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COMPUTATIONAL MODELING OF STRAND-BASED WOOD COMPOSITES

By Peggi L. Clouston,1 P.E., and Frank Lam,2 P.E., Member, ASCE

ABSTRACT: A nonlinear stochastic model has been formulated to simulate the stress-strain behavior of strand-
based wood composites based on the constitutive properties of the wood strands. Prediction models of this type
save time and money in the development of wood composites by computationally gauging the effects of varying
raw material characteristics with limited fabrication and testing of the full-scale product. The proposed model
uses a stochastic-based materially nonlinear finite-element code with extended capacity to perform Monte Carlo
simulations to predict the stress-strain behavior of [615]s and [630]s angle-ply laminates in tension and com-
pression. The nonlinear constitutive behavior of the wood strands is characterized within the framework of rate-
independent theory of orthotropic plasticity, where the plastic flow rule is in accordance with the Tsai-Wu
criterion. Shear strength and stiffness of the strands, as well as the interaction parameter of the Tsai-Wu criterion
have been estimated through a minimization technique developed in the present study. The model’s accuracy
was validated through comparisons of the numerical simulation results and experimental data. Excellent agree-
ment was found.
INTRODUCTION

The development of structural composite lumber (SCL)
[e.g., Parallel Strand Lumber (PSL) and Laminated Strand
Lumber (LSL)] has depended predominantly upon expensive
empirical-based research initiatives. The products were grad-
ually refined through experimental manipulation of the con-
stituents to what we know today as viable building materials.
The process was costly and time consuming. The development
could have been hastened significantly, however, with the aid
of a computational model. Computer models can be used to
estimate the effects of varying raw material characteristics on
the final product’s mechanical properties, thereby reducing
fabrication and testing costs. It could also be extended to an-
alyze specific product applications such as connection details.
As such, there is a strong and urgent need for these models in
the composite wood industry.

Surprisingly, to date, relatively little research has been con-
ducted on modeling of wood composites. An early study by
Hunt and Suddarth (1974) predicted tensile modulus of elas-
ticity and shear modulus of medium-density homogeneous
flakeboard using a linear elastic finite-element analysis to-
gether with Monte Carlo technique. The model underestimated
the experimental tensile modulus by 8% for aspen and 6% for
douglas fir, whereas the shear modulus was overestimated by
10% and 13% for aspen and douglas fir, respectively. More
recently, Triche and Hunt (1993) developed a linear elastic
finite-element model capable of predicting the tensile strength
and stiffness of a parallel aligned wood strand composite with
controlled geometry. The model was micromechanical in na-
ture, considering each strand to have three layers (i.e., pure
wood, resin, and an interface) and the properties of the indi-
vidual constituents were used as input. Excellent accuracy for
the predicted modulus of elasticity was reported (from 0.0%
to 11.1% error). However, prediction of maximum stress was
inconsistent and in at least one case unacceptable (from 1.2%
to 101.1% error). Cha and Pearson (1994) developed a two-
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dimensional (2D) finite-element model to predict the elastic
tensile properties of a three-ply veneer laminate, consisting of
an off-axis core ply of varying angles. Good agreement was
obtained between predicted and experimental strains at maxi-
mum load (maximum difference of 14.3%) as well as predicted
and experimental stresses (maximum difference of 7.7%). Re-
cently, Wang and Lam (1998) developed a three-dimensional
(3D), nonlinear, stochastic finite-element model to estimate the
probabilistic distribution of the tensile strength of parallel
aligned wood strand composites. The model was based fun-
damentally upon longitudinal tensile strength and stiffness data
of individual strands. The model was verified through com-
parison of predicted and experimental data for four- and six-
ply laminates. In all cases, excellent agreement was reported.

It is of interest to note that for all preceding research, save
Wang and Lam (1998), focus was placed on linear elastic con-
stitutive theory. Although this may suffice for wood in pure
tension, for compression—where the stress-strain behavior is
distinctly nonlinear (Goodman and Bodig 1971; Maghsood et
al. 1973)—a nonlinear analysis is necessary. For example, re-
striction of a SCL bending analysis to the elastic range could
result in an inefficient design because of the analysis’ inability
to account for the material strength beyond the proportional
limit. Thus, a comprehensive model for SCL, capable of pre-
dicting all loading scenarios, must be able to represent both
linear and nonlinear behavioral regimes.

To this end, a continuum mechanics approach is adopted
herein to model the nonlinear behavior of laminated wood
composites up to and including ultimate failure. A materially
nonlinear finite-element code has been developed where the
nonlinear constitutive behavior of the wood strands is char-
acterized by rate-independent theory of orthotropic plasticity.
Also, to account for inherent material variability, the code has
extended capacity to perform Monte Carlo simulations.

This research is the preliminary stage of a larger project to
develop a computational model to ultimately predict the non-
linear bending behavior of parallel aligned wood strand com-
posites. This material is a simplified version (with convenient
and controllable geometry) of the more complex commercial
wood composite material, PSL, which contains many strength-
reducing characteristics such as voids, overlaps and angle-to-
grain deviations. The present study addresses only angle-to-
grain deviations. The model is currently formulated to predict
the nonlinear load-displacement behavior of symmetric angle-
ply laminates, as depicted in Fig. 1.

MODEL DEVELOPMENT

The model can best be explained with reference to an ide-
alized uniaxial stress-strain curve, as illustrated in Fig. 2. As



FIG. 1. Angle-Ply Lamina/Laminate and Respective Coordinate Sys-
tems

FIG. 2. Idealized Stress-Strain Behavior

shown, the model is comprised of four basic constitutive re-
gimes: elastic, elastoplastic, postfailure brittle, or postfailure
ductile. Beyond the elastic domain the material (i.e., integra-
tion point) may either (1) fail in a brittle manner or (2) first
strain-harden and then ultimately fail in either a ductile or
brittle mode. For ductile failure, the material is assumed to
lose all stiffness but retains strength, whereas for brittle failure
both stiffness and strength are lost. Strain-hardening is char-
acterized by successive growth of the yield surface using as-
sociative flow and isotropic hardening. The yield surface is
defined by the Tsai-Wu criterion (Tsai and Wu 1971).

Tsai-Wu Criterion

Strength criteria are used to estimate the combination of
stress components (si) at any point in a member that causes
the onset of material failure (or yielding for ductile behavior).
The failure/yield surface for the Tsai-Wu criterion in 3D space
is described by the equation

F s 1 F s s = 1 (1)i i ij i j

where i, j = 1, 2, . . . , 6 (repeated indices imply summation),
and Fi and Fij are second and fourth rank strength tensors,
respectively. Under a plane stress assumption, s3, s4, and s5

are assumed negligible and the F6, F16, and F26 terms are zero
due to material orthotropy. The expanded form of (1) then
becomes

2 2 2F s 1 F s 1 F s 1 F s 1 2F s s 1 F s = 1 (2)1 1 2 2 11 1 22 2 12 1 2 66 6

The coefficients F1–F66, with the exception of F12, are de-
scribed in terms of the uniaxial strengths in the principal ma-
terial directions. For a lamina in plane stress, these are: lon-
gitudinal strength in both tension and compression (Xt, Xc),
transverse strength in both tension and compression (Yt, Yc)
and in-plane shear strength (S ). Using (2) to individually eval-
uate each uniaxial strength, and performing some simple math-
ematical manipulation, the strength parameters (Fi and Fij) are
found to be

1 1 1 1 1 1 1
F = 2 ; F = 2 ; F = ; F = ; F =1 2 11 11 66 2X X Y Y X X Y Y St c t c t c t c

(3)

The remaining unknown term of (2) F12 is commonly referred
to as the interaction parameter, as it accounts for the interac-
tion between the normal stresses. The parameter F12 is com-
monly determined experimentally, which is a main distinguish-
ing feature of the Tsai-Wu theory from other strength theories.
This contributes to the effectiveness of the theory; however, it
also presents some challenges in application. Primarily, as first
pointed out by Tsai and Wu (1971), the parameter is extremely
sensitive to experimental variations. Slight inaccuracies in
strength measurements can lead to large inaccuracies in the
value of F12. Moreover, the magnitude of the term is con-
strained by the stability bound

2F F 2 F $ 0 (4)11 22 12

to ensure closure of the failure/yield surface. Violation of this
condition would imply infinite strength for some stress states,
which is physically impossible.

Several researchers have reported unacceptable results for
experimentally obtained values of F12 (Pipes and Cole 1973;
Suhling et al. 1984; Clouston 1995). The earlier studies
prompted others to explore theoretical solutions (Cowin 1979;
Liu 1984). Despite all efforts, no standard method to determine
F12 has been established. For this study, a probabilistic ap-
proach has been adopted.

Orthotropic Plasticity Formulation

The quadratic criterion for yielding of an orthotropic plastic
material is written in general form as

2 2f [ s̄ (s a M ) 2 k = 0 (5)i i ij

where = effective stress or equivalent stress; and k = thresh-s̄
old stress which is equal to the size of the yield surface. For
the purposes of plastic formulation, the Tsai-Wu criterion is
adapted to this general form as follows: The square of the
effective stress is conveniently defined as

2s̄ = M (s 2 a )(s 2 a ) (6)ij i i j j

where the terms Mij and ai = {a1, a2, 0}T describe the shape
of the yield surface and the surface origin, respectively, so that

2f [ M (s 2 a )(s 2 a ) 2 k = 0 (i, j = 1, 2, 6) (7)ij i i j j

Expanding this and setting the equalities

2L = 2M a ; K = 2M a a 1 k (8)i ij j ij i j

one obtains

f [ M s s 2 L s 2 K = 0 (9)ij i j i i

Comparing (9) with (2) it can be concluded that

F F 0 F11 12 1

M [ KF = K F 0 ; L [ 2KF = 2K Fij ij 22 i i 2F G H J
sym F 066

(10)

It can be noted that the components of Mij are not independent.
For example, if M11 = 1 then K = 1/F11 and M12 = F12 /F11, etc.
(Shih and Lee 1978). Furthermore, ai can be found by solving
the simultaneous equations

L = 2KF = 2M a = 2KF a ; i.e., F = 22F a (11)i i ij j ij j i ij j
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and finally, the square of the threshold stress is calculated as
k2 = K 1 Mijai, aj.

Subsequent Yield Surfaces

The progressive development of the yield surface, in the
elastoplastic domain, is handled with subsequent yield surfaces

2 p 2 p¯ ¯f [ s̄ (s a M (ε )) 2 k (ε ) = 0 (12)i i ij

where now, Mij and k are functions of a hardening parameter,
taken in this study to be the effective plastic strain, . Thispε̄
quantity is derived through association with the plastic work
increment by:

p p p¯dW = kdε = s dε (13)i i

In deriving the relationship between k and we assume apε̄ ,
one-to-one relationship, k = which upon differentiationp¯H(ε ),
becomes = H9. H9, termed the hardening parameter, canp¯dk/dε
be found from a uniaxial stress-strain test through the formula:

H9 = E9/(1 2 E9/E) (14)

where E = elastic modulus and E9 = slope of the elastoplastic
portion of the stress-strain curve. H9 is associated with the
expansion of the yield surface and we have, assuming a bilin-
ear stress-strain curve

p¯k = k 1 H9ε (15)o

where ko = initial size of the yield surface.
The strength parameter terms Mij also vary with plastic de-

formation. Following a procedure initially proposed by Whang
(1969), the nonlinear strength parameters Xc and Yc are updated
upon detection of yielding. The updated values are calculated
by equating the work done during plastic deformation in a
uniaxial test to that produced by the effective stress and ef-
fective plastic strain. The resulting updated values are found
to be (Whang 1969; Vaziri et al. 1991):

E Ep1 p22 2 2 2 2 2 2 2X = (k 2 k ) 1 X ; Y = (k 2 k ) 1 Y (16)c o co c o co
H9 H9

where Ep1 and Ep2 = hardening parameters for the respective
uniaxial stress/strain curves and the subscript ‘‘o’’ refers to the
initial yield value.

Compression versus Tension Dominance

The foregoing plasticity formulation is used to describe
strain hardening of the material in the case of a compression-
dominant stress state. However, as it is accepted that tensile
failure for wood is generally brittle (Barrett et al. 1975; Mad-
sen and Buchanan 1986; Barrett et al. 1995), if the stress-state
at the failed/yielded location is deemed tension-dominant, brit-
tle failure ensues. The decision between compression or ten-
sion dominance is made depending on the combination of
stresses at the point of failure. Let us define: g1 = 22M (s11 1

2s1a1 1 and g2 = 2 2s2a2 1 as portions of2 2 2a ) M (s a )1 22 2 2

the effective stress, which reflect the magnitude of s1 and s2,
respectively. Albeit subjective, the stresses at an integration
point is deemed tension-dominant, and thereby brittle, when
the failure criterion is violated and any one of the following
happens: (1) s1 $ Xt; (2) s2 $ Yt; (3) s6 $ S; (4) s1 $ 0 and
g1 $ g2; or (5) s2 $ 0 and g2 $ g1. The latter two criteria
are included to address the case of: (1) large longitudinal ten-
sion combined with large shear and (2) large longitudinal com-
pression combined with transverse tension. All other cases of
failure are considered ductile.

Postfailure Modeling

Referencing Fig. 2, when ductile failure occurs, the yield
quantities, Xc and Yc, have reached their ultimate values and
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FIG. 3. Finite-Element Representation

the stress level remains constant. When brittle failure occurs,
however, the stress level is reduced gradually to facilitate con-
vergence of the iterative procedure. Upon the first iteration of
each load increment following brittle failure, the stresses at the
failed integration point are reduced to 70, 90, 95, and 98% of
the previous value, for s1 (when tensile), s2, s6, and s1 (when
compressive), respectively. These values were derived empir-
ically and provide good postpeak results.

Constitutive Equations

The constitutive behavior of the layers is defined using the
incremental form of Hooke’s law to incorporate material non-
linearity as

{ds9} = [Q9] {dε9} (17)l l

where l refers to the lth layer of the laminate; {ds9}l = {dsx,
dsy, , {dε9} = {dεx, dεy, dgxy}

T, which is the laminateTdt }xy l

strain increment vector—the same for each layer assuming
perfect bonding between layers, and [Q9]l is the constitutive
matrix be it elastic, elastoplastic, or postfailure, depending on
the stress level. Primes denote that values have been trans-
formed from ply coordinates (1, 2) to laminate coordinates
(x, y) (reference Fig. 1). The individual layer constitutive equa-
tions are then superimposed using classical lamination to yield
the force-strain properties of the laminate:

n

{dN} = [Q9] t {dε9} (18)l lO
l = 1

where {dN} = {Nx, Ny, Nxy}
T = vector of resultant in-plane

forces acting on the laminate; tl = thickness of the lth layer;
and n = total number of layers.

Finite-Element Model

A nonlinear, stochastic finite-element code has been devel-
oped to incorporate the foregoing constitutive model. The pro-
gram was used to simulate the load-displacement behavior of
symmetric angle-ply laminates using the finite-element mesh
as depicted in Fig. 3. The elements (i.e., plane, bilinear, iso-
parametric elements) are comprised of four layers representing
the strands. For each layer, a two-point Gauss quadrature rule
was used resulting in 16 stress points per element. The lami-
nate was loaded by prescribing an increasing value of displace-
ment at the five end nodes, as shown. For each increment in
displacement, the nonlinearities in the equilibrium equations
are resolved using a modified Newton-Raphson iterative pro-
cedure. As the structural stiffness becomes either zero or neg-
ative beyond the peak load, the initial stiffness is maintained
throughout the entire analysis. For each stress point, within
each iteration, the stresses were monitored for failure or yield
in accordance with (7) or (12), depending on stage of plas-
ticity.

Model Limitations

It is noted that in using simple planar elements, the model
assumes that interlaminar stresses associated with the through-



FIG. 4. Tension Test Setup

thickness (z) direction are negligible. This is a valid assump-
tion if (1) the laminate is symmetric, (2) the applied loads on
the laminate are statically equivalent to in-plane forces pro-
ducing neither bending nor twisting, and (3) ‘‘free-edge’’ ef-
fects are negligible. The present study complies with the first
two criteria. The third criteria leads to a phenomenon known
as delamination, which has been extensively studied both the-
oretically and experimentally for many advanced composite
materials (Pipes and Pagano 1971; Whitney and Browning
1972; Gibson 1994). These studies show that within a ‘‘bound-
ary region’’ (roughly one laminate thickness inward from the
free edge of the laminate), a 3D stress state exists. Although
this must be true for the present wood specimens, no delam-
ination was witnessed during testing. This is likely because
failure was instead governed either by perpendicular to grain
tensile stresses or by in-plane shear stresses. It would be ad-
vised that for future studies dealing with more complex, non-
symmetric composite beams, neglecting out-of-plane stresses
could lead to significant errors.

EXPERIMENTAL DATABASE

Laminae Properties

Evident from the failure criterion, the model requires as in-
put the principal properties (tensile, compressive, and shear
strength, and stiffness) of the individual layers. Tests were per-
formed on coastal douglas-fir strands that were air dried to a
moisture content of 4–9%. Tensile tests were conducted at the
University of British Columbia. A 250 kN material test ma-
chine (MTS) machine with mechanical wedge-action grips as
well as a 25.4 mm gauge length extensometer was used as
depicted in Fig. 4—the results of which are summarized in
Table 1. The longitudinal specimens were individual strands
whereas the transverse specimens, to avoid breakage during
handling, were small laminates consisting of six strands each.
The tensile properties (both parallel and perpendicular to the
FIG. 6. Trilinear Approximation of Compressive Stress-Strain
Behavior

FIG. 5. Compression Test Setup

grain) are assumed linear elastic and are thus defined by two
variables each: E1T, XT, and E2T, YT—elastic modulus and ul-
timate strength in the parallel and perpendicular direction, re-
spectively.

Compression tests were conducted at l’Ecole Normale Su-
périeure (ENS), Cachan, France. Swivel bearings, both top and
bottom, were used to prevent eccentric loading on the speci-
men as shown in Fig. 5. Stiffness moduli were determined
using the cross-head displacement. Results are summarized in
Table 1. The compressive properties are nonlinear and con-
sequently require more variables to describe their mechanical
behavior. From Fig. 6, the stress-strain curve for parallel to
grain compression, for example, has been simplified to a tri-
linear approximation and can be defined using four variables:
E1C, XC, , and , which denote the elastic modulus priorUE9 X1C C

to yielding, the yield stress, the elastoplastic tangent modulus
beyond yield, and the ultimate stress, respectively. These val-
TABLE 1. Tension and Compression Database for Laminae

Test

Nominal
dimension

(mm3) Count

PROPERTY

Elastic Stiffness

Average
(GPa)

COV
(%)

Proportional Limit

Average
(MPa)

COV
(%)

Tangent Stiffness

Average
(GPa)

COV
(%)

Ultimate Stress

Average
(MPa)

COV
(%)

Longitudinal
compression

17 3 19 3 40 53 10.09 19.13 67.32 8.04 1.93 33.11 76.46 7.06

Transverse
compression

17 3 19 3 40 54 0.49 15.23 15.37 11.75 0.11 35.05 18.19 9.28

Longitudinal
tension

3 3 19 3 51 36 15.46 30.50 — — — — 68.77 26.68

Transverse
tension

17 3 19 3 150 45 0.09 24.40 — — — — 1.91 18.31
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2001 / 847



FIG. 7. Cumulative Probability Distribution for Xc and uX c

ues were determined for each specimen by equating the area
under the experimental stress-strain curve (i.e., the strain en-
ergy stored in the specimen) to the area of the fitted trilinear
stress-strain curve. Perfect plasticity beyond ultimate load (as
opposed to strain softening) has been assumed. This assump-
tion not only simplifies the analysis greatly, but also agrees
with experimental results (up to an acceptable strain level).

It is noted here that the tensile strengths given in Table 1
reflect only the strength of the corresponding tested volume.
Prior to implementing the values into the finite element code,
adjustments must first be made for size. This size effect is most
prominent with brittle modes of failure and is dependent on
the strength variability of the material. Size effect has been
acknowledged and addressed in many wood and timber stud-
ies, such as Barrett et al. (1975), Madsen and Buchanan
(1986), and Barrett et al. (1995), as well as SCL studies by
Sharp and Suddarth (1991) and Clouston et al. (1998). Each
of these studies espoused the use of Weibull weakest-link the-
ory to quantify size effect. As such, this theory was adopted
for this study. Transverse tension strength was adjusted from
representing that of the tested volume to that of the tributary
area for one Gauss point. Longitudinal strength was adjusted
however, from the experimental gauge length to the simulated
model gauge length. In all cases, the relationship

1/b
t V1 2= (19)S Dt V2 1

was used, where the strengths t1 and t2 correspond to the vol-
umes V1 and V2, respectively, and b is the shape parameter of
the two-parameter Weibull distribution for that test configu-
ration. (Clouston et al. 1998).

Because the analysis is stochastic, the strengths and stiff-
nesses for each layer are represented by appropriate probability
distributions. The tensile properties are randomly generated
lognormal values. The compressive properties, however, are
generated in accordance with a bivariate standard normal dis-
tribution, as follows:

4

b = m 1 C z (i = 1, 2, 3, 4) (20)i bi ij jO
j = 1

where (for parallel to grain properties, for example) b1 = E1C;
b2 = Xc; b3 = ; b4 = ; mbi = respective variable mean; Cij

uE9 X1C c

= lower triangle of the correlation matrix of the variables, de-
rived through Cholesky decomposition; and zi = an indepen-
dent standard normal random variable. The experimental re-
sults are very well represented by the simulated values, as
illustrated in Fig. 7.

All strength and stiffness properties were assumed to vary
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FIG. 8. Cumulative Probability Distribution of [615]s Laminate in
Compression

TABLE 2. Results of Nonlinear Minimization

Statistics

[615]s Compression

Experimental Simulated S G F12

Average
(MPa)

51.57 51.65 5.99 232.77 5.14E-04 MPa22

COV (%) 14.42 15.39 11.73 17.76 71.73

between layers, with the exception of tension perpendicular to
grain strength, which was instead regenerated for each inte-
gration point. This strength was treated differently because in
addition to yielding good results, material behavior in this con-
figuration is believed to be more in keeping with ideal brittle
fracture theory. In this configuration, the within-member var-
iation is less likely to be correlated as it is, for example, for
tension parallel to grain (Lam and Varoglu 1990). The failure
mechanism is more likely perfectly brittle, failing completely
when fracture occurs at the weakest point. The material flaws
are assumed to be randomly distributed.

In-Plane Shear Strength (S ), Shear Modulus (G ), and
Interaction Parameter (F12)

Various approaches have been taken in the past to evaluate
the shear properties of wood, the most popular being the
ASTM shear block method for small clear specimens as de-
scribed in ASTM D 143-99. This method, however, produces
a complex stress distribution in the specimen, and hence, a
questionable estimation of pure shear strength. An added chal-
lenge lays in finding the pure shear characteristics of a wood
strand (i.e., practical difficulties in testing the strand due to its
geometry). Furthermore, there are complications, as outlined
previously, with establishing the interaction parameter of the
Tsai-Wu criterion. As such, an alternative method to evaluating
these three variables [shear strength (S), shear modulus (G),
and interaction parameter (F12)] has been developed as given
next.

The variables are obtained simultaneously through a nonlin-
ear least-square minimization of error approach between the
predicted and experimental compression strengths of a [615]s

angle-ply laminate. Tests were conducted on the laminate
(nominal dimensions: 11 3 19 3 40 mm3) at ENS, Cachan,
France. The descriptive statistics for the results are given in
both Table 2 and Fig. 8.

In short, the procedure entailed minimizing the function
2P predti

F = 1 2 (21)O S Dexptii = 1



with respect to the mean and standard deviation of each of the
three variables (S, G, F12), where P denotes the number of
probability levels for consideration and the superscripts
‘‘pred’’ and ‘‘exp’’ refer to the predicted and experimental lam-
inate strengths, respectively. The compressive strengths of the
laminates were simulated using the finite element analysis, in
conjunction with a Monte Carlo simulation routine to produce
the probabilistic distributions. Strength was first calculated
based on initial estimates for the mean and standard deviation
of the three variables. This predicted strength was ranked (i.e.,
sorted in ascending order and given the associated probability
of failure). The residual function F was then calculated, where
the predicted strength was determined for the same ith prob-
ability level as the experimental strength.

Based on the gradient of the residual function, estimated by
a perturbation process, adjusted values of the mean and stan-
dard deviation of the three variables were computed. These
new, adjusted, statistical parameters replaced the initial esti-
mated values and the residual function was re-evaluated. This
procedure was repeated until the difference between residual
function values for subsequent iterations satisfied a set toler-
ance of 1.0 3 1023.

Referring to Table 2, the average values and variability ob-
tained for S, G, and F12 appear reasonable. Shear and shear
modulus for Douglas fir clear wood have been reported by
Bodig and Jayne (1993) as 6.4 MPa and approximately (using
a 14:1 ratio for E1:G) 800 GPa. The difference between the
calculated and published results for the latter is attributed to
the thin nature of strands as opposed to solid wood specimens.
The interaction parameter F12 is more difficult to evaluate as
there is no directly comparable data in the literature for wood
strands. As such, one can evaluate it based on its conformity
to a deterministic evaluation of the stability bounds [(4)]. Us-
ing the deterministic average values of the strength parameters
from Table 1 and adjusting the tensile strengths for size effect,
the bounds were found to be 61.51 3 1023 MPa22. The result
of 5.14 3 1024 MPa22 falls within these bounds however, the
coefficient of variation is quite high: 71.73%. This is likely a
consequence of the parameter’s high sensitivity to experi-
mental variation.

The model predicts the average ultimate compression
strength of a [615]s angle-ply laminate to be 51.65 MPa. This
is very close to the experimental result, 51.57 MPa, as would
be expected since the parameters were fitted using this ex-
perimental data. The predicted variability is also very accurate,
with predicted and experimental coefficients of variations of
15.4% and 14.4%, respectively. Fig. 8 illustrates these results
visually through a comparison of the experimental and simu-
lated cumulative probability distributions. Also, for reference,
a lognormal distribution was plotted. Comparing the three
curves, the experimental data tends to deviate slightly at the
lower end of the curve, possibly due to manufacturing or test
imperfections. Overall, however, the model predictions fit the
experimental data extremely well.

MODEL VERIFICATION

The computer model, now in a complete state, was used to
predict the strength of other test configurations made from the
FIG. 10. Cumulative Probability Distribution of [615]s Laminate in
Tension

FIG. 9. Cumulative Probability Distribution of [630]s Laminate in
Compression

same material: [615]s laminates in tension and [630]s lami-
nates in both tension and compression. Laminates were fab-
ricated and tested for comparison. All laminates were nomi-
nally 19 3 10.5 mm2 in cross section. The laminates tested in
compression were nominally 40 mm long to comply with the
requirements of ASTM D 198-99 for short columns with no
lateral support. The [615]s tensile specimens were 120 mm
long and the [630]s laminates 60 mm long. A longer test
length was used for [615]s laminates to ensure wood fibres
were not continuous from one test grip to the other, potentially
increasing observed strength.

The results of both numerical simulations and experiments
are summarized in Table 3 and Figs. 9–11. As evident from
Table 3, the average value of the ultimate strengths (maximum
percent error of 3.99%) and corresponding coefficient of var-
iations (predicted range from 9.6 to 20.7%; test data range
from 9.0 to 16.6%) are well predicted. The cumulative prob-
ability distributions in Figs. 9–11 offer a visual comparison
of the predicted and experimental results.
TABLE 3. Results of Experimental and Simulated Tests

Statistics

[615]s

Tension

Experimental Simulated
Error
(%)

[630]s

Tension

Experimental Simulated
Error
(%)

Compression

Experimental Simulated
Error
(%)

Average (MPa) 39.38 39.14 0.61 21.71 21.32 1.80 20.30 19.49 3.99
COV (%) 16.72 20.72 23.92 9.01 12.12 34.52 11.12 9.57 13.94
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FIG. 13. Stress/Strain Curves for [630]s Laminate in Compression

FIG. 12. Stress/Strain Curves for [615]s Laminate in Compression

FIG. 11. Cumulative Probability Distribution of [630]s Laminate in
Tension

To further demonstrate the applications of the computer
model, 500 stress-strain curves for the [615]s and [630]s com-
pression laminates were computer generated and compared
with the actual experimental curves. The tensile results were
not comparable in this case due to the experimental test setup.
Here the MTS tension grips used were of a wedge type such
that as the load increased, the measured displacement of the
specimen included inherent displacement within the grips
thereby producing an erroneous load-displacement curve. Any
test requiring accurate load displacement curves (i.e., longi-
tudinal or transverse tests for modulus-of-elasticity calcula-
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tion) were conducted with an MTS extensometer mounted on
the specimen. The results showing the load increments for the
compression specimens are given in Figs. 12 and 13. For clar-
ity, only five curves of each (experimental and simulated) have
been shown, which represent the approximate average as well
as the upper and lower bound for both stiffness and strength.
The experimental results have been zero-adjusted to remove
nonlinearities at the curve origin. This was done by shifting
the curve in the x-direction only, such that the projection of
the linear portion of the load-displacement curve passes
through the origin. The nonlinearities occur due to the settling
of the specimen within the rotating spherical bearing blocks,
used to prevent eccentric loading on the specimen.

The simulated curves clearly lay within the experimental
bounds. The diagrams also demonstrate that the [615]s lami-
nates tend to behave more plastically, since for this configu-
ration compressive parallel to grain stresses govern, whereas
for the [630]s laminates, tensile perpendicular to grain stresses
govern, resulting in a more brittle laminate behavior.

CONCLUSION

The foregoing numerical simulations demonstrate the use of
a plasticity based stochastic finite-element model to predict the
fundamental material response of [615]s and [630]s angle-ply
laminates. Moreover, a unique method has been described to
evaluate the shear characteristics and the interaction parameter
of the Tsai-Wu theory of a wood strand laminae. It is important
to note that the model is, at present, accurate for only the
configurations considered. Further validation of the model is
necessary for other modes and configurations. The practical
significance of the present results is that orthotropic plasticity
theory, in conjunction with stochastic analysis, appears to be
a very promising technique in modeling the nonlinearities in
the stress-strain behavior of wood strand composites.
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NOTATION
The following symbols are used in this paper:

bi = randomly generated bivariate standard normal pa-
rameter;
Cij = lower triangle of correlation matrix;
E = elastic modulus;

E9 = tangent modulus;
Fij, Mij = tensors of strength parameters;

G = in-plane shear modulus;
H9, Ep1, Ep2 = hardening parameters;

k = threshold stress;
{N} = resultant in-plane force vector;

n = total number of layers;
P = number of probability levels;

[Q]l = material stiffness matrix for lth layer of laminate;
S = in-plane shear strength;
t = thickness of lamina;

V = volume;
W p = plastic work;
Xt = longitudinal tensile strength;

Xc,
uX c = longitudinal compressive yield and ultimate

strength, respectively;
Yt = transverse tensile strength;

Yc,
uY c = transverse compressive yield and ultimate

strength, respectively;
zi = standard normal random variable;
ai = parameters which define offset of yield surface;
b = shape parameter of two-parameter Weibull distri-

bution;
gi = portion of effective stress;

pε i = plastic strain components;
pε̄ = effective plastic strain;

si = stress components;
s̄ = effective stress;
t = nonspecific material strength; and

F = minimization function.

Subscripts

x, y, z = laminate coordinate directions; and
1, 2, 3 = principal material directions.
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