Additional Seasonal Analyses by Subject Subgroups
Ed Stanek

Introduction

We fit similar models to estimate amplitude and phase for the seasonal cholesterol study. The models that we fit are to subjects that have been grouped by the median cholesterol levels in the study. We use gender specific medians to divide subjects into groups.

Preliminary Description

We first calculate descriptive statistics for each cholesterol type. Following this, we categorize subjects into groups using the median gender specific cholesterol levels. We define variables that indicate group membership above the median (TCG, LDLG, etc.). A comparison of subject classifications by groups follows.

Table 1. Simple description of Mean and Quartiles of tc by Gender

<table>
<thead>
<tr>
<th>OBS</th>
<th>CA2</th>
<th>N</th>
<th>TC_P25</th>
<th>TC_M</th>
<th>TC_P50</th>
<th>TC_P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>331</td>
<td>194</td>
<td>221</td>
<td>218</td>
<td>245</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>310</td>
<td>185</td>
<td>215</td>
<td>212</td>
<td>237</td>
</tr>
</tbody>
</table>

Table 2. Simple description of Mean and Quartiles of ldl by Gender

<table>
<thead>
<tr>
<th>OBS</th>
<th>CA2</th>
<th>N</th>
<th>LDL_P25</th>
<th>LDL_M</th>
<th>LDL_P50</th>
<th>LDL_P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>331</td>
<td>122</td>
<td>146</td>
<td>144</td>
<td>169</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>310</td>
<td>114</td>
<td>140</td>
<td>138</td>
<td>163</td>
</tr>
</tbody>
</table>

Table 3. Simple description of Mean and Quartiles of hdl by Gender

<table>
<thead>
<tr>
<th>OBS</th>
<th>CA2</th>
<th>N</th>
<th>HDL_P25</th>
<th>HDL_M</th>
<th>HDL_P50</th>
<th>HDL_P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>331</td>
<td>36</td>
<td>43</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>310</td>
<td>43</td>
<td>52</td>
<td>51</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 4. Simple description of Mean and Quartiles of tg by Gender

<table>
<thead>
<tr>
<th>OBS</th>
<th>CA2</th>
<th>N</th>
<th>TG_P25</th>
<th>TG_M</th>
<th>TG_P50</th>
<th>TG_P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>331</td>
<td>90</td>
<td>170</td>
<td>133</td>
<td>195</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>310</td>
<td>66</td>
<td>116</td>
<td>96</td>
<td>143</td>
</tr>
</tbody>
</table>
Table 5. Frequency of similar category for different Chol
c2: *gender*(0=M, 1=F)=Male

<table>
<thead>
<tr>
<th>TCG</th>
<th>HDLG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>79</td>
<td>24.2</td>
<td>79</td>
<td>24.2</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>84</td>
<td>25.7</td>
<td>163</td>
<td>49.8</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>83</td>
<td>25.4</td>
<td>246</td>
<td>75.2</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>81</td>
<td>24.8</td>
<td>327</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 4

<table>
<thead>
<tr>
<th>TCG</th>
<th>LDLG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>145</td>
<td>45.6</td>
<td>145</td>
<td>45.6</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>14</td>
<td>4.4</td>
<td>159</td>
<td>50.0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>14</td>
<td>4.4</td>
<td>173</td>
<td>54.4</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>145</td>
<td>45.6</td>
<td>318</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 13

<table>
<thead>
<tr>
<th>TCG</th>
<th>TGG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>110</td>
<td>33.5</td>
<td>110</td>
<td>33.5</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>54</td>
<td>16.5</td>
<td>164</td>
<td>50.0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>54</td>
<td>16.5</td>
<td>218</td>
<td>66.5</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>110</td>
<td>33.5</td>
<td>328</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 3
Table 5. Frequency of similar category for different Chol

ca2: *gender*(0=M, 1=F) = Female

<table>
<thead>
<tr>
<th>HDLG</th>
<th>TGG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>48</td>
<td>14.6</td>
<td>48</td>
<td>14.6</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>116</td>
<td>35.4</td>
<td>164</td>
<td>50.0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>116</td>
<td>35.4</td>
<td>280</td>
<td>85.4</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>48</td>
<td>14.6</td>
<td>328</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 3

<table>
<thead>
<tr>
<th>LDLG</th>
<th>TGG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>100</td>
<td>31.3</td>
<td>100</td>
<td>31.3</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>60</td>
<td>18.8</td>
<td>160</td>
<td>50.2</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>63</td>
<td>19.7</td>
<td>223</td>
<td>69.9</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>96</td>
<td>30.1</td>
<td>319</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 12

<table>
<thead>
<tr>
<th>TCG</th>
<th>HDLG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>80</td>
<td>26.1</td>
<td>80</td>
<td>26.1</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>73</td>
<td>23.9</td>
<td>153</td>
<td>50.0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>72</td>
<td>23.5</td>
<td>225</td>
<td>73.5</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>81</td>
<td>26.5</td>
<td>306</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 4

<table>
<thead>
<tr>
<th>TCG</th>
<th>LDLG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>135</td>
<td>44.3</td>
<td>135</td>
<td>44.3</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>19</td>
<td>6.2</td>
<td>154</td>
<td>50.5</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>18</td>
<td>5.9</td>
<td>172</td>
<td>56.4</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>133</td>
<td>43.6</td>
<td>305</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Frequency Missing = 5

Table 5. Frequency of similar category for different Chol
c2: *gender*(0=M, 1=F) = Female

<table>
<thead>
<tr>
<th></th>
<th>HDLG</th>
<th>LDLG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>72</td>
<td>23.9</td>
<td>72</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>79</td>
<td>26.2</td>
<td>151</td>
<td>50.2</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>79</td>
<td>26.2</td>
<td>230</td>
<td>76.4</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>71</td>
<td>23.6</td>
<td>301</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 9

<table>
<thead>
<tr>
<th></th>
<th>HDLG</th>
<th>TGG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>43</td>
<td>14.1</td>
<td>43</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>109</td>
<td>35.6</td>
<td>152</td>
<td>49.7</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>108</td>
<td>35.3</td>
<td>260</td>
<td>85.0</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>46</td>
<td>15.0</td>
<td>306</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 4

<table>
<thead>
<tr>
<th></th>
<th>LDLG</th>
<th>TGG</th>
<th>Frequency</th>
<th>Percent</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>97</td>
<td>31.8</td>
<td>97</td>
<td>31.8</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>56</td>
<td>18.4</td>
<td>153</td>
<td>50.2</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>55</td>
<td>18.0</td>
<td>208</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>97</td>
<td>31.8</td>
<td>305</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Missing = 5
Results

Here are some results for subjects with Cholesterol greater than the median.

<table>
<thead>
<tr>
<th>Cholesterol</th>
<th>Subjects</th>
<th># Obs</th>
<th># Subj.</th>
<th>Subject</th>
<th>Residual</th>
<th>Mean</th>
<th>Amplitude</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Overall</td>
<td>1259</td>
<td>317</td>
<td>19.4</td>
<td>15.4</td>
<td>186</td>
<td>3.0 *</td>
<td>363</td>
</tr>
<tr>
<td>TC</td>
<td>Male</td>
<td>638</td>
<td>163</td>
<td>18.6</td>
<td>14.5</td>
<td>190</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>TC</td>
<td>Female</td>
<td>621</td>
<td>154</td>
<td>19.6</td>
<td>16.2</td>
<td>183</td>
<td>3.3</td>
<td>361</td>
</tr>
<tr>
<td>HDL</td>
<td>Overall</td>
<td>1248</td>
<td>313</td>
<td>5.7</td>
<td>4.2</td>
<td>39</td>
<td>2.1 ***</td>
<td>45</td>
</tr>
<tr>
<td>HDL</td>
<td>Male</td>
<td>641</td>
<td>162</td>
<td>3.8</td>
<td>3.4</td>
<td>35</td>
<td>1.4 ***</td>
<td>19</td>
</tr>
<tr>
<td>HDL</td>
<td>Female</td>
<td>607</td>
<td>151</td>
<td>4.9</td>
<td>4.8</td>
<td>43</td>
<td>3.1 ***</td>
<td>56</td>
</tr>
<tr>
<td>LDL</td>
<td>Overall</td>
<td>1204</td>
<td>311</td>
<td>17.7</td>
<td>13.7</td>
<td>116</td>
<td>1.5</td>
<td>330</td>
</tr>
<tr>
<td>LDL</td>
<td>Male</td>
<td>608</td>
<td>159</td>
<td>17.1</td>
<td>13.7</td>
<td>120</td>
<td>1.3</td>
<td>334</td>
</tr>
<tr>
<td>LDL</td>
<td>Female</td>
<td>596</td>
<td>152</td>
<td>17.2</td>
<td>13.7</td>
<td>111</td>
<td>1.9</td>
<td>329</td>
</tr>
<tr>
<td>TG</td>
<td>Overall</td>
<td>1272</td>
<td>316</td>
<td>20.4</td>
<td>22.9</td>
<td>78</td>
<td>1.7</td>
<td>320</td>
</tr>
<tr>
<td>TG</td>
<td>Male</td>
<td>661</td>
<td>163</td>
<td>21.4</td>
<td>26.1</td>
<td>88</td>
<td>3.1</td>
<td>337</td>
</tr>
<tr>
<td>TG</td>
<td>Female</td>
<td>611</td>
<td>153</td>
<td>12.7</td>
<td>18.9</td>
<td>68</td>
<td>1.1</td>
<td>235</td>
</tr>
</tbody>
</table>

* p<0.05
** p<0.01
*** p<0.001

+ Seasonal effect test relative to null model

Source: sne99p147.sas and sne99p148.sas
Table 3b. Summary of Model Results and Amplitude and Phase Estimates for subjects with cholesterol levels above the median

<table>
<thead>
<tr>
<th>Cholesterol</th>
<th>Subjects</th>
<th># Obs</th>
<th># Subj.</th>
<th>Subject Std Dev</th>
<th>Residual Std Dev</th>
<th>Mean</th>
<th>Amplitude</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Overall</td>
<td>1287</td>
<td>316</td>
<td>27.2</td>
<td>18.8</td>
<td>250</td>
<td>6.1 **</td>
<td>356</td>
</tr>
<tr>
<td>TC</td>
<td>Male</td>
<td>652</td>
<td>162</td>
<td>25.6</td>
<td>19.1</td>
<td>252</td>
<td>7.3 ***</td>
<td>345</td>
</tr>
<tr>
<td>TC</td>
<td>Female</td>
<td>635</td>
<td>154</td>
<td>28.8</td>
<td>18.4</td>
<td>248</td>
<td>5.3 **</td>
<td>7</td>
</tr>
<tr>
<td>HDL</td>
<td>Overall</td>
<td>1283</td>
<td>316</td>
<td>9.5</td>
<td>5.7</td>
<td>56</td>
<td>2.7 ***</td>
<td>45</td>
</tr>
<tr>
<td>HDL</td>
<td>Male</td>
<td>653</td>
<td>163</td>
<td>7.6</td>
<td>5.4</td>
<td>51</td>
<td>2.0 ***</td>
<td>40</td>
</tr>
<tr>
<td>HDL</td>
<td>Female</td>
<td>630</td>
<td>153</td>
<td>8.4</td>
<td>6.1</td>
<td>61</td>
<td>3.5 ***</td>
<td>47</td>
</tr>
<tr>
<td>LDL</td>
<td>Overall</td>
<td>1246</td>
<td>308</td>
<td>23.8</td>
<td>16.9</td>
<td>171</td>
<td>3.3 *</td>
<td>361</td>
</tr>
<tr>
<td>LDL</td>
<td>Male</td>
<td>621</td>
<td>157</td>
<td>21.1</td>
<td>17.1</td>
<td>173</td>
<td>2.8</td>
<td>356</td>
</tr>
<tr>
<td>LDL</td>
<td>Female</td>
<td>625</td>
<td>151</td>
<td>26.3</td>
<td>16.8</td>
<td>169</td>
<td>3.8</td>
<td>363</td>
</tr>
<tr>
<td>TG</td>
<td>Overall</td>
<td>1279</td>
<td>318</td>
<td>134.5</td>
<td>81.5</td>
<td>209</td>
<td>17 **</td>
<td>304</td>
</tr>
<tr>
<td>TG</td>
<td>Male</td>
<td>634</td>
<td>163</td>
<td>166.9</td>
<td>103.3</td>
<td>251</td>
<td>27 *</td>
<td>337</td>
</tr>
<tr>
<td>TG</td>
<td>Female</td>
<td>645</td>
<td>155</td>
<td>66.2</td>
<td>51.8</td>
<td>164</td>
<td>17 **</td>
<td>250</td>
</tr>
</tbody>
</table>

* p<0.05
** p<0.01
*** p<0.001
+ Seasonal effect test relative to null model

Source: sne99p146.sas and sne99p148.sas
Table 4a. Summary of Model Results and Amplitude and Phase Estimates for subjects with cholesterol levels in the third quartile

<table>
<thead>
<tr>
<th>Cholesterol</th>
<th>Subjects</th>
<th># Obs</th>
<th># Subj.</th>
<th>Subject</th>
<th>Residual</th>
<th>Mean</th>
<th>Amplitude</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Overall</td>
<td>653</td>
<td>158</td>
<td>2.3</td>
<td>16.6</td>
<td>229</td>
<td>5.5 **</td>
<td>330</td>
</tr>
<tr>
<td>TC</td>
<td>Male</td>
<td>337</td>
<td>81</td>
<td>2.5</td>
<td>16.0</td>
<td>232</td>
<td>9.2 ***</td>
<td>332</td>
</tr>
<tr>
<td>TC</td>
<td>Female</td>
<td>316</td>
<td>77</td>
<td>0.0</td>
<td>16.9</td>
<td>226</td>
<td>1.7</td>
<td>336</td>
</tr>
<tr>
<td>HDL</td>
<td>Overall</td>
<td>652</td>
<td>158</td>
<td>4.3</td>
<td>5.5</td>
<td>49</td>
<td>2.6 ***</td>
<td>56</td>
</tr>
<tr>
<td>HDL</td>
<td>Male</td>
<td>320</td>
<td>82</td>
<td>0.0</td>
<td>5.4</td>
<td>45</td>
<td>2.1 **</td>
<td>67</td>
</tr>
<tr>
<td>HDL</td>
<td>Female</td>
<td>332</td>
<td>76</td>
<td>0.0</td>
<td>5.2</td>
<td>54</td>
<td>3.5 ***</td>
<td>45</td>
</tr>
<tr>
<td>LDL</td>
<td>Overall</td>
<td>615</td>
<td>152</td>
<td>2.3</td>
<td>15.5</td>
<td>152</td>
<td>5.6 ***</td>
<td>312</td>
</tr>
<tr>
<td>LDL</td>
<td>Male</td>
<td>309</td>
<td>78</td>
<td>0.0</td>
<td>16.0</td>
<td>155</td>
<td>7.1 **</td>
<td>312</td>
</tr>
<tr>
<td>LDL</td>
<td>Female</td>
<td>306</td>
<td>74</td>
<td>0.0</td>
<td>14.5</td>
<td>148</td>
<td>3.9</td>
<td>308</td>
</tr>
<tr>
<td>TG</td>
<td>Overall</td>
<td>646</td>
<td>157</td>
<td>19.3</td>
<td>37.2</td>
<td>140</td>
<td>14 ***</td>
<td>271</td>
</tr>
<tr>
<td>TG</td>
<td>Male</td>
<td>321</td>
<td>80</td>
<td>0.0</td>
<td>41.1</td>
<td>161</td>
<td>15 **</td>
<td>277</td>
</tr>
<tr>
<td>TG</td>
<td>Female</td>
<td>325</td>
<td>77</td>
<td>0.0</td>
<td>31.6</td>
<td>118</td>
<td>11 *</td>
<td>253</td>
</tr>
</tbody>
</table>

* p<0.05
** p<0.01
*** p<0.001
+ Seasonal effect test relative to null model

Source: sne99p150.sas and sne99p151.sas
Table 4b. Summary of Model Results and Amplitude and Phase Estimates for for subjects with cholesterol levels above the 4th quartile

<table>
<thead>
<tr>
<th>Cholesterol</th>
<th>Subject</th>
<th># Obs</th>
<th># Subj</th>
<th>Subject</th>
<th>Residual</th>
<th>Mean</th>
<th>Amplitude</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Overall</td>
<td>627</td>
<td>156</td>
<td>24.7</td>
<td>20.7</td>
<td>271</td>
<td>6.8 **</td>
<td>13</td>
</tr>
<tr>
<td>TC</td>
<td>Male</td>
<td>313</td>
<td>80</td>
<td>22.7</td>
<td>21.9</td>
<td>272</td>
<td>4.0</td>
<td>8</td>
</tr>
<tr>
<td>TC</td>
<td>Female</td>
<td>314</td>
<td>76</td>
<td>26.7</td>
<td>19.5</td>
<td>270</td>
<td>9.3 **</td>
<td>13</td>
</tr>
<tr>
<td>HDL</td>
<td>Overall</td>
<td>606</td>
<td>153</td>
<td>9.1</td>
<td>6.0</td>
<td>63</td>
<td>3.1 ***</td>
<td>35</td>
</tr>
<tr>
<td>HDL</td>
<td>Male</td>
<td>328</td>
<td>80</td>
<td>7.2</td>
<td>5.1</td>
<td>57</td>
<td>2.8 ***</td>
<td>25</td>
</tr>
<tr>
<td>HDL</td>
<td>Female</td>
<td>278</td>
<td>73</td>
<td>6.6</td>
<td>7.1</td>
<td>69</td>
<td>3.7 **</td>
<td>39</td>
</tr>
<tr>
<td>LDL</td>
<td>Overall</td>
<td>621</td>
<td>154</td>
<td>21.1</td>
<td>18.0</td>
<td>190</td>
<td>4.4 *</td>
<td>57</td>
</tr>
<tr>
<td>LDL</td>
<td>Male</td>
<td>307</td>
<td>78</td>
<td>18.0</td>
<td>17.5</td>
<td>190</td>
<td>5.1</td>
<td>84</td>
</tr>
<tr>
<td>LDL</td>
<td>Female</td>
<td>314</td>
<td>76</td>
<td>24.0</td>
<td>18.5</td>
<td>189</td>
<td>4.6</td>
<td>28</td>
</tr>
<tr>
<td>TG</td>
<td>Overall</td>
<td>625</td>
<td>159</td>
<td>163.5</td>
<td>110.3</td>
<td>277</td>
<td>23</td>
<td>320</td>
</tr>
<tr>
<td>TG</td>
<td>Male</td>
<td>309</td>
<td>82</td>
<td>201.1</td>
<td>141.7</td>
<td>340</td>
<td>47</td>
<td>353</td>
</tr>
<tr>
<td>TG</td>
<td>Female</td>
<td>316</td>
<td>77</td>
<td>60.1</td>
<td>66.3</td>
<td>210</td>
<td>24 *</td>
<td>245</td>
</tr>
</tbody>
</table>

* p<0.05
** p<0.01
*** p<0.001

Source: sne99p149.sas and sne99p151.sasl model