Theoretical and Methodological Issues in the Identification of the Social Networks of Spouses

Robert M. Milardo

Stable URL:
http://links.jstor.org/sici?sici=0022-2445%28198902%2951%3A1%3C165%3ATAMIIT%3E2.0.CO%3B2-E
Theoretical and Methodological Issues in the Identification of the Social Networks of Spouses

A variety of procedures developed to identify network members may be classified into measures of psychological networks (i.e., those people who are perceived as significant) or interactive networks (i.e., those individuals with whom interactions occur routinely). I examine the structural correspondence between these networks and argue that the network types are noncorrespondent, varying predictably in membership and composition. Descriptions of psychological networks were gathered from spouses in face-to-face interviews. The same spouses were subsequently interviewed by phone on seven nonconsecutive days in order to gather contemporaneous data on their interactive networks. Comparisons of the network types reveal minimal overlap; approximately 25% of the network members identified are included in both networks. Further analyses demonstrate that the size of the psychological network is unrelated to the actual social participation of spouses. Psychological and interactive networks tap unique aspects of an individual’s life space, suggesting a theoretical and substantive significance that goes well beyond the explicit issue of methodological refinement.

Researchers interested in the analysis of the social networks of individuals or couples are faced immediatelly with the issue of defining the field of eligible network members and sampling from this population with a reliable measurement strategy that accurately defines and identifies an appropriate network constituency. A variety of procedures are available to identify network members, each with particular advantages and disadvantages associated with their use. These methods may be conveniently classified into measures of psychological or interactive networks. In this article I examine the structural correspondence of two methods and argue that psychological and interactive networks are noncorrespondent and vary substantially and predictably in terms of size, membership, and composition. In the following sections, the network types and their correspondent measurement strategies are reviewed briefly.

Psychological Networks

Essentially two methods have been developed to identify members of psychological networks. Although this article is concerned largely with only one type of psychological network, what I refer to as the “exchange network” (defined below), the most commonly used procedure defines networks in terms of an individual’s closest associates, sometimes referred to as significant others. These networks are collections of people who are considered important and perhaps intimate “friends” by target individuals. Johnson and Milardo (1984: 895), for instance, defined networks as “those

Child Development and Family Relationships, 30 Merrill Hall, University of Maine, Orono, ME 04469.
people whose opinions of your personal life are important to you.” Alternatively, several researchers have operationalized such networks as the closest associates outside of the household (e.g., Fischer et al., 1977; Hammer, 1984; Wellman, 1985).

Another approach to the study of personal networks has been developed by Fischer and his colleagues (Fischer, 1982; McCallister-Jones and Fischer, 1978). The procedure targets a subset of the total network for potential nomination, including people with whom the probability of rewarding exchanges is high; therefore it is referred to as the exchange network. The identification of network members proceeds in two stages. The first stage employs a structured interview schedule where respondents are presented with a set of social settings (e.g., personal household, work) in addition to several categories of individuals defined specifically in terms of the probability of rewarding exchanges. Prototypes include people on whom the respondent may rely as a confidant, for their sense of judgment or for personal favors. In essence, a broad pool of potential constituents is specified on the basis of a set of explicitly defined criteria for their inclusion.

The second phase of data collection permits respondents to supplement the list of core network members with the names of people who are considered important. These latter people are typically kin; relationships with them appear passive, of an affective or sentimental nature without the regular exchange of goods or services (McCallister-Jones and Fischer, 1978).

The relative advantages of measures of the network of significant others and the exchange network have been detailed elsewhere (Milardo, 1986, 1988; Surra, 1988) but may be summarized as follows. Sampling a network based on a singular criterion of significance or closeness has the advantage of being a relatively cost-effective and widely used procedure that is representative of respondents’ personal attributions of importance. On the other hand, it fails to distinguish active ties from those of a purely affective or sentimental importance, selectively omits members of other important network sectors, neglects systematic interindividual variations in the attribution of closeness, assumes equivalence of function and meaning across all close relationships when in fact such relationships among adults tend to be highly specialized, and places excessive demand on respondents to produce socially desirable responses. In short, the method employs a univariate criterion to represent the inherent diversity of personal relationships.

In contrast, the procedure for identifying exchange networks samples from a wide variety of social exchanges and settings that typify the lives of most individuals. Rather than examining one specific class of close relationships, the procedure identifies a broader spectrum of the total network for possible inclusion, yielding a more representative sample and as a result improving generalizations about other structural features of the network that are contingent on size and actual membership (e.g., density). Second, rather than defining the criteria for inclusion in an abstract and ambiguous form such as “significant other,” the method yields a more veridical sample because the standards for the inclusion of network members are clearly defined. The importance of network members rests on what they actually do for and with the respondent; for instance, who provides emergency child care or help at work. The psychometric properties of the procedure are also better understood than that currently available for procedures designed to identify networks of close associates (Barrera, 1981; McCallister-Jones and Fischer, 1978).

Interactive Networks

The social participation of spouses with their kin, friends, and acquaintances forms an important but relatively understudied area of research. The methods developed for identifying interactive networks include questionnaire items and diaries of social episodes completed by respondents. For example, in survey research respondents frequently are required to indicate with whom they have interacted over the last week, month, or year, or how often they interact with selected groups of individuals (e.g., kin). Responses to queries of this sort are both retrospective and respondent-aggregated in the sense that respondents must recall the identity of those individuals with whom interactions have occurred in the past, while at the same time providing an aggregated composite of the frequency of such interaction.

In contrast, contemporary measures of social participation, which are based on diaries or personal interviews completed daily, narrow the time frame between the occurrence of a social episode
Social Networks of Spouses

and its documentation. Respondents identify the people with whom they interact as those interactions occur. The need for respondents to aggregate data is minimized, and indices of network size or the frequency of interaction, for example, may be computed by the researcher directly from the interaction records provided by respondents.

Direct tests of the accuracy of prototypical measures of social participation of the type typically included in mass surveys suggest that contemporary accounts yield more accurate data (for a review see Bernard, Killworth, Kronenfeld, and Sailer, 1984). In a series of experiments with a variety of naturally occurring groups, the interactions of group members were unobtrusively monitored and participants were consistently unable to recall with any degree of certainty the people with whom they interacted (Killworth, Bernard, and McCarty, 1984). Respondents were unable to recall more than half of their actual communications either in terms of frequency or duration; they were unable to rank-order group members in terms of frequency and to correctly identify the person communicated with most often or the top five more than half of the time; and approximately one-third of the interactants they identified were never actually interacted with. Respondents grossly misjudge the character of their past contact with others.

If individuals are unable to recall their interactions accurately or to provide aggregate indices of activity, would reductions in the required recall and aggregation of data increase accuracy? In theory, the production of veridical data requires a narrowing of the time frame between the occurrence of a social episode and its reporting, thus minimizing the effects of memory loss or distortion. Second, it requires minimizing the need for participants to aggregate data. In general, research supports these expectations. Questions concerning interactions over the previous 24 hours produce more accurate data than questions concerning interactions that occurred a week or more in the past (Bernard, Killworth, and Sailer, 1982). The superiority of contemporary reports is also demonstrated in direct comparisons of self-reports of interactions completed immediately following interaction with questionnaire measures that require aggregate summaries of interpersonal events (Conrath, Higgins, and McLean, 1983).

Several methods have been designed to monitor contemporary social participation. In one method respondents are interviewed by phone concerning their social activity during the previous 24 hours (Huston, Robins, Atkinson, and McHale, 1987). Such contemporary records, and the procedures for generating them, can be adapted to provide a relatively objective definition of the network constituency. All people present during interactions are de facto members of the respondent’s network. Subjective definitions of network membership are avoided, and participants are not burdened with recalling precisely who is significant or with whom interactions occurred in the distant past.

Comparing Exchange and Interactive Networks

The juxtaposition of psychological and interactive networks provides a useful heuristic tool for examining two potentially different and functionally important aspects of the personal ties binding individuals. Although the precise convergence of psychological and interactive networks has yet to be examined, researchers have frequently used the types interchangeably, assuming that the size of the network of significant others or an exchange network is representative of an individual’s degree of social participation (see Mitchell and Trickett, 1980).

The present research builds on the premise that networks are quite large, averaging 250 members or more for North Americans (Killworth, Bernard, and McCarty, 1984), and that no one procedure samples a truly random selection from the larger constituency. Geographic separation or extensive obligations to work and family may preclude interacting with people considered important or significant to respondents. Under this condition, time-sampling procedures would be incapable of identifying significant others seen infrequently. On the other hand, there is little reason to presume that exchange networks represent actual social participation, especially in terms of the identity or absolute number of people with whom routine interactions occur (Fischer et al., 1977; Hammer, 1984). Consequently, exchange and interactive networks are predicted to be noninterchangeable, with substantial differences in their respective memberships (i.e., little overlap) as well as in overall size, composition, and the proportion of strong to weak ties.
The overall size of an interactive network is relatively unlimited, at least in comparison to exchange networks. Individuals routinely develop a wide array of ties with neighbors, church members, coworkers, shopkeepers, and so on. Very few of these relationships ever become anything more than superficial, although they may continue for years. Exchange networks, in comparison, are limited in size. They tend to average 20 or so members who represent a psychologically based collection of people who are in some way unique and significant to respondents. In fact, increasing the number of name-eliciting questions included in a survey instrument beyond 10 to 12 questions tends to yield redundant information (McCallister-Jones and Fischer, 1978). It seems reasonable to expect that interactive networks will be larger than exchange networks.

Exchange networks, as well as networks of significant others, in nearly all cases are dominated by kin, whereas this is not typically the case with interactive networks. Fischer (1982) reported an average exchange network size of 18.5 members, with approximately 42% identified as kin (cf. Fehr and Perlman, 1985; Milardo, 1986). This is not surprising; kin relations are important to people. But the potential number of kin in the network is far more limited in scope than the potential number of friendly relations developed through a lifetime of work, community ties, personal interests and exigencies. Killworth et al. (1984) estimated the total number of kin to be less than 10% of all the people known to a respondent. On the basis of these arguments, exchange networks will include a higher proportion of kin, whereas interactive networks will be composed largely of peripheral associates who are considered neither close nor significant by respondents.

Method

Participants

Twenty-five wives and their husbands participated in this study. Couples were recruited through advertisements distributed locally. Participants had been married an average of 8 years, with a range of 4.5 to 17 years. The majority of couples had two children (76%) and none had more than three. Spouses ranged in age from 21 to 52 years, with an average age of 32.6. Three individuals were previously married; two women were divorced and one man had been widowed. All three previous marriages occurred when respondents were young (20 or younger) and lasted a year or less.

Procedure

Couples who agreed to participate were met in their homes by trained interviewers, a male and female. After an explanation of the study, spouses were interviewed separately. Information was gathered on their personal and family biography (e.g., age, length of marriage), and several indices of marital communication, conflict, adjustment, and intimacy were administered, although these data are not considered herein.

Extensive information on the social networks of spouses was gathered through two methods. A revised version of the procedure developed by Fischer and his colleagues (Fischer, 1982; McCallister-Jones and Fischer, 1978) was administered during the face-to-face interviews. This procedure includes 12 name-eliciting questions, for instance:

When you are concerned about your marriage—for example, about how you and your [husband/wife] are getting along or about a disagreement with your [husband/wife]—how often do you talk about it with someone other than your spouse? Usually, sometimes or hardly ever? When you do talk with someone about your marriage, who do you talk with?

The questions were designed to sample network members from a variety of sectors, including relatives, friends, neighbors, coworkers—people who might be relied on for their advice, as personal confidants, or social companions. In addition, one question was inserted concerning the people with whom spouses typically experienced conflict, assuming that not all network ties are of a wholly positive and supportive nature.

The names generated in response to each question were compiled on a master list and spouses were given the opportunity to supplement this list with the names of other individuals who were considered important. A variety of additional information was then gathered for each network member, including the sex and relationship of each member to the respondent.

After the initial interviews, respondents were invited to participate in follow-up interviews conducted by telephone. Forty-two spouses from 21
couples agreed to participate, and they eventually completed a series of telephone interviews that were conducted on 7 nonconsecutive days. During these interviews, spouses were asked to report on all of their voluntary social activity over 5 minutes in length for the previous 24 hours. Interviews typically were prescheduled, with the entire series of calls being completed within a 3-week period. The interviewer first confirmed that both spouses were available to be interviewed separately and privately; then the following instructions were given:

During this phone call, I’m going to ask you about a number of activities that you may have done from 5 p.m. yesterday to 5 p.m. today [or other appropriate 24-hour period]. What were you doing at 5 p.m. yesterday and today? [Pause] Those activities will mark the period of time I'll be asking you about.

I'd like you to tell me about the activities or conversations you had with anyone, except those that occurred when only your husband/wife or children were present.

Tell me only about those activities or conversations that lasted 5 minutes or more, either on the phone or in person. Do not include activities that were related to business, like talking with a shop-keeper about merchandize or your employer about a job, a business deal, or a customer. You should report on all other activities or conversations, whether they seem important or not.

Following these instructions, spouses were asked to report on all persons present during each particular social interaction. Additional information was gathered on the length of the interaction, the mode (i.e., in person or by phone), the type of activity (e.g., visiting friends), and the exchange of social support or interference, if any.

In both the face-to-face interviews and the telephone interviews, information was gathered on the name, gender, and relationship to the respondent of each network member. This information permitted the identification of those individuals present in both networks or only one.

The measure of overlap in the memberships of the exchange and interactive networks is a simple ratio of the number of people identified in both networks, in comparison to the total number of different people identified in either network. For example, one respondent reported 30 individuals in her exchange network and 35 in her interactive network. A comparison of the composition of the two networks revealed that 11 members were identified in both networks. Thus, the two networks include a total of 54 different people (11 in common and 43 belonging to one or the other), and the overlap of the interactive and exchange network equals 20.4%.

RESULTS
We first examine the degree of overlap in the exchange and interactive networks in addition to the interrelations of each network type. We then examine in detail the overall composition of each network type as well as the identity of unique and nonunique members of the interactive network. Finally, we examine the size of the interactive network as it varies over time and how longer data collection periods might influence the degree of overlap between the two network types. The data were analyzed with a variety of techniques, including multivariate repeated-measures analyses of variance. Couples were considered the unit of analysis, with gender and network characteristics treated as “within subject” variables (cf. Ball, McKenry, and Price-Bonham, 1983; O'Brien and Kaiser, 1985).

Network Overlap
Convergence in the exchange and interactive networks is defined by the proportion of network members who were identified in both networks relative to the total number of people identified in one network or the other. The degree of overlap is minimal as predicted: 21% for men (SD = 9.9) and 28% for women (SD = 13.8). The gender difference is significant, $F(1, 20) = 10.35, p < .002$. Several plausible explanations may account for this variation.

Women and men may engage in different patterns of social interaction such that women generally interact more frequently or with a greater proportion of people judged as close or supportive in comparison to men. Alternatively, women and men may have similar patterns of interaction but use different criteria for selecting members of the exchange network (Hammer, 1984). In either case, the correspondence of exchange and interactive networks is clearly marginal for both men and women.

Further analyses were conducted to examine the character of the social participation of spouses. It is conceivable that frequent interac-
tions with people considered significant (i.e., supportive or interfering) are overshadowed by infrequent activity with nonsignificant others or with relatively large groups of individuals, many of whom are not considered especially significant. These events would produce minimal overlap in the network types but generally greater overlap for those individuals with whom interactions occurred most often.

The men and women in this study reported on well over 700 interactions, an average of 17 per week. Ninety-two percent of these interactions included only one or two network members, and a meager 2% included five or more interactants. It is highly unlikely then that occasional interactions with large groups of individuals could account for the minimal overlap in the network types. Second, the frequency of interaction with members of the interactive network is similar for those identified in both networks (\(M = 1.9 \) interactions per person per week) versus those identified solely in the interactive network (\(M = 1.3 \) interactions per person per week), and the correlation of overlap and frequency of interaction is near zero (\(r = -.08 \)). The degree of overlap cannot be accounted for by infrequent interactions with “nonsignificant” others.

The exchange network based on questionnaire items and the interactive network based on contemporary reports of social activity produce distinctly different constituencies. Moreover, there appears to be very little relationship between the size of each network, whether one correlates total sizes (\(r = 0.14, p = .38 \)) or the size of the exchange network with the number of unique interactive members (\(r = 0.05 \)). Individuals with large exchange networks do not have correspondingly large interactive networks, and so too for those with modest exchange networks. The size of the exchange network simply fails to predict the size of the interactive network.

These results further suggest that individuals with relatively large exchange networks are not necessarily socially active, and those with modest exchange networks are not necessarily socially isolated, at least in terms of the number of people with whom interactions occur. Additional support for this argument is suggested when we examine the correlation of the frequency of interaction per week, as derived from the telephone interviews, with the size of the exchange network. This correlation is 0.17 (\(p = .28 \)), indicating a weak tie between the degree of social activity and the size of the exchange network. However, it is possible that network size is simply a poor predictor of social activity regardless of how a measure of size is derived. If this were the case, then the frequency of interaction should be uncorrelated with the size of the interactive network as well. This is not the case; the correlation of frequency with the size of the interactive network is robust (\(r = .82, p < .01 \)). Taken together, the findings suggest that survey methods for identifying network members are unlikely to yield a valid estimate of an individual’s degree of social participation.

Further comparisons of the size of each network revealed that exchange networks (\(M = 22.8 \)) are significantly larger than interactive networks (\(M = 15.7 \)), contrary to expectations, \(F(1, 20) = 12.76, p < .002 \). This size difference probably results from the rather limited data collection window of 7 days, a point that is discussed further below.

Network Composition

Given that the convergence of exchange and interactive networks is minimal, questions remain regarding the distribution of members in each network type. Several hypotheses were tendered earlier suggesting that the networks would vary in terms of their composition or the proportion of kin to nonkin and close ties to acquaintances. Statistically speaking, the variations predicted in the composition of exchange and interactive networks suggest a significant interaction of network composition and type. A MANOVA with gender, network composition, and type entered as independent variables failed to yield a significant interaction term, \(F(10, 11) = 1.07 \), although the main effect of composition is quite significant (i.e., the distribution of members varies considerably across relationship types), \(F(10, 11) = 159, p < .001 \). Incidentally, gender failed to yield significant effects.

The distribution of exchange and interactive network members is presented in Table 1. The prediction that exchange networks would include a greater proportion of kin is unsupported. Both networks include high proportions of kin, approximately 35%, as well a friends, about 45%. As predicted, however, the interactive network includes a considerably higher proportion of people who are considered acquaintances, 11% versus
5% for the exchange network. One additional difference is present in the distribution of network members. A greater proportion of siblings related to the respondents by marriage is found in the exchange network, although the meaning of this finding is unclear.

In order to examine the interactive network in greater detail, further analyses were conducted. In Table 2 the interactive network is broken down by composition and by origin. The latter refers to members who were identified solely in the interactive network (unique members) or in both the interactive and exchange network (nonunique members).

The means for siblings and other extended kin are modest and their patterns nearly identical; consequently the data were simplified by combining all siblings and extended kin into one group. The patterns of means were also nearly identical for parents, regardless of whether they were related to the respondent by blood or by marriage, and therefore were combined. A MANOVA reveals a significant main effect for composition, \(F(5, 16) = 14.39, p < .001 \), and an interaction of composition with origin, \(F(5, 16) = 8.30, p < .001 \). The effects of gender were entirely nonsignificant.

As might be expected on the basis of earlier results, acquaintances, coworkers, and neighbors of respondents are more likely to be uniquely identified in the interactive network. These individuals are not usually or uniformly considered close or intimate associates, but they nevertheless figure prominently in the daily lives of individuals. Thus not only do acquaintances form a higher proportion of the interactive network relative to the exchange network, but also many are uniquely identified by the interactive network.

The parents of spouses typically are identified in both networks (\(M = 1.45 \)), and yet a small but significant minority are identified solely in the interactive network (\(M = .21 \)). It is rather surprising that some parents are unmentioned in response to questions concerning significant exchange relationships, either positive or negative, and yet they enter the daily social episodes of respondents.

The friends common to both networks and those identified only in the interactive network are approximately equivalent in number, although it is noteworthy that on average 4.2 or 56% of the friends identified in the interactive network are unmentioned in the exchange network. In this case, the lack of a statistically significant difference in the average number of unique and nonunique friends is overshadowed by the sheer number of each and their probable social significance. Finally, no significant difference was found in the number of unique and nonunique kin, other than parents, and this result applies to siblings as well as extended kin related by blood ties or by marriage.

Temporal Variation in Interactive Networks

As the procedure for generating measures of contemporary social activity is time-consuming for respondents, we were reluctant to require more than seven telephone interviews. Nonetheless, questions remain concerning the impact of windows greater than 7 days on the degree of overlap or the size of the interactive network. Would the degree of overlap increase significantly if 14 days had been monitored, for instance? And at what

Table 1. Average Percentage Distribution of Exchange and Interactive Network Members by Relationship

<table>
<thead>
<tr>
<th>Network Sector</th>
<th>Exchange</th>
<th>Interactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friends</td>
<td>45.4%</td>
<td>44.0%</td>
</tr>
<tr>
<td>Acquaintances</td>
<td>4.6*</td>
<td>11.3*</td>
</tr>
<tr>
<td>Coworkers</td>
<td>6.7</td>
<td>6.1</td>
</tr>
<tr>
<td>Neighbors</td>
<td>4.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Consanguineous kin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parents</td>
<td>7.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Siblings</td>
<td>8.1</td>
<td>6.6</td>
</tr>
<tr>
<td>Other</td>
<td>5.7</td>
<td>8.3</td>
</tr>
<tr>
<td>In-laws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parents</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Siblings</td>
<td>6.8*</td>
<td>4.0*</td>
</tr>
<tr>
<td>Other</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Relationship unknown</td>
<td>2.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

*Pairs of means significantly different, \(p < .01 \).
point would network size reach an asymptote? To examine these issues the cumulative size of the interactive network was computed for each day over which data were recorded. The means along with 95% confidence intervals are plotted in Figure 1. At Day 1 respondents identified on average 3.2 network members ($SD = 2.6$), at Day 3 a cumulative total of 7.9 interactants ($SD = 4.0$), at Day 5, 12.8 interactants ($SD = 6.8$), and at Day 7, 15.7 interactants ($SD = 8.8$).

Several features of the plot depicted in Figure 1 deserve mentioning. First, the size of the network increases rapidly over the initial 5 days of data collection and these increments are linear. New members are added to the network at a rate of approximately 2.4 per day for the first 5 days. A repeated-measures MANOVA demonstrates that the linear increase in network size is highly significant, $F(1, 20) = 95.22, p < .001$. Second, the increase in size begins to level off toward the end of the data collection period. This effect is supported by a significant quadratic trend, $F(1, 20) = 44.64, p < .001$. Fewer new network members are being added during the last days of data collection, on average 1.5 per day. Extrapolation based on this latter daily average yields an average network size of about 26 members for windows of 14 days. It seems reasonable to assume that added data collection points would yield increases in network size no greater than the daily average and perhaps less.

Substantial increments in the size of the interactive network may continue for some time. Research reviewed earlier demonstrates that the total number of people known to respondents is actually quite large, averaging 250 people for North Americans (Kilgour et al., 1984), leaving a considerable pool of potential candidates. Second, interactive networks are dynamic in the sense that new individuals are continually being added. Taken together, these features would tend to produce continuous increments in the size of the interactive network generated with larger windows. It seems doubtful, however, that the degree of overlap would increase substantially over windows greater than 7 days, given the potential size of the interactive network, although the number of exchange network members found in the interactive network would certainly increase.

DISCUSSION

The exchange and interactive networks tap unique aspects of an individual’s life space. When complementary methods were used for investigating social networks, spouses each identified an average of 39 network members. Seventy-five percent of these individuals were identified by one procedure but not the other. Moreover, there is no significant covariation between the sizes of the networks generated by each method; the correlation of the size of the exchange and interactive networks is a mere 0.14.

The networks are similar in composition. Approximately 35% of the members are identified as kin and 45% as friends in both networks, although the proportion of acquaintances is higher in the interactive relative to the exchange network. A more insightful portrait emerges when we examine the actual constituency of the interactive network. These analyses permit scrutiny of the balance of ties uniquely identified by the interactive network in comparison to those identified in both networks. A surprising number of friends as well as parents are exclusively identified. Measures of the exchange network apparently omit many close associates with whom interactions occur regularly. These individuals are potentially important sources of social support and interference.

Acquaintances, coworkers, and neighbors are more likely to be uniquely identified in the interactive network, as expected. Of course, it may be argued that identifying acquaintances or estimating the frequency of interaction with them is trivial and inconsequential. Social scientists have long held that close and intimate friendships
are the sine qua non of personal relationships, and no doubt they are important, but ties with acquaintances are equally important. They figure prominently in the daily lives of many individuals, as the data illustrate, and although they may not be regarded as significant confidants or companions by respondents, they nevertheless serve a variety of important functions.

In any given day I may visit briefly with coworkers, sharing the most commonplace chatter, exchange greetings with people in a public restaurant while knowing little about their personal lives, seek the advice of a merchant and trust in his judgment because we have been acquaintances for many years, and end the day conversing with a bus driver about the cost of a new washing machine, somehow both of us feeling better for having done so. These seemingly trivial and sometimes quite brief conversations provide very real and tangible sources of aid in the form of information, advice, and social comparison that may not be readily available elsewhere. Social interactions with acquaintances provide a psychological sense of community (Sarason, 1974), insulating us from the vagaries of anomic. Contemporaneous methods for investigating interactive networks generate useful information about daily social participation that is unavailable in other complementary methods.

The findings have implications for estimating the social participation of spouses with kith and kin. Low and nonsignificant correlations were found between the sizes of each network and between frequency of interaction and size of the exchange network. These results call into question the common practice of assessing social participation on the basis of responses to mass survey instruments. Psychological networks are simply not a valid proxy for estimating the degree of daily social participation.

There is additional theoretical significance to each network type. The networks may have very different, possibly uncorrelated structures. This issue is important because a variety of individual and relationship properties, such as the availability of social support or the stability of a marriage, have been linked to network structure (Milardo, 1986; Surra, 1988). It is quite possible that each network type functions in unique ways serving distinctly different purposes. If, for example, interactive networks tend to be loosely structured, then we might expect them to function differently than exchange networks, which may be more structurally interdependent.

Noncorrespondence in exchange and interactive networks has implications for research design. For instance, descriptions of life-cycle variations in social participation can only be accurately monitored with measures of the interactive network, whereas concern with personal evaluations of the supportive and interfering quality of close associates would best be examined with measures of the psychological network. Further developments in theory and research may be realized when the psychological and social significance of network types is clearly recognized and methodologies appropriate to specific interests are applied.

Several issues are left unresolved by this research and several new avenues of study are suggested. The stability of the interactive network is unexplored, yet there are a variety of forces that may influence variations in the size of the interactive network as well as the amount and quality of social contact. Second, the adequacy of the sampling frame used to generate attributes of the interactive network is relatively unknown. Although previous research with college students (Nezlek, Wheeler, and Reis, 1983) and married couples (Huston et al., 1987) has used similar sampling frames with success, the question remains whether 7 days is sufficient time to yield adequate estimates of social participation. Finally, the overall character of social participation needs to be more carefully scrutinized, especially in terms of its continuity over time, the factors that influence continuity or change, and most important, the way social participation influences marital outcomes.

Notes

The insightful commentary of Catherine Surra, Michael Johnson, and Elliot Robins on earlier drafts of this article is gratefully acknowledged. Research support was provided by a grant from the Maine Agricultural Experiment Station (MAES Pub. No. 1262).

1. Contrary to popular conception, in-laws were far less likely to be nominated as people with whom conflict typically occurs relative to either blood kin or coworkers. Of the 102 names elicited by this question, well over half (57%) were unidentified elsewhere; 29% were coworkers, 27% blood kin, 18% in-laws, 9% neighbors, and 17% “other.”
REFERENCES

