# TECTONIC EXTREMES OF PASSIVE HOUSE DESIGN RYALL SHERIDAN ARCHITECTS

### **PASSIVE HOUSE PRINCIPLES**

### 1. SOLAR ORIENTATION

-Detailed local weather & solar data used to evaluate orientation, shading & window placement to take advantage of solar gains in the winter & minimize them in the summer

## 2. CONTINUOUS HIGH R-VALUE INSULATION & ELIMINATE THERMAL BRIDGING

- -Min. R40 to R50 walls & ceilings (2015 IECC calls for R20, R30)
- -Reduce Heat Loss (winter)
- -Reduce Heat Gain (summer)
- -Comfortable interior surface temps
- -Avoid penetration of insulation with conductive materials to reduce heat loss & prevent damage from condensation/mold

### 3. AIRTIGHTNESS

- -Continuous air barrier via smart membranes
- -Max .6 air changes per hour @ 50 pa (2015 IECC calls for 3ach)
- -Reduce possibility of moisture damage to structure
- -Reduce heat loss (winter) & reduce humidity (summer)
- -Enhanced performance of insulation layer
- -Eliminate drafts

### 4. HIGH PERFORMANCE WINDOWS

- -R7-R8 triple pane thermally broken window assemblies oriented properly add more energy to home than they lose
- -Triple gasketing prevents air leaks
- -Eliminate need for perimeter heat
- -Comfortable interior surface temps & no drafts

# 5. BALANCED VENTILATION W/ HEAT RECOVERY VENTILATION (HRV/ERV)

- -Clean, filtered air continously supplied to sleeping and living areas, exhuasted from kitchens & bathrooms
- -Heat and moisture (with ERV) is transfered between stale inside air and fresh outdoor air in winter and sumer w/ minimum 75% efficiency



Diagram Source: http://www.passivehouseacademy.com/

# Thermal Transmittance (U-value)

What does this mean?

# BTU/(hr·ft<sup>2</sup>·F)

How many BTUs move .....

.... in one hour ....

.... for one square foot of surface area ....

.... for every degree of temp. difference between faces.

One BTU = one burned match

The U-Value is also called the HEAT TRANSFER COEFFICIENT or CONDUCTANCE of the whole assembly (not an individual layer!)



# Why < 4.75 kBtu/ft²-yr Heating & Cooling Demand?



# SURFACE AREA TO VOLUME RATIO PLATONIC SOLIDS







**CLAUDE-NICOLAS LEDOUX**GARDENER HOUSE PROJECT FOR THE IDEAL CITY OF CHAUX, 1784



### ARTIST'S STUDIO ORIENT, NY



### **R VALUES**

| Wall  | 49 |
|-------|----|
| Roof  | 76 |
| Floor | 56 |

**A** = **1,080 ft²** (plan area)

**V** = 15,175 ft<sup>3</sup> (volume)

SA = 4,320 ft<sup>2</sup> (exterior surface area)

### GUEST HOUSE SHELTER ISLAND, NY



### **R VALUES**

| Wall  | 38 |
|-------|----|
| Roof  | 62 |
| Floor | 62 |

**A** = 1,750 ft<sup>2</sup> (plan area)

V = 19,875 ft<sup>3</sup> (volume)

SA = 5,180 ft<sup>2</sup> (exterior surface area)

### WETLANDS HOUSE ORIENT, NY



### **R VALUES**

| Wall  | 46    |
|-------|-------|
| Roof  | 57    |
| Floor | 74/42 |

**A** = 3,360 ft<sup>2</sup> (plan area)

V = 41,040 ft<sup>3</sup> (volume)

SA = 10,440 ft<sup>2</sup> (exterior surface area)

### ARTISTS RESIDENCE GUILFORD, VT



### **R VALUES**

| Wall  | 52  |
|-------|-----|
| Roof  | 145 |
| Floor | 40  |

**A** = **4,000 ft²** (plan area)

V = 64,660 ft<sup>3</sup> (volume)

SA = 14,350 ft<sup>2</sup> (exterior surface area)











# ARTIST'S RESIDENCE GUILFORD, VT

### **R VALUES**

Wall 52 Roof 145 Floor 40

 $A = 4,000 \text{ ft}^2$  (plan area)

**V** = **64,660 ft**<sup>3</sup> (volume)

SA = 14,350 ft<sup>2</sup> (exterior surface area)

SA/V = .22 (compactness ratio)

**CUBE** = .15 (comparable area)



GUILFORD - BRATTLEBORO // VERMONT







MB = MUNCHKIN BOILER



















































## WETLANDS HOUSE ORIENT, NY

## **R VALUES**

Wall 46 Roof 57 Floor 74/42

 $A = 3,360 \text{ ft}^2$ 

(plan area)

V = 41,040 ft<sup>3</sup> (volume)

SA = 10,440 ft<sup>2</sup> (exterior surface area)







































































