WIND DATA REPORT

Cohasset

December 01, 2007 – February 29, 2008

Prepared for

Massachusetts Technology Collaborative
75 North Drive
Westborough, MA 01581

by

Meltem Duran
James F. Manwell
Utama Abdulwahid
Anthony F. Ellis

April 2, 2008

Renewable Energy Research Laboratory
University of Massachusetts, Amherst
160 Governors Drive, Amherst, MA 01003
www.ceere.org/rerl • (413) 545-4359 • rerl@ecs.umass.edu
NOTICE AND ACKNOWLEDGEMENTS

This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts Technology Collaborative (MTC). The opinions expressed in this report do not necessarily reflect those of MTC or the Commonwealth of Massachusetts, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it.

Further, MTC, the Commonwealth of Massachusetts, and RERL make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods or other information contained, described, disclosed, or referred to in this report. MTC, the Commonwealth of Massachusetts, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage directly or indirectly resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.
TABLE OF CONTENTS

Notice and Acknowledgements ... 1
Table of Contents ... 2
Table of Figures .. 3
Executive Summary ... 4
SECTION 1 - Station Location ... 5
SECTION 2 - Instrumentation and Equipment .. 5
SECTION 3 - Data Summary ... 6
SECTION 4 - Graphs .. 8
 Wind Speed Time Series .. 9
 Wind Speed Distributions ... 9
 Monthly Average Wind Speeds .. 10
 Diurnal Average Wind Speeds .. 10
 Turbulence Intensities .. 11
 Wind Roses .. 12
SECTION 5 - Significant Meteorological Events ... 13
SECTION 6 - Data Collection and Maintenance ... 13
SECTION 7 - Data Recovery and Validation .. 13
 Test Definitions .. 13
 Sensor Statistics ... 14
APPENDIX A - Sensor Performance Report .. 16
 Test Definitions .. 16
 Sensor Statistics ... 17
APPENDIX B - Plot Data ... 18
 Wind Speed Distribution Data .. 18
 Monthly Average Wind Speed Data .. 19
 Diurnal Average Wind Speed Data .. 20
 Wind Rose Data .. 21
TABLE OF FIGURES

- Figure 1 – Site location ... 5
- Figure 2 – Wind Speed Time Series, December 2007 – February 2008 .. 9
- Figure 3 – Wind Speed Distribution, December 2007 – February 2008 9
- Figure 4 – Monthly Average Wind Speeds, June 2007 – February 2008 10
- Figure 5 – Diurnal Wind Speed, December 2007 – February 2008 .. 10
- Figure 6 – Turbulence Intensity vs. Wind Speed, December 2007 – February 2008 11
- Figure 7 – Wind Rose, December 2007 – February 2008 .. 12
EXECUTIVE SUMMARY

All the work presented in this Wind Data Report including installation and decommissioning of the meteorological tower and instrumentation, and the data analysis and reporting was performed by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst.

The wind measurement station is installed on Turkey Hill in Cohasset, MA. Installed in May 2007, the wind monitoring station has been in operation for 10 months. The station consists of two anemometers each at 49 m (161 ft) and at 38 m (125 ft), one anemometer at 20 m (66 ft) and wind vanes at the same heights.

During the interval covered by this report, December 01 2007 – February 29 2008, the recorded mean wind speed was 5.69 m/s (12.73 mph) and the prevailing wind direction was from west-northwest. The gross data recovery percentage (the actual percentage of expected data received) was 100% and the net data recovery percentage (the percentage of expected data which passed all of the quality assurance tests) was 89.213%. Usually, the net data recovery percentage is over 90%. This relatively low percentage is due to the fact that one of the two wind speed sensors at the 49 m height malfunctioned.

Additional information about interpreting the data presented in this report can be found in the Fact Sheet, “Interpreting Your Wind Resource Data,” produced by RERL and the Massachusetts Technology Collaborative (MTC). This document is found through the RERL website:

http://www.ceere.org/rerl/about_wind/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf

* 1 m/s = 2.237 mph.
SECTION 1 - Station Location

The location of the tower base is 42.23912° North, 70.85155° West. Relative to the Mean Low Water Level, the tower is mounted at a height of 41 m (134 ft).

Figure 1 – Site location

SECTION 2 - Instrumentation and Equipment

The wind monitoring equipment is mounted on a met tower that is 164 feet tall, six inches in diameter, and held up by guy wires. This type of tower sits directly on the ground and no foundation is necessary. All the equipment comes from NRG Systems, and consists of the following items:
• Tower kit, height 50 m NRG tower

• Logger kit: NRG Symphonie Logger

• 5 - #40 Anemometers, standard calibration (Slope – 0.765 m/s, Offset – 0.350 m/s). One anemometer is located at 20 m (66 ft). Two anemometers are located at 38 m (125 ft) and two at 49 m (160 ft).

• 3 - #200P Wind direction vanes. The vanes are located at 20 m (66 ft), 38 m (125 ft), and 49 m (160 ft).

• 1 - #110S Temperature sensor located at 2 m (7 ft).

The data from the Symphonie logger is mailed to the University of Massachusetts, Amherst on a regular basis. The logger samples wind speed and direction once every two seconds. These samples are combined into 10-minute averages and are put into a binary file along with the standard deviation for each 10-minute interval. The binary files are converted to ASCII text files using the NRG software BaseStation®. These text files are then imported into a database software program where they are subjected to quality assurance tests prior to data usage.

SECTION 3- Data Summary

A summary of the wind speeds and wind directions measured during the reporting period is included in Table 1. Table 1 includes the mean wind speeds measured at each measurement height, the maximum instantaneous wind speed measured at each measurement height and the prevailing wind direction measured at each measurement height. These values are provided for each month of the reporting period and for the whole reporting period.

Table 1. Wind Speed and Direction Data Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean Wind Speed 49 m [m/s]</th>
<th>Max Wind Speed 49 m [m/s]</th>
<th>Prevailing Wind Direction 49 m</th>
<th>Mean Wind Speed 38 m [m/s]</th>
<th>Max Wind Speed 38 m [m/s]</th>
<th>Prevailing Wind Direction 38 m</th>
<th>Mean Wind Speed 20 m [m/s]</th>
<th>Max Wind Speed 20 m [m/s]</th>
<th>Prevailing Wind Direction 20 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 2007</td>
<td>5.38</td>
<td>15.56</td>
<td>NE</td>
<td>4.62</td>
<td>14.22</td>
<td>NE</td>
<td>3.21</td>
<td>11.73</td>
<td>NE</td>
</tr>
<tr>
<td>Jan 2008</td>
<td>6.03</td>
<td>16.15</td>
<td>SW</td>
<td>5.3</td>
<td>14.86</td>
<td>SW</td>
<td>3.53</td>
<td>12.72</td>
<td>N</td>
</tr>
<tr>
<td>Feb 2008</td>
<td>5.66</td>
<td>16.05</td>
<td>SW</td>
<td>5.02</td>
<td>14.57</td>
<td>SW</td>
<td>3.57</td>
<td>11.17</td>
<td>SW</td>
</tr>
</tbody>
</table>
Wind data statistics in the table are reported when more than 90% of the data during the reporting period are valid. In cases when a larger amount of data is missing, the percent of the available data that are used to determine the data statistics is noted.

No measurement of wind speed or direction can be perfectly accurate. Wind speed measurement errors occur due to anemometer manufacturing variability, anemometer calibration errors, the response of anemometers to turbulence and vertical air flow and due to air flows caused by the anemometer mounting system. Every effort is made to reduce the sources of these errors. Nevertheless, the values reported in this report have an expected uncertainty of about ± 2% or ± 0.2 m/s, whichever is greater. Wind direction measurement errors occur due to sensor measurement uncertainty, tower effects, boom alignment measurement errors and twisting of pipe sections during the raising of a pipe tower. Efforts are also made to reduce these errors, but the reported wind directions are estimated to have an uncertainty of +/− 5 degrees.

A summary of the turbulence intensity and mean wind shear measured at each measurement height during the reporting period is included in Table 2. These values are provided for each month of the reporting period and for the whole reporting period. Turbulence Intensity is calculated by dividing the standard deviation of the wind speed by the mean wind speed and is a measure of the gustiness of a wind resource. Lower turbulence results in lower mechanical loads on a wind turbine. Turbulence intensity varies with wind speed. The average turbulence intensity presented in Table 2 is the mean turbulence intensity when the wind speed at the highest measurement height is between 9.5 and 10.5 m/s.

Shear coefficients provide a measure of the change in wind speed with height. When data at multiple heights are available, shear coefficients, α, have been determined. They can be used in the following formula to estimate the average wind speed, \(U(z) \), at height \(z \), when the average wind speed, \(U(z_r) \), at height \(z_r \) is known:

\[
U(z) = U(z_r) \left(\frac{z}{z_r} \right)^a
\]

The change in wind speed with height is a very complicated relationship related to atmospheric conditions, wind speed, wind direction, time of day and time of year. This formula will not always provide the correct answer at any given site. Nevertheless the calculated shear coefficient, based on measurements at two heights, can be used to characterize the degree of increase in wind speed with height at a site.

The mean wind shear coefficient that is provided here is calculated based on the mean wind speeds in Table 1, where \(z_{\text{high}} \) and \(z_{\text{low}} \) are the heights of the higher and lower mean wind speeds used in the calculation and \(U(z_{\text{low}}) \) and \(U(z_{\text{high}}) \) are the mean wind speeds at the two heights.
\[\alpha = \log \left(\frac{U(z_{\text{high}})}{U(z_{\text{low}})} \right) / \log \left(\frac{z_{\text{high}}}{z_{\text{low}}} \right) \]

Table 2. Shear and Turbulence Intensity Data Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Turbulence Intensity at 10 m/s</th>
<th>Turbulence Intensity at 10 m/s</th>
<th>Turbulence Intensity at 10 m/s</th>
<th>Mean Wind Shear Coefficient, (\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>49 m [-]</td>
<td>38 m [-]</td>
<td>20 m [-]</td>
<td>Between 49 m and 38 m [-]</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 2007</td>
<td>0.19</td>
<td>0.21</td>
<td>0.32</td>
<td>0.60</td>
</tr>
<tr>
<td>Oct 2007</td>
<td>0.19</td>
<td>0.22</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>Nov 2007</td>
<td>0.21</td>
<td>0.24</td>
<td>0.34</td>
<td>0.47</td>
</tr>
<tr>
<td>Sep 2007 –Nov 2007</td>
<td>0.19</td>
<td>0.22</td>
<td>0.32</td>
<td>0.53</td>
</tr>
</tbody>
</table>

SECTION 4- Graphs

This report contains several types of wind data graphs. Unless otherwise noted, each graph represents data from 1 quarter (3 months). The following graphs are included:

- **Time Series** – 10-minute average wind speeds are plotted against time, starting on Dec 1, 2007, in Figure 2. The graph represents data at 49 m.

- **Wind Speed Distribution** – A histogram plot giving the percentage of time that the wind is at a given wind speed. Figure 3 shows wind speeds ranged 5 m/s (11.2 mph) and 6 m/s (13.42 mph) about 17% of the time and between 6 m/s (13.42 mph) and 7 m/s (15.66 mph) about another 14% of the time. The graph represents data at 49 m.

- **Monthly Average** – A plot of the monthly average wind speed over a 12-month period. This graph usually shows the trends in the wind speed over the year. This graph shows the trends in the wind speed over June through February 2008 as the wind measuring station became active only on May 25, 2007 and has not yet collected data from a 12-month period. This plot is shown on Figure 4 and represents data collected at 49 m.

- **Diurnal** – A plot of the average wind speed for each hour of the day. Figure 5 shows that the wind speed varied between 5.1 m/s (11.4 mph) and 6.1 m/s (13.6 mph) throughout the day on average and the highest wind speeds were recorded in the evening. The plot represents data collected at 49 m.
• Turbulence Intensity – A plot of turbulence intensity as a function of wind speed. Turbulence Intensity is calculated as the standard deviation of the wind speed divided by the wind speed and is a measure of the gustiness of a wind resource. Lower turbulence results in lower mechanical loads on a wind turbine. For Cohasset, the turbulence intensity was well within the acceptable range. This plot is shown as Figure 6. The plot represents data at 49 m.

• Wind Rose – A plot, by compass direction showing the percentage of time that the wind comes from a given direction and the average wind speed in that direction. The wind blew from the west-northwest approximately 16% of the time at an average speed of approximately 5.9 m/s (13.2 mph). This plot is shown on Figure 7 and represents data collected at 49 m.

Data for the wind speed histograms, monthly and diurnal average plots, and wind roses are included in APPENDIX B.
Monthly Average Wind Speeds

Figure 4 – Monthly Average Wind Speeds, June 2007 – February 2008

Diurnal Average Wind Speeds

Figure 5 – Diurnal Wind Speed, December 2007 – February 2008
Turbulence Intensities

Cohasset Turbulence Intensity, 49 m

Figure 6 – Turbulence Intensity vs. Wind Speed, December 2007 – February 2008
Wind Roses

Cohasset Wind Rose, 49 m

Figure 7 – Wind Rose, December 2007 – February 2008
SECTION 5 - Significant Meteorological Events

December of 2007 – February of 2008 experienced, on average, normal winds and precipitation. No major events are shown in the wind speed time series.

Source: http://www.erh.noaa.gov/box/MonthlyClimate2.shtml

SECTION 6 - Data Collection and Maintenance

The following maintenance/equipment problems occurred during the report period, and the following corrective actions taken:

- All sensors but one have been working without any problems since 11:00 am on May 25, 2007. One of the anemometers at the 49 m height was flagged for most of the time.
- No maintenance operations were performed.

SECTION 7 - Data Recovery and Validation

All raw wind data are subjected to a series of tests and filters to weed out data that are faulty or corrupted. Definitions of these quality assurance (QA) controls are given below under Test Definitions and Sensor Statistics. These control filters were designed to automate the quality control process and used many of the previous hand-worked data sets made at UMass to affect a suitable emulation. The gross percentage of data recovered (ratio of the number of raw data points received to data points expected) and net percentage (ratio of raw data points which passed all QA control tests to data points expected) are shown below.

<table>
<thead>
<tr>
<th>Gross Data Recovered [%]</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Data Recovered [%]</td>
<td>89.21</td>
</tr>
</tbody>
</table>

Test Definitions

All raw data were subjected to a series of validation tests, as described below. The sensors tested and the parameters specific to each sensor are given in the Sensor Performance Report which is included in APPENDIX A. Data which were flagged as invalid were not included in the statistics presented in this report.

MinMax Test: All sensors are expected to report data values within a range specified by the sensor and logger manufacturers. If a value falls outside this range, it is flagged as invalid. A data value from the sensor listed in Test Field 1 (TF1) is flagged if it is less than Factor 1 (F1) or greater than Factor 2. This test has been applied to the following
sensors (as applicable): wind speed, wind speed standard deviation, wind direction, temperature, and solar insolation.

\[F_1 > TF_1 > F_2 \]

MinMaxT Test: This is a MinMax test for wind direction standard deviation with different ranges applied for high and low wind speeds. A wind direction standard deviation data value (TF1) is flagged either if it is less than Factor 1, if the wind speed (TF2) is less than Factor 4 and the wind direction standard deviation is greater than Factor 2, or if the wind speed is greater than or equal to Factor 4 and the wind direction standard deviation is greater than Factor 3.

\[
(TF_1 < F_1) \\
\text{or} (TF_2 < F_4 \text{ and } TF_1 > F_2) \\
\text{or} (TF_2 \geq F_4 \text{ and } TF_1 > F_3)
\]

Icing Test: An icing event occurs when ice collects on a sensor and degrades its performance. Icing events are characterized by the simultaneous measurements of near-zero standard deviation of wind direction, non-zero wind speed, and near- or below-freezing temperatures. Wind speed, wind speed standard deviation, wind direction, and wind direction standard deviation data values are flagged if the wind direction standard deviation (CF1) is less than or equal to Factor 1 (F1), the wind speed (TF1) is greater than Factor 2 (F2), and the temperature (CF2) is less than Factor 3 (F3). To exit an icing event, the wind direction standard deviation must be greater than Factor 4.

\[CF_1 \leq F_1 \text{ and } TF_1 > F_2 \text{ and } CF_2 < F_3 \]

CompareSensors Test: Where primary and redundant sensors are used, it is possible to determine when one of the sensors is not performing properly. For anemometers, poor performance is characterized by low data values. Therefore, if one sensor of the pair reports values significantly below the other, the low values are flagged. At low wind speeds (Test Fields 1 and 2 less than or equal to Factor 3) wind speed data are flagged if the absolute difference between the two wind speeds is greater than Factor 1. At high wind speeds (Test Fields 1 or 2 greater than Factor 3) wind speed data are flagged if the absolute value of the ratio of the two wind speeds is greater is greater than Factor 2.

\[
[TF_1 \leq F_3 \text{ and } TF_2 \leq F_3 \text{ and } abs(TF_1 - TF_2) > F_1] \\
\text{or} [(TF_1 > F_3 \text{ or } TF_2 > F_3) \text{ and } (abs(1 - TF_1 / TF_2) > F_2 \text{ or } abs(1 - TF_2 / TF_1) > F_2)]
\]

Sensor Statistics

A summary of the results of the data collection and filtering are given in the Sensor Performance Report which is included in APPENDIX A. The following categories of information, tabulated for each sensor, are included in that report.
Expected Data Points: the total number of sample intervals between the start and end dates (inclusive).

Actual Data Points: the total number of data points recorded between the start and end dates.

% Data Recovered: the ratio of actual and expected data points (this is the *gross data recovered percentage*).

Hours Out of Range: total number of hours for which data were flagged according to MinMax and MinMaxT tests. These tests flag data which fall outside of an expected range.

Hours of Icing: total number of hours for which data were flagged according to Icing tests. This test uses the standard deviation of wind direction, air temperature, and wind speed to determine when sensor icing has occurred.

Hours of Fault: total number of hours for which data were flagged according to CompareSensors tests. These tests compare two sensors (e.g. primary and redundant anemometers installed at the same height) and flag data points where one sensor differs significantly from the other.

% Data Good: the filter results are subtracted from the gross data recovery percentage to yield the *net data recovered percentage*.
APPENDIX A - Sensor Performance Report

Test Definitions

<table>
<thead>
<tr>
<th>Test Order</th>
<th>Test Field1</th>
<th>Test Field2</th>
<th>Test Field3</th>
<th>Calc Field1</th>
<th>Calc Field2</th>
<th>Calc Field3</th>
<th>Test Type</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TimeTest Insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Etmp2aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>-30</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EtmpSD2aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>-30</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Anem49aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Anem49bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Anem38aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Anem38bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Anem20aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>AnemSD49aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AnemSD49bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>AnemSD38aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>AnemSD38bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>AnemSD20aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Vane49aDEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Vane38aDEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Vane20aDEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Turb49zNONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Turb38zNONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Turb20zNONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Winh02NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Amax49aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Amin49aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Amax49bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Amin49bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Amax38aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Amin38aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Amax38bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Amin38bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Amax20aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Amin20aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Vmax49aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Vmin49aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Vmax38aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Vmin38aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Vmax20aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Vmin20aDEGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMax</td>
<td>0</td>
<td>359.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>VaneSD49aDEG</td>
<td>Anem49aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMaxT</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>201</td>
<td>VaneSD38aDEG</td>
<td>Anem38aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMaxT</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>202</td>
<td>VaneSD20aDEG</td>
<td>Anem20aMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MinMaxT</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>Anem49aMS</td>
<td>AnemSD49aMS</td>
<td>Vane49aDEG</td>
<td>VaneSD49aDEG</td>
<td>Etmp2aDEGC</td>
<td></td>
<td>Icing</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>301</td>
<td>Anem49bMS</td>
<td>AnemSD49bMS</td>
<td>Vane49aDEG</td>
<td>VaneSD49aDEG</td>
<td>Etmp2aDEGC</td>
<td></td>
<td>Icing</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>302</td>
<td>Anem38aMS</td>
<td>AnemSD38aMS</td>
<td>Vane38aDEG</td>
<td>VaneSD38aDEG</td>
<td>Etmp2aDEGC</td>
<td></td>
<td>Icing</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>303</td>
<td>Anem20aMS</td>
<td>AnemSD20aMS</td>
<td>Vane20aDEG</td>
<td>VaneSD20aDEG</td>
<td>Etmp2aDEGC</td>
<td></td>
<td>Icing</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>Anem49bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CompareSensors</td>
<td>1</td>
<td>0.25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>Anem38bMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CompareSensors</td>
<td>1</td>
<td>0.25</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Sensor Statistics

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Expected Data Points</th>
<th>Actual Data Points</th>
<th>% Data Recovered</th>
<th>Hours Out of Range</th>
<th>Hours of Icing</th>
<th>Hours of Fault</th>
<th>% Data Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anem49aMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1</td>
<td>44.333</td>
<td>0</td>
<td>99.347</td>
</tr>
<tr>
<td>AnemSD49aMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1</td>
<td>44.333</td>
<td>0</td>
<td>99.347</td>
</tr>
<tr>
<td>Anem49bMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.167</td>
<td>9.833</td>
<td>5877</td>
<td>15.171</td>
</tr>
<tr>
<td>AnemSD49bMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.167</td>
<td>9.833</td>
<td>5877</td>
<td>15.171</td>
</tr>
<tr>
<td>Anem38aMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.167</td>
<td>33.667</td>
<td>1</td>
<td>99.484</td>
</tr>
<tr>
<td>AnemSD38aMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.167</td>
<td>33.667</td>
<td>1</td>
<td>99.484</td>
</tr>
<tr>
<td>Anem38bMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.167</td>
<td>12.667</td>
<td>42.167</td>
<td>99.193</td>
</tr>
<tr>
<td>AnemSD38bMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.167</td>
<td>12.667</td>
<td>42.167</td>
<td>99.193</td>
</tr>
<tr>
<td>Anem20aMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>0.5</td>
<td>39</td>
<td>0</td>
<td>99.431</td>
</tr>
<tr>
<td>AnemSD20aMS</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>0.5</td>
<td>39</td>
<td>0</td>
<td>99.431</td>
</tr>
<tr>
<td>Vane49aDEG</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.833</td>
<td>44.333</td>
<td>0</td>
<td>99.335</td>
</tr>
<tr>
<td>VaneSD49aDEG</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.833</td>
<td>44.333</td>
<td>0</td>
<td>99.335</td>
</tr>
<tr>
<td>Vane38aDEG</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>2</td>
<td>33.667</td>
<td>0</td>
<td>99.484</td>
</tr>
<tr>
<td>VaneSD38aDEG</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>2</td>
<td>33.667</td>
<td>0</td>
<td>99.484</td>
</tr>
<tr>
<td>Vane20aDEG</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.667</td>
<td>39</td>
<td>0</td>
<td>99.414</td>
</tr>
<tr>
<td>VaneSD20aDEG</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1.667</td>
<td>39</td>
<td>0</td>
<td>99.414</td>
</tr>
<tr>
<td>Etmp2aDEGC</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>1102</td>
<td>0</td>
<td>0</td>
<td>84.123</td>
</tr>
<tr>
<td>EtmpSD2aDEGC</td>
<td>41646</td>
<td>41646</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>749628</td>
<td>749628</td>
<td>100</td>
<td>1123</td>
<td>513.333</td>
<td>11840.33</td>
<td>89.213</td>
</tr>
</tbody>
</table>
APPENDIX B - Plot Data

Wind Speed Distribution Data

<table>
<thead>
<tr>
<th>Bin Center Wind Speed [m/s]</th>
<th>Percent of Time [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.86</td>
</tr>
<tr>
<td>1.5</td>
<td>3.39</td>
</tr>
<tr>
<td>2.5</td>
<td>7.44</td>
</tr>
<tr>
<td>3.5</td>
<td>12.05</td>
</tr>
<tr>
<td>4.5</td>
<td>16.7</td>
</tr>
<tr>
<td>5.5</td>
<td>16.7</td>
</tr>
<tr>
<td>6.5</td>
<td>14.46</td>
</tr>
<tr>
<td>7.5</td>
<td>9.94</td>
</tr>
<tr>
<td>8.5</td>
<td>6.63</td>
</tr>
<tr>
<td>9.5</td>
<td>4.17</td>
</tr>
<tr>
<td>10.5</td>
<td>2.8</td>
</tr>
<tr>
<td>11.5</td>
<td>1.74</td>
</tr>
<tr>
<td>12.5</td>
<td>0.98</td>
</tr>
<tr>
<td>13.5</td>
<td>0.51</td>
</tr>
<tr>
<td>14.5</td>
<td>0.26</td>
</tr>
<tr>
<td>15.5</td>
<td>0.07</td>
</tr>
<tr>
<td>16.5</td>
<td>0.02</td>
</tr>
<tr>
<td>17.5</td>
<td>0</td>
</tr>
<tr>
<td>18.5</td>
<td>0</td>
</tr>
<tr>
<td>19.5</td>
<td>0</td>
</tr>
<tr>
<td>20.5</td>
<td>0</td>
</tr>
<tr>
<td>21.5</td>
<td>0</td>
</tr>
<tr>
<td>22.5</td>
<td>0</td>
</tr>
<tr>
<td>23.5</td>
<td>0</td>
</tr>
<tr>
<td>24.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3 - Wind Speed Distribution, 49 m
Monthly Average Wind Speed Data

<table>
<thead>
<tr>
<th>Date</th>
<th>10 min Mean [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 2007</td>
<td>4.99</td>
</tr>
<tr>
<td>Jul 2007</td>
<td>4.50</td>
</tr>
<tr>
<td>Aug 2007</td>
<td>4.74</td>
</tr>
<tr>
<td>Sep 2007</td>
<td>5.02</td>
</tr>
<tr>
<td>Oct 2007</td>
<td>5.04</td>
</tr>
<tr>
<td>Nov 2007</td>
<td>5.90</td>
</tr>
<tr>
<td>Dec 2007</td>
<td>5.38</td>
</tr>
<tr>
<td>Jan 2008</td>
<td>6.03</td>
</tr>
<tr>
<td>Feb 2008</td>
<td>5.66</td>
</tr>
</tbody>
</table>

Table 4 - Wind Speed Averages at 49 m
Diurnal Average Wind Speed Data

<table>
<thead>
<tr>
<th>Hour of Day</th>
<th>Average Wind Speed [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5.81</td>
</tr>
<tr>
<td>1.5</td>
<td>5.81</td>
</tr>
<tr>
<td>2.5</td>
<td>5.92</td>
</tr>
<tr>
<td>3.5</td>
<td>6.07</td>
</tr>
<tr>
<td>4.5</td>
<td>5.96</td>
</tr>
<tr>
<td>5.5</td>
<td>5.79</td>
</tr>
<tr>
<td>6.5</td>
<td>5.7</td>
</tr>
<tr>
<td>7.5</td>
<td>5.89</td>
</tr>
<tr>
<td>8.5</td>
<td>5.71</td>
</tr>
<tr>
<td>9.5</td>
<td>5.55</td>
</tr>
<tr>
<td>10.5</td>
<td>5.5</td>
</tr>
<tr>
<td>11.5</td>
<td>5.7</td>
</tr>
<tr>
<td>12.5</td>
<td>5.78</td>
</tr>
<tr>
<td>13.5</td>
<td>5.69</td>
</tr>
<tr>
<td>14.5</td>
<td>5.63</td>
</tr>
<tr>
<td>15.5</td>
<td>5.43</td>
</tr>
<tr>
<td>16.5</td>
<td>5.12</td>
</tr>
<tr>
<td>17.5</td>
<td>5.2</td>
</tr>
<tr>
<td>18.5</td>
<td>5.58</td>
</tr>
<tr>
<td>19.5</td>
<td>5.74</td>
</tr>
<tr>
<td>20.5</td>
<td>5.74</td>
</tr>
<tr>
<td>21.5</td>
<td>5.69</td>
</tr>
<tr>
<td>22.5</td>
<td>5.72</td>
</tr>
<tr>
<td>23.5</td>
<td>5.75</td>
</tr>
</tbody>
</table>

Table 5 - Diurnal Average Wind Speeds, 49 m
Wind Rose Data

<table>
<thead>
<tr>
<th>Direction</th>
<th>Percent Time [%]</th>
<th>Mean Wind Speed [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4.37</td>
<td>5.05</td>
</tr>
<tr>
<td>NNE</td>
<td>2.49</td>
<td>5.2</td>
</tr>
<tr>
<td>NE</td>
<td>2.73</td>
<td>6</td>
</tr>
<tr>
<td>ENE</td>
<td>3.39</td>
<td>5.94</td>
</tr>
<tr>
<td>E</td>
<td>3.24</td>
<td>5.79</td>
</tr>
<tr>
<td>ESE</td>
<td>1.91</td>
<td>4.31</td>
</tr>
<tr>
<td>SE</td>
<td>3.35</td>
<td>5.09</td>
</tr>
<tr>
<td>SSE</td>
<td>3.77</td>
<td>4.34</td>
</tr>
<tr>
<td>S</td>
<td>3.18</td>
<td>5.44</td>
</tr>
<tr>
<td>SSW</td>
<td>3.8</td>
<td>6.9</td>
</tr>
<tr>
<td>SW</td>
<td>9.45</td>
<td>6.17</td>
</tr>
<tr>
<td>WSW</td>
<td>9.13</td>
<td>5.27</td>
</tr>
<tr>
<td>W</td>
<td>13.67</td>
<td>5.55</td>
</tr>
<tr>
<td>WNW</td>
<td>16.42</td>
<td>5.91</td>
</tr>
<tr>
<td>NW</td>
<td>8.56</td>
<td>5.61</td>
</tr>
<tr>
<td>NNW</td>
<td>10.56</td>
<td>6.27</td>
</tr>
</tbody>
</table>

Table 6 - Wind Rose, Time Percentage and Mean Wind Speed by Direction, 49 m