Characterization of anti-channel catfish (*Ictalurus punctatus*) T-Cell Receptor β monoclonal antibodies

Eva-Stina Edholm*, James L. Stafford, Eva Bengtén, Norman W. Miller and Melanie Wilson

Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA

Abstract

It is well established that teleosts have the functional equivalents of T cells, which express genes homologous to mammalian T cell receptors (TCR) and to T cell accessory/signaling molecules. In catfish, the availability of cloned T cell lines offers an important model system for studying T cell function. However, due to a lack of T cell surface specific markers for most fish species, little is known about the function and regulation of teleost T cells. To this end, we have developed two anti-catfish TCR β chain monoclonal antibodies (mAb) by immunizing BALB/c mice with a TCR β constant domain recombinant protein. In Western blots, mAb 2F5-B6 recognizes a major band of ~46-50 kDa in lysates from the catfish alloantigen-dependent cytotoxic T cell line TS32.15, a size possibly representing the mature glycosylated TCR β protein. Comparatively, no reactive bands are present in lysates from the catfish clonal B cell lines, 3B11 or 1G8. Flow cytometry analyses revealed that mAb 13F11 reacts with TS32.15 T cells and not with 3B11 or 1G8 B cells. The intensity of 13F11 positive staining of TS32.15 T cells was highest on day 2 after stimulation, and then steadily declined until subsequent restimulation. This staining profile correlated with TCR message expression. Similar patterns were also observed when peripheral blood leukocytes (PBL) were isolated on a cushion of Ficoll-Hypaque and stimulated in culture with either LPS, Con A or irradiated alloantigens (3B11). Cultures were analyzed for 13F11 staining on day 4 and day 6 post-stimulation. When the cells were stained with anti-IgM mAb 1.14, no difference was observed between the various treatments. Overall, 13F11 staining levels were lower than 13F11 staining levels.

Conclusions

- Two anti-TCR β chain (IgM κ) mAbs have been developed by immunization with a TCR β constant domain recombinant protein.
- In Western blots of TS32.15 T cells, mAb 2F5-B6 reacts with a band of ~46-50 kDa. This size likely represents the mature glycosylated TCR β protein. No reactive bands were observed in B cell lysates.
- MAb 13F11 stains catfish cytotoxic TS32.15 T cells, but not B cells.
- The 13F11 staining profiles as well as TCR message expression change during the activation cycle of TS32.15 T cells. Rapidly proliferating cells appear to express less TCR β protein and message.
- ConA and alloantigen stimulated PBL showed increased 13F11 staining compared to untreated or LPS stimulated PBL.
- These data are consistent with the hypothesis that both monoclonal antibodies recognize catfish TCR β.
- Continuing efforts are underway to develop anti-catfish TCR α, β, γ and δ mAbs of the gamma isotype for more consistent reactivity.

Does 13F11 staining correlate with TCR message expression?

Differential 13F11 staining of PBL stimulated in vitro with various mitogenes

A higher percent of 13F11 staining was observed on PBL stimulated with ConA and irradiated alloantigens as compared to LPS stimulated cultures. Catfish peripheral blood leukocytes (PBL) were isolated on a cushion of Ficoll-Hypaque and stimulated in culture with either LPS, Con A or irradiated alloantigenic B cells (3B11). Cultures were analyzed for 13F11 staining on day 4 and day 6 post-stimulation. When the cells were stained with anti- IgM mAb 1.14, no difference was observed between the various treatments. Overall, 11.4 staining levels were lower than 13F11 staining levels.

13F11 staining profiles on day 6 after stimulation

TCR expression analysis of TS32.15 by RT-PCR

The geometric mean fluorescence of TS32.15 cells stained by 13F11 changes after alloantigen stimulation. Fluorescence intensity of 13F11 compared to the negative control 1.14 on days 2-8 are shown.

The specificity of mAb 13F11 using catfish 3B11 B cells and TS32.15 T cells. Cell lines were stained with 13F11 hybridoma supernatant and analyzed by flow cytometry. 13F11 reacts with TS32.15 T cells and not with 3B11 B cells.