In the answer to 2.15, Strategic Voting, it should say “player 3 should make a suboptimal choice at nodes v and w....” I fixed this.

Drop 2.5f. It is not stated properly.

For second half of solution 4.15, there is an easier proof. Let $\alpha_k = \alpha_1\alpha_2\alpha_3/a_k$, and let $\beta = \sqrt{\alpha_1\alpha_2\alpha_3}$. then $p_i = \beta/\alpha_i$ for $i = 1, 2, 3$. Thus any mixed strategy equilibrium is unique.

11th line from bottom on p.412, the subscript should be b instead of β, and the formula inside the parentheses should be $50 + 10\alpha - 50\beta$.

There’s a misplaced formatclearpage around p. 448 in Klingon and Snark, the Master Klingon must charge a fixed fee for half the Snarks, not a price per rate of eating Snarks.

A Reconnaissance Game (4.27) has lots of Nash equilibria, all of which involve $(0,0,1/4,3/4)$ for Player 2 (defender).

The (c) part to the answer of 4.26 is the same as the (b) part, and should be dropped.

In answer to Colonel Blotto, $p = 1/9$ should be $p = 1/18$ on page 419. Also, there are other Nash equilibria, so ”check that others do not exist” should be dropped.

In 4.16, plus ones and minus ones should be interchanged in figure.

In the answer to One-Card Two-Round Poker with Bluffing, it should read: There is a Nash equilibrium

$$\frac{8}{15}ss + \frac{2}{15}sf + \frac{1}{3}f,$$

$$\frac{1}{5}rrbb + \frac{2}{5}rrbf + \frac{2}{5}rrf,$$

with a payoff of 4/5 to player 1. I already fixed this.

In Orange-Throat, Blue-Throat, and Yellow-Striped Lizards, in the figure labels, interchange Yellow and Blue. I fixed this.

4.37 is correct, but I expanded the answer.
• 4.38 had errors in the answer, which I fixed.
• 4.39: change n-1 to subscript in two places. I fixed it.
• 5.6: In the proof, \(x \) and \(1 - x \) should be interchanged. I fixed it.
• 11.7: Extra comma in expectation expression. I fixed it.
• 12.3: The expression for \(\mu(p_1) \) in (c) is incorrect, though it is correct in the answer section. The sentence should read “Show that \(\mu(p_1) = x\pi/(x\pi + 1 - \pi) \) where \(x \) is probability that a buyer for whom \(b = b_h \) refuses price \(p_1 \).” The inequality in (g) is wrong. It should read
 \[
 b_h > \left(\frac{1 - \delta_s}{\pi} - (\delta_b - \delta_s) \right) \frac{b_l}{1 - \delta_b}.
 \]
 I fixed this.
• 12.12: The inequalities at the end of the answer should be \(\pi^* + \pi_{mh} < \pi_{mh} + \pi_{dh} \) and \((m + c_l - 2c_h)(m - c_l) < 4(m - c_h)^2/9 \). Also “this inequality holds.” should read “this inequality fails.” I fixed it.