

ACENTECH

ACOUSTICS
CONSIDERATIONS IN
THE INTEGRATED
DESIGN BUILDING

October 2, 2017

Learning Objectives

- 1. Understand the basics of acoustics
- 2. Understand how to categorize different acoustical issues faced on architectural projects by using UMA IDB as an example.
- 3. Understand how to upgrade demising constructions to reduce sound and impact transmission
- 4. Understand how to select acoustical finishes to improve the acoustics within a room

Rose Mary Su Senior Consultant, Architectural Acoustics

Acoustician for the design and construction of UMA Design Building

Our Role on a Project

Architect MEP Structural Civil / Landscape Lighting Acoustics Audiovisual / IT/ Security Construction Team

A Quick Outline

- Introduction to Sound / Acoustics
- Architectural Acoustics is four things:

 Applies to all gathering spaces, including theaters, conference rooms, classrooms, etc.

0. Introduction to Sound

Sound is vibration through an elastic medium.

©2011. Dan Russell

A Few Properties of Sound

- Amplitude
- Frequency
- Propagation
- Speed
- Diffraction and other wave-behavior

High Frequency ("Hissy")

Frequency (Hz) =
$$\frac{\text{cycles}}{\text{second}}$$

Normal Hearing

1. Background Noise

Background Noise Goals

TYPICAL PROJECT NOISE GOALS

Pro Recording Studios: Threshold

Concert Halls: Threshold

Professional Theaters: NC–15–20

High School Auditoria: NC–20–25

High-end Board Rooms: NC-25

Classrooms: NC-30

Typical Offices: NC–35–40

Lobbies: NC–45

Background Sound – HVAC Systems

Noise Generators High Airflow Velocities Large Ducts Quiet Machines & Sound Attenuators Vibrating Equipment Vibration Isolation

ACOUSTICS 101

13 ACENTECH

Around Campus

The Integrated Science and Life Science buildings are generally noisier than the Design and Visual Arts buildings due to the air ventilation system

Design Building - Photo: Esto Photography

Background Noise

Science Building - Photo: Warren Jagger Photography

Within the Design Building

- Different spaces have different design goals
- The Wood Shop has more tolerance for higher background sound levels than the Seminar Rooms

Alex Schreyer Photography

Predicting HVAC Noise

acr.	1		1			Mode		FHZ	w						Cultulita	1
Drazign Imped Modal Senar	-					Produc	t image	1HW	Heat C	loi.	CH	W Co	oling	Cod	Ť	
TEFH Standa	d ligh Prito	Mrcs. T]			Calcul	alien bluffs	in T						ABI	Certified	ķ
Motor Types	1004					-	AT (Diy Bu									
Pretare Mac.	100 cm					HT	12	- 1	DWT T	5 F		LWE	52.2	F	MY [349.1	14
Figure Hip.						Call	1200 cm	n.	- 1	269	297	LWT	51.1	于	Fy 3.58	þ
loke (2º						EDB	75 °F	F	Stare	t	+	TH	38.2	nbh	AFD 0.4 in	į.
(Juliel SP	1.25 in wg					EWB	63 F	- 1	DB [52.6	"F	5))	28.6	mbin	mo 8sm	. 1
Unit Stee	16	-1				1000	ections		7	_				B	m3P (000	
	(Ght/codeg	=				Hag.)	-	Corve	-						HER DIS	
Hito/Dig Type		=				100	-		-						10.30	
Cooks Type	County - Files Lyon					Sound Attenuation Ceiling Type Medial Flor						-				
FacYsli	277	크	Thronion	lay.			Coming 1	Muni	Inte	1186	per		-			
Liver	Standard Fib	-					Octave B		2	3	1	5	5	7	NC @ Oct	. 1
							Radiated Discharg		18	19	41	26	31 52	39		
You can adjust liner options at this				Sound Power Level Fm Cris									-			
point, if necessary. Program will apply the appropriate correction factors.					Radiated		73	65	58	56	45	45	39 (9 2			
min mile bei mile	the same of the same of	- carrie					Discharg		68:	66	65	64	61	59	24 @ 3	

Controlling HVAC Noise

Price HVAC

ACENTECH

Background Noise

Sound can also be transmitted via solid medium rather than air, called structure-borne noise

Vibration Isolation of HVAC Equipment

Background Noise

From the project specification:

- 3. Pumps:
 - a. Base Mounted Pumps:
 - Base: Concrete housekeeping pad. <
 - 2) Isolator Type: None, anchor to structure.

concrete inertia base with 0.75" min. static deflection spring isolators

Kinetics Noise Control

Embelton

¹⁹ **♠** ACENTECH

Vibration Isolation Short-circuits

Community Noise

Cooling Towers

Cooling Towers with Noise Barrier Enclosure at Lederle

Community Noise

- Sometimes equipment can appear noisy but is actually not so
- Analysis of data ahead of time is critical in predicting noise to the community
- UMass Life Science Building

Strobic Air – High Plume Fan

Construction Noise and Vibration

Background Noise

- Our design analyses often tackle steadystate noise and vibration sources
- Sometimes we also have to tackle transient noise and vibration sources

New England Conservatory

UMass Life Science Building

ACOUSTICS 101

2. Sound Isolation

- Outdoor-to-outdoor
 - Rooftop Equipment Barrier
 - Outdoor music venues
- Outdoor-to-indoor
 - Envelope construction
 - Curtainwall design
 - Fenestration

Indoor-to-indoor

Sound Isolation

Boston University Practice Rooms

ACENTECH

Sound Isolation

Storage | Office | Of

ACENTECH

2.2

Modified from Wenger Planning Guide v.

Space Planning

NTEC

Space Planning at IDB

Sound Isolation

Woodshop Planning

Sound Isolation – Flanking Paths

"I've got a great wall. Why can I hear noise from the other side so clearly?"

Sound can also be transmitted via solid medium rather than air, called structure-borne noise

Woodshop Planning at IDB

Details with CLT

ACOUSTICS 101

Working with CLT – Airborne Noise

Sound Isolation

What does not block sound?

Design Building - Photo: Alex Schreyer

Sound absorptive spray

ACOUSTICS 101

3. Room Acoustics & Amplification

Room Acoustics

Amplification

Design Building - Photo: Alex Schreyer

Outdoors Versus Indoors

Room Acoustics

Amplification

Wallace Clement Sabine Discovered a Formula for Reverberation Time

Reverberation Time $\approx \frac{\text{Volume}}{\text{Absorption}}$

- Sabine used organ pipes and a stop watch to measure the decay of the sound
- He found the body of an average person decreased RT by about as much as six seat cushions.

Natatorium – 6 Second RT

- 6 second RT without treatment
- 1.7 second RT with an absorptive ceiling

What is Sound Absorption?

- The ratio between energy not reflected and incident energy for a sound wave hitting a surface
- Turning sound energy into heat

Coefficient of Absorption

0.05	0.3	0.55	0.95
little absorbing			very absorbing

Material	Coefficient of Absorption
Brick, concrete block, glass	0.05
Carpet combined pile and foam	0.30
Heavy velour	0.55
Glass wool (fiberglass)	0.95

Absorption Versus Frequency

Sound Absorption in IDB

- Spray-applied cellulose behind the slatted wood
- Wood-fiber cement panels with absorption backing
- Acoustical panel ceilings
- Fabric-wrapped wall panels

Design Building - Photo: ESTO

What is NOT sound absorptive in IDB

Room Acoustics

- Wood
- Concrete
- Gypsum Wallboard
- Glass

Design Building - Photo: ESTO

A Negotiation with Design

Form vs. Function

Design Building - Photo: ESTO

ACOUSTICS 101

46

Using SketchUp → Acoustics Modeling

Extremely useful for complex geometry

Room Acoustics

Amplification

Acoustics Modeling

ACOUSTICS 101

Modeling for Speech Reinforcement Systems

Amplification

Auralization

Room
Acoustics

Amplification

Sound
Isolation

Background
Noise

Listening to the space before it is built

Imagination is the limit!

- Explore different room geometry
- Explore various interior finishes
- Introduce noise into the model
- Add sound systems into the space
- Explore various architectural constructions

Rose Mary Su

rsu@acentech.com