Skip to content Skip to navigation
UMass Collegiate M The University of Massachusetts Amherst
  • Visit
  • Apply
  • Give
  • Search UMass.edu
Center for Agriculture, Food, and the Environment

Integrating research and outreach education from UMass Amherst

  • About
    • Overview of CAFE
    • Be Ambitious!
    • History
    • Strategic Directions
    • Research & Outreach Interest Areas
    • UMass Extension Board of Public Overseers (BoPO)
    • Partners
    • Locations
    • Faculty & Staff Directory
    • Contact Information
    • Civil Rights Information
    • Employment Opportunities
  • Extension
    • Extension Outreach Overview
    • UMass Extension In Your Community
    • CAFE Extension Faculty
    • Extension Outreach Projects
    • Extension Initiative Reports
  • Programs
    • Extension Programs Overview
    • 4-H Youth Development
    • Clean Energy Extension
    • Climate Change
    • Cranberry Station
    • Crops, Dairy, Livestock and Equine
    • Food Science Extension
    • Fruit
    • Greenhouse Crops and Floriculture
    • Landscape, Nursery and Urban Forestry
    • Nutrition Education
    • Turf
    • Value-Added Food
    • Vegetable
  • Research
    • Mass Agricultural Experiment Station
    • Information About Accessing Research Funds
    • Research Projects
    • NIFA Integrated Research and Outreach Initiatives
    • Civil Rights Information & Resources
    • Summer Scholars Program
    • REEU Internship Program
  • Resources
    • Resources Overview
    • Interest Areas
    • Extension Sales Portal
    • Agriculture & Commercial Horticulture
    • Community & Economic Vitality
    • Disaster Preparedness
    • Food Safety
    • Home Lawn & Garden
    • Integrated Pest Management (IPM)
    • Land Conservation Tools
    • Pollinators
    • Tick Testing Resources
    • Urban Agriculture
  • Services
    • Services Overview
    • Pesticide Education
    • Plant Diagnostics Laboratory
    • Soil and Plant Nutrient Testing Laboratory
    • Hot Water Seed Treatment
    • Environmental Analysis Laboratory
  • Farms
    • Farms and Facilities Overview
    • Cold Spring Orchard Research and Education Center
    • Cranberry Station
    • Crop and Animal Research and Education Farm
    • Equine and Livestock Research and Education Farm in Hadley
    • Joseph Troll Turf Research Center
  • News & Events
    • Center News
    • Upcoming Events
    • News from the Media
    • Faculty/Staff Brief Bios
    • Spotlight Stories
    • Video Gallery

Compaction and Cultivation

Soil Aeration and Compaction

Aeration is the process of replacing soil air with air from the atmosphere and is important in sustaining sufficient soil oxygen for root growth and other growth related activities. A major contributor to poor aeration is soil compaction caused by vehicular and foot traffic. Soil compaction can create turf management problems caused by alterations in the physical properties of the soil including:

  • decrease in total pore space:associated with a decrease in macropore (large) spaces essential for internal drainage, channels for root growth, and air exchange. Micropore (small) spaces actually increase, and in turn increase water retention (although much of this water is unavailable for plant uptake).
  • decrease in soil oxygen content:oxygen is essential for root respiration and growth. Nutrient uptake by roots is an active process requiring oxygen and therefore nutrient uptake is limited by poor air exchange induced by compacted soils. Respiring roots also produce carbon dioxide (CO2) which can accumulate to plant damaging levels in compacted soils because of poor gas exchange with the atmosphere.
  • reduction in water infiltration and percolation rates:which alters irrigation practices and scheduling.
  • increase in soil strength and density:which reduce rooting density and depth.
  • increase in water retention:compaction prolongs wet soil conditions which can delay spring green up (by delaying soil warming) and intensify compaction in trafficked areas. Conversely, dry compacted soils in summer warm up faster and promote high soil temperatures which can dramatically slow root growth.

Compaction and Turfgrass Cultural Intensity

The decline in root growth (rooting depth and numbers) and shoot growth (shoot density and biomass, growth rates and recovery) caused by soil related stresses associated with compaction can necessitate alteration of turf management practices and increased cultural intensity.

Changes may include:

  • increased pesticide use:low shoot density encourages encroachment of weedy species tolerant of compacted sites such as annual bluegrass, goosegrass, and knotweed. The result may be an increase in herbicide use and cost. Reduced turfgrass vigor and favorable moisture conditions can enhance disease activity (brown patch and Pythium blight).
  • increased fertilizer use:turfgrass nutrient uptake from compacted soils may be reduced by 10 to 30% causing chlorotic, nitrogen deficient turf. However, increasing nitrogen fertilization can make a bad situation worse since the cause of the symptoms is not necessarily nutrient deficiency but rather limited root activity and viability. Additional nitrogen only further reduces rooting potential.
  • increased irrigation frequency and runoff:irrigation efficiency decreases because low infiltration rates associated with compacted sites may promote pooling (ponding) and surface water runoff which in turn reduces the amount of water available to recharge the rootzone. Typically, multiple cycling of irrigation water (small amounts of water applied over an extended period using several irrigation events) must be practiced, which complicates irrigation scheduling. In addition, because of poor drainage and restricted rooting, small doses of water must be applied more frequently, creating wetter conditions that intensify compaction.
  • increased environmental and wear stress:plant tissues become more succulent and have lower carbohydrate levels (a condition associated with poor drainage and frequent irrigation) which reduce environmental stress tolerance (heat, cold, drought, disease, wear). Any factor that contributes to increased tissue succulence (such as excess nitrogen, water, shade, and close mowing) in combination with compaction will reduce root and shoot response more than any one of these factors when considered alone. Additional maintenance is required to reduce or eliminate the symptoms.

Turf Cultivation Practices and Objectives (and Associated Benefits)

Turf cultivation practices are typically applied to the rootzone with the intent to limit surface disruption as much as possible. Cultivation methods available to turfgrass managers include coring (hollow tine, solid tine or shattercoring), slicing and spiking. However, these cultivation methods are not necessarily equal in their effectiveness to achieve important cultivation objectives such as thatch removal, alleviation of soil compaction, and preparations to enhance seed/soil contact for overseeding purposes (Table 1), while at the same time limiting surface disruption that can affect turf use and preemergence herbicide effectiveness (Table 2). Cultivation practices such as slicing and spiking, commonly used on golf courses, do not improve soil aeration to the same extent as do core cultivation practices, but are less disruptive to putting surfaces. Coring (especially hollow tine) is more disruptive to surface uniformity and requires a longer period for recovery. However, coring is the most effective method for improving aeration and alleviating compaction. A relatively new technology which uses short bursts of water injected under high pressure has been shown to provide reductions in compaction and improve aeration equal or superior to hollow tine core cultivation with less surface disruption.

Coring involves closed-hollow tines or open spoons that penetrate the soil and remove (and deposit) the soil core at the turf surface (see Figure 1). Core cultivation is the single most important management tool for controlling compaction. Other benefits of core aeration not listed in Table 1 include:

  • the release of gases such as CO2 (which begins immediately after coring).
  • increased soil infiltration rate which is the result of increased surface area from coring, reducing water runoff and puddling, and allowing wet soils to dry faster. For example, 1,000 square feet of turf after a single aeration event using a .75 inch diameter tine, spaced two inches on center, with a tine penetration depth of 2 inches, would be equivalent to 2180 square foot of surface area after aeration.
  • enhanced rooting that occurs within core aerifier holes (within 2 to 3 weeks after coring).
  • decreased thatch accumulation following core cultivation. This results from soil cores intermingling with the organic thatch layer and from accelerated decomposition associated with more favorable conditions (aeration) for microbial activity. Substantial amounts of thatch can be physically removed by core cultivation if thatch-containing plugs are collected and removed. The extent of thatch removal will vary with tine diameter, tine spacing, and the number of passes but can be as much as 10% or more (see Figure 1).
  • increased fertilizer uptake and use that results from aeration. Aeration also promotes incorporation of immobile materials such as lime and phosphorus into the rootzone.

Last Updated: May 1, 2011

Home Lawn & Garden Resources

  • Overview
  • Fact Sheets
    • Flower Fact Sheets
    • Fruit Fact Sheets
    • Lawn Fact Sheets
    • Trees & Shrub Fact Sheets
    • Vegetable Fact Sheets
    • Wildlife Management
  • Garden Clippings Newsletters
  • Food Gardening in Massachusetts 2020

Home Lawn & Garden Resources for fact sheets, newsletters, and photos

  • Overview
  • Fact Sheets
    • Flower Fact Sheets
    • Fruit Fact Sheets
    • Lawn Fact Sheets
    • Trees & Shrub Fact Sheets
    • Vegetable Fact Sheets
    • Wildlife Management
  • Garden Clippings Newsletters
  • Food Gardening in Massachusetts 2020

Subscribe to
Home Gardener Email List

Home Lawn & Garden Information »

Center for Agriculture, Food, and the Environment

 

Stockbridge Hall,
80 Campus Center Way
University of Massachusetts Amherst
Amherst, MA 01003-9246
Phone: (413) 545-4800
Fax: (413) 545-6555
ag [at] cns [dot] umass [dot] edu (ag[at]cns[dot]umass[dot]edu)

 

Civil Rights and Non-Discrimination Information

College of Natural Sciences

Login for faculty and staff

CAFE Units

Mass. Agricultural Experiment Station

UMass Extension

UMass Research and Education Center Farms

UMass Cranberry Station

Water Resources Research Center

Interest Areas

Agriculture

Commercial Horticulture

Energy

Environmental Conservation

Food Science

Nutrition

Water

Youth Development & 4-H

Services

Pesticide Education

Plant Diagnostics Laboratory

Soil and Plant Nutrient Testing Laboratory

Hot Water Seed Treatment

Water Testing / Environmental Analysis Laboratory

Projects

Conservation Assessment Prioritization System (CAPS)

Extension Risk Management/Crop Insurance Education

Mass. Envirothon

Mass. Herp Atlas

Mass. Keystone

MassWoods

North American Aquatic Connectivity Collaborative

RiverSmart

UMass Design Center in Springfield

Resources

Extension Sales Portal

Agriculture & Commercial Horticulture Resources

Community & Economic Vitality

Disaster Preparedness

Food Safety

Home Lawn & Garden

Integrated Pest Management (IPM)

Land Conservation Tools

Pollinators

Tick testing

Resources for Faculty and Staff

Extension Programs

4-H Youth Development

Agriculture

Crops, Dairy, Livestock and Equine

Fruit

Greenhouse Crops and Floriculture

Landscape, Nursery and Urban Forestry

Pesticide Education

Turf

Vegetable

Clean Energy

Climate Change

Food Science

Nutrition Education

Value-Added Food

Seal of The University of Massachusetts Amherst - 1863
©2025 University of Massachusetts Amherst · Site Policies · Accessibility