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Incorporating size effects in the Tsai-Wu strength
theory for Douglas-fir laminated veneer

P. Clouston, F. Lam, J. D. Barrett

Summary This paper elucidates the need to consider the effect of volume on
brittle material strengths when these strengths are used in a strength theory.
Specifically, Weibull weakest-link theory has been implemented with the Tsai-Wu
strength theory to predict the ultimate load carrying capacity of a center point off-
axis bending member made from Douglas-fir laminated veneer. Weibull theory
has been used in two distinct ways to account for size effects needed to evaluate
brittle material strengths (ie. tension perpendicular and parallel to grain, and
shear) for the strength criterion. The analytical methods assume linear elastic,
plane stress states and have been described and evaluated using probability
theory as a framework. Analytical results are in reasonable agreement with
experimental findings substantiating the techniques proposed herein.

introduction

It is widely recognized that the strength of wood and wood-based materials in the
brittle failure modes of tension or shear, depend on the volume of stressed ma-
terial and the nature of the stress distribution (Barrett et al., 1975; Madsen and
Buchanan, 1986; Sharp and Suddarth, 1991). These effects have been attributed to
the random distribution of strength controlling defects present in the material. It
is argued that larger members have a higher probability of containing a larger

flaw (or weaker zone) than smaller members and therefore exhibit lower strengths

when both volumes are subjected to the same environmental and loading con-
ditions. This has come to be known as ‘size effect’.

An important implication of size effect emerges when using strength theories
to assess load carrying capacity of a structure or a member. The uniaxial strengths
which are incorporated into a multi-axial strength theory must be representative
of the volume of material to which the strength theory is being applied. This
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means first adjusting the brittle strengths from representing that of a test volume
to representing that of a corresponding volume for the strength theory applica-
tion. This required adjustment is demonstrated in this paper through application
of both Weibull weakest-link theory, to account for size effects, and the Tsai-Wu
(tensor polynomial) strength theory (Tsai and Wu, 1971), for prediction of load
carrying capacity of an off-axis center point bending member. The Tsai-Wu
theory, for orthotropic materials, was chosen for its relative simplicity and gen-
erality. '

Tsai-Wu theory
The Tsai-Wu theory assumes the existence of a failure surface of quadratic
polynomial form. In tensor notation, failure is predicted to occur when

Fic; + Fjoi0; > 1 (1)

where 1, j =1,2,...,6, and F; and F; are 2" and 4" rank strength tensors res-
pectively. For the case of plane stress, shown in Fig. 1, stresses associated with the
through-thickness direction are neglected and Fe, Fy¢ and F,4 terms are equal to
zero due to special orthotropy. Hence, Eq. (1) becomes

F1(51 -+ Fzﬁz -+ F“G% + F226§ -+ 2F]2(51 (o] —+ F65(Y§ 2 1 (2)

The coefficients F; through Fe, with exception of Fy,, are described in terms of
the strengths in the principal material directions. Referencing Fig. 1, these
strengths are defined as tension and compression parallel to grain (X, and X_),
tension and compression perpendicular to grain (Y, and Y.), and shear in this
same plane (S). Through some simple mathematical manipulation, the coeffi-
cients of the strength theory are found to be
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Fig. 1. Coordinate system and principal strengths assuming a plane stress state
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The remaining unknown parameter of Eq. (2), F;,, must be evaluated under a
biaxial loading condition to account for the interaction between normal stresses,
o, and ;. Clouston et al. (1996) describe in detail a stochastic based method to
evaluate the statistical parameters (ie. mean and standard deviation) of F, using
the same material and material preparation as the current study. (A brief de-
scription of this method is also provided herein.) The results of this previous
paper, which include statistical data for a complete probability-based Tsai-Wu
strength theory for Douglas-fir laminated veneer, were utilized in this current
paper to establish the strength tensors in the Tsai-Wu theory.

In order to apply the strength theory with some degree of certainty, all
strengths used in the foregoing equations should be derived and subsequently
applied under the same conditions. For wood, variables to be controlled include
moisture content, temperature, loading time or material volume. In this study, all
variables were considered constant with the exception of material volume. That is,
the volume of material from which a strength was experimentally determined was
not necessarily the same as the volume to which the strength theory was applied.
The resulting size effect was managed by way of Weibull weakest-link theory
which has been used successfully in previous studies to quantify size effects
(Barrett et al., 1975; Lam and Varaglu, 1990; Barrett et al., 1995).

Weibull weakest-link theory

Weibull (1939) used the weakest-link concept to predict the probability of failure
of a ‘perfectly brittle’, homogeneous, isotropic material at a given volume ac-
cording to the empirically based equation

1 [T‘_Tmm}kdv
F(t)=1—e Yo/l m (4)
where:

F(t) = probability of failure

T = material strength

Tmin = location parameter (minimum material strength)

m = scale parameter

k = shape parameter

(Tmin» M, and k are material constants and V, is a reference volume)
Commonly, T, is accepted as being equal to zero, simplifying the problem, and
the resulting formulation is called a two-parameter (2-P) Weibull distribution.

Using 2-P Weibull theory as a basis, a relationship can be formed between the
strength for one volume of material and that of another volume where both are at

/
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the same probability of failure and subjected to the same stress distribution. The
relationship is given as

/ T]k dV] == / 'Ezk de (5)
Vi V3

where the strengths 1, and 1, correspond to the volumes V, and V,, respectively.
The significance of this formulation for this study is that having experimentally
determined a strength distribution for a specific test volume, be it for tension or
shear, a corresponding distribution can be evaluated for any volume to be used in
the strength theory.

Numerical predictions
Experimental strength data were obtained for Douglas-fir laminated veneer and
are summarized in Table 1. The material treatment and test methods, which
conformed to appropriate ASTM standards for these principal strengths, are re-
ported in Clouston (1995). It is noted that the parallel to grain tensile strength has
higher than normal variability when compared to that of commercial LVL (co-
efficient of variation = 18.3% vs. 9-12% for commercial LVL). This may be
explained by the fact that the material in this study did not contain butt joints,
unlike conventional LVL, and as a result, the parallel to grain tensile failure
behaved more like clear wood than LVL hence showing a larger variability.

The tensile strengths were taken from rectangular specimens,
63mm X 35mm X 610 mm in dimensions, under uniform stress conditions. The
shear strength was evaluated using a standard ASTM shear block tester. However,
the shear block test does not produce a uniform stress field, which makes dealing
with Eq. (5) difficult. Thus, shear strength under a uniform stress state needed to be
estimated by adjusting the shear block strength by an appropriate factor(a). A
nonlinear least square fitting process was used to estimate o and other unknown
parameters. The residual function to be minimized for the fitting process can be
written as

N Gpred 2
6
O — Z 1— oo (6)
i i

Table 1. Summary of Data

Statistics: Count Mean St. Dev. 2-P Weibull shape
(MPa) {MPa) parameter, k

Tension Para., X, 18 55.31 10.11 5.79
Tension Perp., Y, 17 2.25 0.22 15.89

Comp. Para., X, 18 57.29 2.93 -

Comp. Perp., Y. 18 12.02 1.38 -

Shear, S 19 11.02 1.17 10.61

Shear Adjustment - 0.72 0.63 -

Factor, o
F), (MPa™?) - +0.00003 0.000015 -
15° off-axis tensile 17 18.92 1.39 -

strength, og(MPa)




whege N denotes the number of probability levels for consideration and
ob and oy " refer to ‘predicted” and ‘experimental’ off-axis strengths respec-
tively. The off-axis tensile test used to procure experimental off-axis strengths is

illustrated in Figure 2. The predicted off-axis strength was calculated as:

N

pred _ “Xl * [X% + 4(X2 + F12X3)}

O 7
0 2(Xz + F12X5) 7)
where
ol = off-axis tensile strength 219

X, = Fy cos’ 0 + F, sin’ 0
Xz = Fy; cos* 0 + Fy, sin? 0 + Fgg cos? 0 sin? 0

X3 = 2cos® 0 sin” 6(8)
1
(S- o)
o = shear strength adjustment factor

Fge =

All variables of Eq. (7) (and therefore Eq. (6)) are known with the exception of Fy,
and o. Thus, Eq. (6) was minimized with respect to these two quantities to obtain
a least square solution for these variables. The results are presented in Table 1.

Having all necessary strength data, the Tsai-Wu theory was then employed to
predict the cumulative probability distribution for load capacity of a center-point
off-axis bending specimen (Fig. 3). In an off-axis bending test, the longitudinal
axis of the material, axis 1, is oriented at an angle(0) to the longitudinal axis of the
beam. Angles of both 30° and 45° were considered.

63.4 mm
35 mm *

610 mm

Wood fiber direction

N

Off-axis strength, oy Fig. 2. Off-axis tensile test
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Fig. 3. Off-axis bending specimen and corresponding finite element mesh (units in mm)

The load, in this configuration, induced a predominantly linear elastic failure
due to combined tension perpendicular to grain and shear. This scheme was
chosen for consistency with the linear elastic off-axis tension test method used to
evaluate the interaction parameter, F,.

A linear elastic finite element analysis was performed to estimate the stresses to
be used in the prediction model. The orthotropic, plane stress, finite element
analysis program ‘FEM” written by Foschi, (1974) was used. The mesh consisted
of 72 quadratic elements, discretized as shown in Fig. (3). A 3 x 3 Gauss inte-
gration rule was used and the resulting stresses were transformed to the stresses
in the principal material directions for direct use in the Tsai-Wu criterion.

The analytical techniques used in this paper are based on Monte Carlo sim-
ulations to account for the random nature of the strength parameters. In general,
this simulation technique involves substantial repetition of a simulated solution
using randomly generated values from assumed probability distributions. In this
case, the principal strengths, X,, X, Y,, etc., were randomly generated according
to lognormal distributions, using the experimentally obtained statistical param-
eters given in Table 1. Lognormal distributions were chosen as they were shown
to describe these principal strengths relatively well by Clouston (1995). Based on
the randomly generated principal strengths, the strength parameters of the
strength theory, F,, F,, etc., were computed. In contrast, simulated values for the
interaction parameter, F,,, were generated directly using the analytically deter-
mined mean and standard deviation assuming a normal distribution. A normal
distribution was deemed appropriate for F,, as it enabled either positive or
negative values reflecting this characteristic of F,,.

At this stage, all variables of the Tsai-Wu theory (ie. stresses and strength
parameters) were available. However, prior to applying the theory, the influence
of size on the brittle principal strengths, X,, Y,, and 8, required consideration.
Two analytical methods to combine size effect with the Tsai-Wu theory were
investigated.

Method 1 - Direct adjustment of brittle strengths

In this approach, individual beam failure was assessed through evaluation of Eq.
(2) over small regions of the beam (typically regions surrounding Gauss inte-
gration points within each finite element) which were assumed to be subjected to
uniform stresses. For each evaluation, a set of random strength values were
generated and considered in conjunction with the applied stresses, o, 65, and cg
at that point in question. The brittle strengths X,, Y,, and S were initially gen-
erated using the mean and standard deviation of the strength values based on the



original test volume. They were then adjusted for size effect in the following
manner.

Given Eq. (5), each one of the brittle strengths may be transformed from
representing the strength of the original test volume (610 x 63 x 35 mm?), to
representing that of a small volume in the beam (for example,

7.8 x 35 x 3.9mm?, which represents the volume surrounding one Gauss inte-
gration point). Since it was assumed that the stresses in both the test volume and
the small beam volume were uniform throughout the cross section, Eq. (5) can be
simplified to

k k
Tlrest) ¥ (test) = Tibeam) V (beam) (9) 221

Rearranging, we can establish a size factor

Vv *
size factor = I (beam) = < (test) ) (10)
Ttest) V(beam)

where k is the appropriate shape parameter for the strength in question taken
from Table 1. Thus, the adjusted strength corresponding to a small volume of the
beam was found by simply multiplying the known test strength by the size factor.

The brittle strengths were assumed to vary throughout each beam; however,
the more ductile strengths were considered to be random between beams but
constant within each member.

It was assumed that any indication of material failure meant total collapse of
the beam in keeping with brittle fracture theory. The complete beam evaluation
was performed 2500 times. Hence, the probability of any beam failing under a
specific load was the ratio of the number of beams that failed to the total number
of replications, 2500. The entire analysis was carried out for various load levels,
enabling the formation of a cumulative probability distribution.

Method 2 - Adjustment of predicted off-axis tensile strengths

A less direct and perhaps less versatile approach to predicting the probability of
failure of the bending specimens was investigated to provide a comparison to the
former method. This approach exploits the proposition that brittle strength de-
pends on the proportion of material that is highly stressed. According to brittle
fracture theory, a pure tension member, which has its entire volume highly
stressed, has a higher probability of a critical flaw occurring there and hence a
lower strength than does a bending member of the same size which has less
volume highly stressed.

In this second method, the Tsai-Wu failure criterion was first used to sim-
ulate random strengths of off-axis tensile member, oriented at 30° and 45° to
grain. These preliminary results are representative of the original brittle
strength test volumes only and were calculated per Eq. (7). Then, using Weibull
formulation, the off-axis tensile strengths were adjusted to yield the failure
stress in the extreme fibre of the off-axis center-point bending specimens at the
corresponding angle to grain. The relationship between tensile and bending
failure stress is:
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1
Tmax(b) — 1 X Ggred (1 1)

where:

Tmax(b) = Maximum tensile stress in a center-point bending specimen (center
span at the extreme fibre)

Ogred = off-axis tensile strength

Vi, = volume of stressed material in bending specimen

V, = volume of stressed material in tension specimen

k = 2-P Weibull shape parameter from simulation results

The failure loads in bending were then estimated using elementary beam theory
as

2bd’
P= 3 Tmax (v) (12),
where P is the failure load in bending and b, d and L refer to the width, depth and
span of the specimen, respectively. The failure load was then ranked to produce a
cumulative probability distribution.

Experimental off-axis bending tests

Off-axis bending tests were conducted to provide data for evaluation of the
foregoing analytical methods. Descriptive statistics for both the 30° and 45° data
are summarized in Table 2. Also, fitted 2-P Weibull coefficients using a maximum
likelihood approach are provided as they are used for later analysis. The speci-
mens were conditioned to approximately 8% moisture content and tested under
ambient temperature as were those for the uniaxial strength data and the Fy,
parameter. They were tested in the same configuration as that of the analytical
model. The predominant failure mode was tension perpendicular to grain with
the failure plane coincident with the grain angle. Failure occurred within 51 mm
of midspan with one exception in the 45° data set which initiated failure at
approximately 100 mm from midspan. The behaviour was consistent with that
shown in the prediction model.

Table 2. Off-Axis Bending Test Results

Statistics Off-Axis Bending Failure Load
30° 45°
Count 17 18
Mean (kN) 2.09 1.27
Stand. Dev. (kN) 0.24 0.16
2-P Weibull Shape, k 10.05 9.01

Scale, m 2.19 1.34




Results and discussion

The predicted and experimental results of the off-axis bending tests can be vi-
sually compared in Figs. (4) through (7). In each case, a 2-P Weibull distribution
was fitted to the experimental data to aid in evaluating the predicted results. Figs.
(4) and (5) were developed using the first method of incorporating size effects.

The model predictions in Figs. (4) and (5) differ solely in the choice of Weibull
shape parameter values for size effect adjustments. The analytical model of Fig.
(4) utilized the shape parameters given in Table 1, computed through a maximum
likelihood approach. In the model predictions of Fig. (5), the Weibull shape
parameters were approximated by k = (Coefficient of Variation) %%,

Comparing Figs. (4) and (5), it is apparent that the prediction model is de-
pendent on the choice of shape parameters. This is especially important for the
shape parameters associated with the perpendicular to grain tensile strength, ky,.
The maximum likelihood and coefficient of variation approach yield ky, = 15.89
and ky, = 12.46, respectively. The smaller ‘k’ of Fig. (5) resulted in higher ten-
sion perpendicular to grain strengths, Y, and thus produced higher failure loads
for the same probability of failure, shifting both the 30° and 45° curves to the
right. It resulted in a marginally better overall fit as shown by comparing the sum
of squared error (SSE) between results given in Figs. (4) and (5) for the 5%, 50
and 95 percentiles for both 30° and 45° data: SSE = 0.22 and SSE = 0.21.

Although the numerical predictions agree reasonably well with the experi-
mental findings, both the 30° and 45° prediction curves underestimate the vari-
ability of the experimental results. This can be attributed to the relatively small
sample size of the principal strength data - predominantly the Y, data, as this is
the controlling strength in this load configuration. With a more intense testing
scheme, the principal strength variability would be better estimated and hence
provide a better overall prediction model.

Fig. (6) illustrates the effectiveness of the second method of incorporating size
effect. The results are superior to those of the previous method to which the
quantitative evaluation of SSE = 0.11 attests. This improvement may be attrib-
uted to a more general dependency on the variability of the principal strengths of
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Fig. 4. CDF for off-axis bending failure load using method 1 (k from maximum likelihood
approximation)
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Fig. 5. CDF for off-axis bending failure load using method 1 (k from COV approximation)
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Fig. 6. CDF for off-axis bending failure load using method 2 (k from predicted tension
strengths)

method 2 in comparison to method 1. Unlike method 1, method 2 incorporates
the variability of all principal strengths by accounting for size effect using one
shape parameter derived from a fit to the tension sirengths predicted by Eq. (8).
Method 1, on the other hand, accounts for size effect by using three separate
shape parameters, each developed from relatively small samples sizes for the
individual brittle principal strengths, X,, Y,, and S. Consequently, the accuracy of
method 1 is highly dependent on the shape parameters for these strengths which,
in turn, are closely linked to the respective strength’s variability. As previously
suggested, larger sample sizes would be very useful in improving the accuracy of
the first method.
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Fig. 7. CDF for off-axis bending failure load using method 2 (k from experimental bending
tests)

To evaluate the sensitivity of method 2 to shape parameter used, another shape
parameter, shown in Table 2 and obtained by fitting the experimental bending
tests, was investigated. The results of this analysis are shown in Fig. (7). This
figure illustrates very good agreement between method 2 and the experimental
results with the best SSE of all analyses (SSE = 0.08). Since the shape parameter
of the experimental bending tests is unavailable prior to the testing, this method
cannot be considered as a prediction procedure. Rather, it illustrates that excel-
lent agreement can be attained if sufficient information were available to estimate
the variability of the strength properties.

Conclusions

This paper brings to light the fact that size effect must be considered when
employing strength theories to predict the load carrying capacity of wood or
wood composite members. Specifically, size effects must be accounted for when
utilising experimentally obtained brittle strengths (representative of one material
volume) in a strength criterion (representative of a different material volume). To
demonstrate, the paper describes two distinct methods for coupling Weibull
weakest-link theory with the Tsai-Wu strength theory. The analyses were per-
formed assuming a linear elastic plane stress state under the general framework of
probability theory. Strength parameters of the strength theory were described in
terms of probability distributions and Monte Carlo simulations were employed to
predict the load capacity of a center-point bending specimen using the material
properties of Douglas-fir laminated veneer.

The first method described involved a straight forward transformation of
brittle strengths from those representing the original test volume to those rep-
resenting the small volume of the member to be analyzed with the strength
criterion. The second approach entailed first using the strength criterion to
predict ultimate load capacity of off-axis tensile specimens and then adjusting
these predicted results using Weibull formulation.

Experimental tests were conducted to verify the proposed analytical tech-
niques. Although results from both methods were reasonably accurate, the second
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method provided a more accurate estimation of ultimate off-axis bending
strength. It was suggested that with larger experimental sample sizes for the
brittle principal strengths of tension and shear, and hence a more accurate sta-
tistical representation of these strengths, the present accuracy of the prediction
models could be improved.

Future studies endeavouring to predict the ultimate capacity of wood or wood
composite members through strength theory modelling could benefit from the
methods proposed herein. For example, the ideas put forth in this paper could
ultimately be applied to other wood composite materials such as parallel strand
lumber or complex wood composite assemblies such as wood I-joists or wood
plate trusses to improve prediction accuracy.
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