodynamics *currently not offered*
MIE 707	Viscous Fluids
MIE 821	Turbulence *currently not offered*

External Courses

Course Code	Course Title
CHE 633	Transport Process
CEE 670	Transport Processes in Environmental and Water Resources
PHYS 850	Soft Condensed Matter PHYS
CEE 662	Water Resource Systems Analysis
CEE 561	Open Channel Flow
CEE 560	Hydrology
PHYS 553	Optics-With Lab

Mechanical Engineering Courses (Typical, 21 CR Thesis-Only; 30 CR Coursework)

External, ME-adjacent Courses (Max 9 CR substituted allowed)

Industrial Engineering Courses (Max 9 CR substituted allowed)

External, IE-adjacent Courses (0 CR substituted allowed)

[Return to Degree Requirements Table](#)

11.2 Mechanical Engineering Topic Area: Bioengineering

Courses Offered Every Year

Course Code	Course Title
MIE 609	Mechanical Behavior of Materials
MIE 630	Advanced Solid Mechanics
MIE 658	Connections in Medicine, Biology and Engineering
MIE 687	Practical Medical Device Design *currently not offered*
CHE 575	Tissue Engineering
BME 605	Biotransport
MIE 605	Finite Element Analysis
CHE 535	Microfluidics and Microscale Analysis in Materials and Biology
KIN 535	Muscle Mechanics

Courses Offered Every Two Years

Course Code	Course Title
BME 606	Biomedical Microfluidics
BME 675	Nature's Materials
MIE 640	Introduction to MEMS and Microsciences
MIE 667	Advanced Cell and Tissue Biomanufacturing
MIE 668	Molecular, Cellular and Tissue Biomechanics

Mechanical Engineering Courses (Typical, 21 CR Thesis-Only; 30 CR Coursework)

External, ME-adjacent Courses (Max 9 CR substituted allowed)

Industrial Engineering Courses (Max 9 CR substituted allowed)

External, IE-adjacent Courses (0 CR substituted allowed)

[Return to Degree Requirements Table](#)

11.3 Mechanical Engineering Topic Area: Dynamics and Controls

Courses Offered Every Year

Course Code	Course Title
MIE 605	Introduction to Finite Element Analysis
MIE 666	Fluid-Structure Interactions
CMPSCI 603	Robotics
CEE 541	Structural Dynamics

Courses Offered Every Two Years

Course Code	Course Title
MIE 610	Nonlinear Dynamics
MIE 615	Robotics
MIE 682	Highly Compliant Structures
MIE 697S	Simulation-Based Optimization *currently not offered*
CEE 615	Probabilistic Methods in Structural Mechanics
MATH 532H	Nonlinear Dynamics and Chaos with Applications
MIE 510	Feedback Control Systems
MIE 642	Advanced Design Feedback Systems
PHYS 860C	Monte Carlo Techniques
MIE 597ST	Introduction to MEMS and Microsciences
MIE 641	Advanced Vibrations
MIE 643	Mechatronics
MIE 644	Applied Data Analysis
MIE 597W	Adaptive and Nonlinear Control *currently not offered*
MIE 685	Biorobotics

Mechanical Engineering Courses (Typical, 21 CR Thesis-Only; 30 CR Coursework)

External, ME-adjacent Courses (Max 9 CR substituted allowed)

Industrial Engineering Courses (Max 9 CR substituted allowed)

External, IE-adjacent Courses (0 CR substituted allowed)

Return to Degree Requirements Table

11.4 Mechanical Engineering Topic Area: Materials Engineering

Courses Offered Every Year

Course Code	Course Title
MIE 605	Introduction to Finite Element Analysis
MIE 609	Mechanical Properties of Materials
MIE 617	Computational Materials Science
MIE 619	Nanomaterials & Sensors
MIE 630	Advanced Solid Mechanics
CHE 621	Thermodynamics I
MSE 601	Thermodynamics and Kinetics of Materials
MSE 690S	Introduction to Interdisciplinary Materials Science Research
Polymer 797EM	Electron Microscopy
Polymer 897F	Surface & Interfacial Mechanics
CHE 597D	Nanostructured Biomaterials
CHE 622	Thermodynamics II
MSE 690A	Materials and Additive Manufacturing: From Concept to Application
Phy 588	Solid State PHYS
Polymer 501	Introduction to PSE

Courses Offered Every Two Years

Course Code	Course Title
MIE 603	Adv. Numerical Analysis
MIE 571	Phys. & Chem. Processing of Mater. *currently not offered*
MIE 579	Advanced Materials Engineering *currently not offered*
MIE 668	Molecular, Cellular, & Tissues Biomech.
MIE 611	Advanced Materials Characterization
MIE 612	Metamaterials
MIE 614	Optical Engineering & Photonics

Mechanical Engineering Courses (Typical, 21 CR Thesis-Only; 30 CR Coursework)

External, ME-adjacent Courses (Max 9 CR substituted allowed)

Industrial Engineering Courses (Max 9 CR substituted allowed)

External, IE-adjacent Courses (0 CR substituted allowed)

[Return to Degree Requirements Table](#)

11.5 Mechanical Engineering Topic Area: Manufacturing

Courses Offered Every Year

Course Code	Course Title
MIE 601	Advanced Thermodynamics
MIE 605	Introduction to Finite Element Analysis
MIE 609	Mechanical Properties of Materials
MIE 617	Computational Materials Science
MIE 619	Nanomaterials & Sensors
MIE 630	Advanced Solid Mechanics
ECE 597NE	Nanoelectronics
CMPSCI 603	Robotics

Courses Offered Every Two Years

Course Code	Course Title
MIE 615	Robotics
MIE 618	Additive Manufacturing
MIE 659	Intelligent Manufacturing
MIE 608	Adv. Polymer Manufacturing
MIE 614	Optical Engineering & Photonics
MIE 579	Advanced Materials Engineering
MIE 611	Advanced Materials Characterization
MIE 640	Introduction to MEMS & Microscience
MIE 643	Mechatronics
MIE 685	Biorobotics
CMPSCI 589	Machine Learning
ECE 597TN	Photonics

Mechanical Engineering Courses (Typical, 21 CR Thesis-Only; 30 CR Coursework)

External, ME-adjacent Courses (Max 9 CR substituted allowed)

Industrial Engineering Courses (Max 9 CR substituted allowed)

External, IE-adjacent Courses (0 CR substituted allowed)

Return to Degree Requirements Table

Image: Contribution to the Graduate Gallery Competition (2025)
by Sahil Wankhede (Advisor: Associate Professor Xian Du)