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abstract This article shows that social norms are better explained as correlating 
devices for a correlated equilibrium of the underlying stage game, rather 
than Nash equilibria. Whereas the epistemological requirements for rational 
agents playing Nash equilibria are very stringent and usually implausible, 
the requirements for a correlated equilibrium amount to the existence of 
common priors, which we interpret as induced by the cultural system of the 
society in question. When the correlating device has perfect information, we 
need in addition only to posit that individuals obey the social norm when it is 
costless to do so. When the correlating device has incomplete information, the 
operation of the social norm requires that individuals have a predisposition to 
follow the norm even when this is costly. The latter case explains why social 
norms are associated with other-regarding preferences and provides a basis for 
analyzing honesty and corruption.

keywords Nash equilibrium, correlated equilibrium, social norm, correlating device, 
honesty, corruption, Bayesian rationality

1. Introduction

This article extends the seminal contributions of David Lewis, Michael Taylor, 
Robert Sugden, Cristina Bicchieri, and Ken Binmore in treating social norms as 
Nash equilibria of noncooperative games played by rational agents.1 The insight 
underlying all these contributions is that if agents play a game G with several 
Nash equilibria, a social norm can serve to choose among these equilibria. While 
this insight applies to several important social situations, it does not apply to 
most. In this article, I will suggested a more general principle, according to which 
a social norm is a choreographer of a ‘supergame’ G+ of G. By the term ‘choreog-
rapher’ I mean a correlating device that implements a correlated equilibrium of G 
in which all agents play strictly pure strategies (these terms are defined below).
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The social norms as choreographer has two attractive properties lacking in the 
social norms as Nash equilibria. First, the conditions under which rational agents 
play Nash equilibria are generally complex and implausible, whereas rational 
agents in a very natural sense play correlated equilibria (see Section 7). Second, 
the social norms as Nash equilibria approach cannot explain why compliance 
with social norms is often based on other-regarding and moral preferences in 
which agents are willing to sacrifice on behalf of compliance with social norms. 
We can explain this association between norms and morality in terms of the 
incomplete information possessed by the choreographer. Morality, in this view, 
is doing the right thing even if no one is looking.

2. From Nash to correlated equilibrium

Consider a society in which men prefer the company of women and vice versa, 
but when they consort, their two forms of entertainment, m and f, are favored by 
men and women, respectively. Their payoffs are described in Figure 1. There are 
two pure-strategy equilibria and one mixed-strategy equilibrium for this game. 
Clearly, both sexes would be better off if they stuck to either of their pure-strategy 
equilibria than by choosing the mixed-strategy equilibrium, in which each plays 
his or her favorite choice with a probability of one-third, resulting in the payoff 
of two-thirds to each.

                 
Alice

             
Bob  

Figure 1 The battle of the sexes game

No principle of rational choice objectively favors any of these three equilibria, 
but a good case could be made for the mixed-strategy equilibrium, as it conforms 
to a priori symmetry principles that are likely to hold in the absence of other 
information. Suppose there is a social norm that says ‘The man always gets to 
decide where to go.’ Then, if both men and women believe that this social norm 
is in effect, each knows the other will choose m, and hence each will choose m, 
thus validating the social norm.

For a more complicated, but more realistic example, consider a town with a 
rectangular north–south, east–west array of streets. In the absence of a social 
norm, whenever two cars find themselves in a condition of possible collision, 
both stop and each waits for the other to go first. Obviously, not a lot of driv-
ing will get done. So, consider a social norm in which (1) all cars drive on the 
right, (2) at an intersection both cars stop and the car that arrived first proceeds 

m f

m 2,1 0,0
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forward, and (3) if both cars arrive at an intersection at the same time, the car 
that sees the other car on its left proceeds forward. This is one of several social 
norms that will lead to an efficient use of the system of streets, provided there is 
not too much traffic.

Suppose, however, that there is so much traffic that cars spend much of their 
time stopping a crossings. We might then prefer the social norm in which we 
amend the above social norm to say that cars traveling north–south always have 
the right of way and need not stop at intersections. However, if there is really 
heavy traffic, east–west drivers may never get a chance to move forward at all. 
Moreover, if some intersections violate the strict north–south, east–west orienta-
tion, it may be unclear who does have the right of way in some cases.

Suppose, then, we erect a set of signals at each intersection that indicate ‘Go’ 
or ‘Stop’ to drivers moving in one direction and another set of ‘Go’ or ‘Stop’ 
signals for drivers moving in the crossing direction. We can then correlate the 
signals so that when one set of drivers see ‘Go’, the other set of drivers see ‘Stop’. 
The social norm then says that ‘If you see Go, do not stop at the intersection, but 
if you see Stop, then stop and wait for the signal to change to Go.’ We add to the 
social norm that the system of signals alternates sufficiently rapidly and there 
is a sufficiently effective surveillance system that no driver has an incentive to 
disobey the social norm.

This would appear to be a perfect example of a social norm, indeed, a conven-
tion. However, the original game does not have a system of signals, and the pro-
posed social norm does not single out a Nash equilibrium of the original game. 
Indeed, it is easy to see that there is a wide array of payoffs in the original game 
in which the only Nash equilibrium is for both cars to stop when an encounter 
occurs.

The system of signals in fact represents what is called a correlated equilibrium 
of G.2 Basically, a correlated equilibrium adds a new player, whom I shall call 
the choreographer,3 who has signal set S = {'Go,'Stop} and who views a set W of 
‘states of nature’, and for each intersection i in the town and each state of nature 
w ∈ W, chooses a signal sin(w) ∈ S for the north–south drivers at i and a signal 
sie(w) ∈ W with sie(w) ≠ sin(w) for the east–west drivers. For simplicity, we may 
think of w ∈ W as a time of day or as a time elapsed since the last signal flip. 
So the choreographer flips the signals to the two groups of drivers according to 
some time schedule. The social norm is then the strict Nash equilibrium of the 
expanded game G+ in which all rational agents obey the traffic laws.

In no sense is this a Nash equilibrium of the original game. Nor is G+ unique; 
we can propose many alternative correlating devices, based on different state 
spaces W, that produce substantially different patterns of traffic. For instance, we 
can include in each w ∈ W a measure of the volume of traffic in the two direc-
tions at the intersection, and the choreography can increase the ‘Go’ time for the 
drivers that are currently in the more congested direction.
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Figure 2 The Hawk-Dove game

For another example, consider a society in which agents contest for posses-
sion of valuable territory. The game G has two possible strategies. The hawk (H) 
strategy is to escalate battle until injured or your opponent retreats. The dove 
(D) strategy is to display hostility, but retreat before sustaining injury if your 
opponent escalates matters. The payoff matrix is given in Figure 2, where v > 0 
is the value of the territory, w > v is the cost of injury, and (v – w)/2 is the payoff 
when two hawks meet. The agents can play mixed strategies, but they cannot 
condition their play on whether they are player 1 or player 2, and hence players 
cannot condition their behavior on being player 1 or player 2. The payoffs are 
shown in Figure 2.

The Hawk-Dove game has a unique symmetric equilibrium, determined as fol-
lows. Let a be the probability of playing hawk. The payoff to playing hawk is then 
ph = a(v – w)/2 + (1 – a)v and the payoff to playing dove is pd = a(0) + (1 – a)v/2. 
These two are equal when a* = v/w, so the unique, symmetric Nash equilibrium 
occurs when a = a*. The payoff to each player is thus

pd = (1 – a) 
v
 = 

v
 (w – v)

 
2
 

2
 

w

Note that when w is close to v, almost all the value of the territory is dissipated 
in fighting.

Clearly, because there is only one symmetric Nash equilibrium, the only pos-
sible social norm associated with a Nash equilibrium is extremely inefficient. 
Suppose, however, that when two players contest, each knows which of the 
two happened upon the territory first. We may call the first to the territory the 
‘incumbent’ and the second to arrive the ‘contester’. Consider the social norm 
that signals to the incumbent to play hawk and to the contester to play dove. 
Following the social norm, which we may call the property rights strategy, is 
not even a strategy of G, but is a third strategy to the augmented game G+. Note 
that if all individuals obey the property rights social norm, then there can be no 
efficiency losses associated with the allocation of property.

To see that we indeed have a correlated equilibrium, it is sufficient to show that 
if we add the property rights strategy P to the Hawk-Dove game, then P is a strict 
best response to itself. With this addition, we get the game depicted in Figure 3. 
Note that the payoff to property against property, v/2, is greater than 3v/4 – w/4, 

H D

H v–w, v–w
w     w

v,0

D 0,v v , v
2  2
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which is the payoff to hawk against property, and is also greater than v/4, which 
is the payoff to dove against property. Therefore, property is a strict Nash equi-
librium. It is also efficient because there is never a hawk-hawk confrontation in 
the property correlated equilibrium, and so there is never any injury.

Figure 3 The Hawk-Dove property game

The property equilibrium is a highly efficient correlated equilibrium G+ of the 
Hawk-Dove game G, and corresponds to the classical political economy defense 
of property rights, but it applies as well to nonhuman territorial animals and 
explains status quo bias and loss aversion in humans.4

3. Nash equilibrium and correlated equilibrium

There are important implications of the fact that a social norm is the choreogra-
pher of a correlated equilibrium rather than a Nash equilibrium selection device. 
A simple game G may have many qualitatively distinct correlated extensions G+, 
which implies that life based on social norms can be significantly qualitatively 
richer than the simple underlying games that they choreograph. The correlated 
equilibrium concept thus indicates that social theory goes beyond game theory 
to the extent that it supplies dynamical and equilibrium mechanisms for the con-
stitution and transformation of social norms. At the same time, the power of the 
correlated equilibrium interpretation of social norms indicates that social theory 
that rejects game theory is likely to be significantly handicapped.

Indeed, in a fundamental sense the correlated equilibrium is more basic than 
the Nash equilibrium. The epistemic conditions under which rational agents will 
play a Nash equilibrium are extremely confining and cannot be expected to hold 
in any but a small subset of even the simplest games, such as games with very 
few strategies per player that are solvable by the iterated elimination of strongly 
dominated strategies.5 By contrast, Aumann has shown that Bayesian rationality 
in a game-theoretic setting is effectively isomorphic with correlated equilibrium.6 
I shall here sketch his argument, which is extremely straightforward, once the 
proper machinery is set up.

H D P
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4. Epistemic games

An epistemic game G consists of a normal form game with players i = 1, . . ., n 
and a finite pure-strategy set Si for each player i, so

S = Pn
i=1

Si

is the set of pure-strategy profiles for G, with payoffs pi:S → R. In addition, G 
includes a set of possible states W of the game, a knowledge partition 'Pi of W 
for each player i, and a subjective prior pi(• ;w) over W that is a function of the 
current state w. A state w specifies, possibly among other aspects of the game, 
the strategy profile s used in the game. We write this as s = s(w). Similarly, we 
write si = si(w) and s–i = s–i(w).

The subjective prior pi(• ;w) represents i’s beliefs concerning the state of the 
game, including the choices of the other players, when the actual state is w. Thus, 
pi(w';w) is the probability i places on the current state being w' when the actual 
state is w. A partition of a set X is a set of mutually disjointed subsets of X whose 
union is X. We write the cell of the knowledge partition 'Pi containing the state w 
as Piw, and we interpret Piw ∈ 'Pi as the set of states that i considers possible (that 
is, among which i cannot distinguish) when the actual state is w. Therefore, we 
require that Piw = {w' ∈ W | pi(w' | w) > 0}. Because i cannot distinguish among 
states in the cell Piw of his knowledge partition 'Pi, his subjective prior must sat-
isfy pi(w'';w) = pi(w'';w') for all w'' ∈ W and all w' ∈ Piw. Moreover, we assume a 
player believes the actual state is possible, so pi(w | w) > 0 for all w ∈ W.

The possibility operator Pi has the following two properties: for all w,w' ∈ W,

(P1) w ∈ Piw

(P2) w' ∈ Piw ⇒ Piw' = Piw

P1 says that the current state is always possible (that is, pi(w | w) > 0) and P2 fol-
lows from the fact that 'Pi is a partition: if w' ∈ Piw, then Piw' and Piw have a 
nonempty intersection, and hence must be identical.

We call a set E ⊆ W an event, and we say that player i knows the event E at 
state w if Piw ⊆ E, that is, w' ∈ E for all states w' that i considers possible at w. 
We write KiE for the event that i knows E.

Given a possibility operator Pi, we define the knowledge operator Ki by

KiE = {w | Piw ⊆ E}

The most important property of the knowledge operator is KiE ⊆ E, that is, if an 
agent knows an event E in state w (that is, w ∈ KiE), then E is true in state w (that 
is, w ∈ E). This follows directly from P1.

We can recover the possibility operator Piw for an individual from his know-
ledge operator Ki, because

Piw = ∩{E | w ∈ KiE}
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To verify this equation, note that if w ∈ KiE, then Piw ⊆ E, so the left-hand side 
of the equation is contained in the right-hand side. Moreover, if w' is not in 
the right-hand side, then w' ∉ E for some E with w ∈ KiE, so Piw ⊆ E and so 
w' ∉ Piw. Thus, the right-hand side of the equation is contained in the left.

If Pi is a possibility operator for i, the sets {Piw | w ∈ W} form a partition 'P of 
W. Conversely, any partition 'P of W gives rise to a possibility operator Pi, two 
states w and w' being in the same cell if w' ∈ Piw. Thus, a knowledge structure 
can be characterized by its knowledge operator Ki, by its possibility operator Pi, 
by its partition structure 'P, or even by the subjective priors pi(• ; w).

Since each state w in epistemic game G specifies the players’ pure strategy 
choices s(w) = (s1(w), . . ., sn(w)) ∈ S, the players’ subjective priors must specify 
their beliefs fw

1, . . ., fw
n concerning the choices of the other players. We have  

fw
i  ∈ DS–i, which allows i to assume that other players’ choices are correlated. 

This is because, while the other players choose independently, they may have 
communalities in beliefs that lead them independently to choose correlated strat-
egies.

We call fw
i  player i’s conjecture concerning the behavior of the other players at 

w. Player i’s conjecture is derived from i’s subjective prior by defining fw
i ([s–i] = 

pi([s–i] ; w), where [s–i] ⊂ W is the event in which the other players choose strategy 
profile s–i. Thus, at state w, each player i takes the action si(w) ∈ Si and has the 
subjective prior probability distribution fw

i  over S–i. A player i is deemed Bayesian 
rational at w if si(w) maximizes pi(si, fw

i ), where

pi(si, fw
i ) = def    S

s–i ∈ S–i 
fw

i (s– i)pi(si, s– i) 

In other words, player i is Bayesian rational in epistemic game G if his pure-strat-
egy choice si(w) ∈ Si for every state w ∈ W satisfies

pi(si(w), fw
i) ≥ pi(si, fw

i )   for si ∈ Si

5. Example: a simple epistemic game

Suppose Alice and Bob each choose heads (h) or tails (t), neither observing the 
other’s choice. We can write the universe as W = {hh, ht, th, tt}, where xy means 
Alice chooses x and Bob chooses y. Alice’s knowledge partition is then 'PA = {{hh
, ht}, {th, tt}} and Bob’s knowledge partition is 'PB = {{hh, th}, {ht, tt}}. Alice’s 
possibility operator PA satisfies PAhh = PAht = {hh, ht} and PAth = PAtt = {th, tt}, 
whereas Bob’s possibility operator PB satisfies PBhh = PBth = {hh, th} and 
PBht = PBtt = {ht, tt}.

In this case, the event ‘Alice chooses h’ is Eh
A = {hh, ht}, and because PAhh, 

PAht ⊂ E, Alice knows Eh
A whenever Eh

A occurs (that is, Eh
A  = KiE

h
A). The event Eh

B 
expressing ‘Bob chooses h’ is Eh

B = {hh, th}, and Alice does not know Eh
B because 

at th Alice believes tt is possible, but tt ∉ Eh
B.
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6. Correlated strategies and correlated equilibria

We want to show that if players are Bayesian rational in an epistemic game G and 
have a common prior over W, the strategy profiles s:W → S that they play form a 
correlated equilibrium.7 The converse also holds: for every correlated equilibrium 
of a game, there is an extension to an epistemic game G with a common prior 
p ∈ W such that in every state w it is rational for all players to carry out the move 
indicated by the correlated equilibrium.

Informally, a correlated equilibrium of an epistemic game G is a Nash equilib-
rium of a game G+, which is G augmented by an initial move by Nature, which 
observes a random variable g on a probability space (G, p) and issues a directive 
fi(g) ∈ Si to each player i as to which pure strategy to choose. Following Nature’s 
directive is a best response, if other players also follow Nature’s directives, pro-
vided players have the common prior p.

Formally, a correlated strategy of epistemic game G consists of a finite prob-
ability space (G, p), where p ∈ DG, and a function f : G → S. If we think of a 
choreographer who observes g ∈ G and directs players to choose strategy profile 
f(g), then we can identify a correlated strategy with a probability distribution 
p~ ∈ DS, where, for s ∈ S, p~(s) = p([f(g) = s]) is the probability that the choreog-
rapher chooses s. We call p~ the distribution of the correlated strategy. Any prob-
ability distribution on S that is the distribution of some correlated strategy f is 
called a correlated distribution.

Suppose f 1, . . ., f k are correlated strategies and let a = (a1, . . ., ak) be a lottery 
(that is, ai ≥ 0 and Si ai = 1). Then, f = Si ai f i is also a correlated strategy defined 
on {1, . . ., k} × G. We call such an f a convex sum of f 1, . . ., f k. Any convex sum 
of correlated strategies is clearly a correlated strategy. It follows that any convex 
sum of correlated distributions is itself a correlated distribution.

Suppose s = (s1, . . ., sn) is a Nash equilibrium of a game G, where for each 
i = 1, . . . n,
 ni

si = S akiski

 k = 1

(where ni is the number of pure strategies in Si and aki is the weight given by si 
on the kth pure strategy ski ∈ Si). Note that s thus defines a probability distribu-
tion p~ on S such that p~(s) is the probability that pure strategy profile s ∈ S will 
be chosen when mixed strategy profile s is played. Then, p~ is a correlated dis-
tribution of an epistemic game associated with G, which we will call G as well. 
To see this, define Gi as a set with ni elements {g1i, . . ., gnii

} and define pi ∈ DSi 
such that it places probability aki on gki. Then, for s = (s1, . . ., sn) ∈ S, define p(s) 
= Pn

i=1 piSi. Now, define G = Pn
i=1 Gi and let f : G → S be given by f(gk11, . . ., gknn

) = (sk11, . . ., sknn). It is easy to check that f is a correlated strategy with correlated 
distribution p~. In short, every Nash equilibrium is a correlated strategy, and hence 
any convex combination of Nash equilibria is a correlated strategy.
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If f is a correlated strategy, then pi º f is a real-valued random variable on 
(G, p) with an expected value Ei[pi º f ], the expectation taken with respect to p. 
We say a function gi:G → Si is measurable with respect to fi if fi(g) = fi(g'), then 
gi(g) = gi(g'). Clearly, player i can choose to follow gi(g) when he knows fi(g) if gi 
is measurable with respect to fi. We say that a correlated strategy f is a correlated 
equilibrium if for each player i and any gi:G → Si that is measurable with respect 
to fi, we have

Ei[pi º f ], ≥ Ei[pi º ( f–i , gi)].

A correlated equilibrium induces a correlated equilibrium probability distri-
bution on S, whose weight for any strategy profile s ∈ S is the probability that s 
will be chosen by the choreographer. Note that a correlated equilibrium of G is a 
Nash equilibrium of the game generated from G by adding Nature, whose move 
at the beginning of the game is to observe the state of the world g ∈ G, and to 
indicate a move fi(g) for each player i such that no player has an incentive to do 
other than comply with Nature’s recommendation, provided that the other players 
comply as well.

7. Correlated equilibrium and Bayesian rationality

We now show that if the players in epistemic game G are Bayesian rational at 
w and have a common prior p(• ;w) in state w and that if each player i chooses 
si(w) ∈ Si in state w, then the distribution of s = (s1, . . ., sn) is a correlated equilib-
rium distribution given by correlating device f on probability space (W, p), where 
f(w) = s(w) for all w ∈ W.

To prove this theorem, we identify the state space for the correlated strategy 
with the state space W of G, and the probability distribution on the state space 
with the common prior p. We then define the correlated strategy f:W → S by set-
ting f(w) = (s1(w), . . ., sn(w)), where si(w) is i’s choice in state w. Then, for any 
player i and any function gi:W → Si that is 'Pi-measurable (that is, constant on the 
cells of the partition 'Pi), because i is Bayesian rational, we have

E[pi (s(w)) |w] ≥ E[pi(s–i (w), gi(w)) |w].

Now, multiply both sides of this inequality by p(P) and add over the disjoint cells 
P ∈ 'Pi, which gives, for any such gi,

E[pi (s(w))] ≥ E[pi(s–i (w), gi(w))].

This proves that (W, f(w)) is a correlated equilibrium. Note that the converse 
clearly holds as well.
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8. Common priors and social norm equilibria

The isomorphism between correlated equilibrium distributions and Bayesian 
rationality demonstrated in Section 7 highlights an assumption that lies at the 
heart of a game-theoretic concept of social norms. This is the requirement that the 
players have a common prior over the state space W. If the correlated equilibrium 
assigns a strict best response to each player, it is clear that some amount of prefer-
ence heterogeneity will not destroy the equilibrium (the reader is invited to verify 
this). Moreover, if there are known ‘types’ of players (for example, optimists and 
pessimists) whose priors are distinct, but commonly known and the population 
composition is commonly known, it may be possible to redefine the state space 
so that there are common priors over the new state space, to which the correlated 
equilibrium theory then applies. The reader is invited to develop this theme.

However, when common priors are lacking and the actual composition and fre-
quency distribution of priors are not held in common for some suitably enlarged 
state space, the social norm analysis will fail to apply. Rational agents with fun-
damental disagreements as to the actual structure of their social life do not dance 
to a choreographer’s instructions.

9. The omniscient choreographer and social preferences

The isomorphism between correlated equilibrium distributions and Bayesian 
rationality also requires that the choreographer be omniscient in the sense of hav-
ing a knowledge partition that is at least as fine as each of the player’s knowledge 
partition. This latter requirement was not explicitly mentioned in the proof, but is 
implicit in the requirement that f(w) = s(w) for all w ∈ W.

When this assumption fails, a correlated equilibrium may still obtain, provided 
the players have sufficiently strong pro-social preferences. Despite the fact that 
we have placed no restrictions on preferences other than Bayesian rationality, 
many modelers of social norms, including Bicchieri,8 predicate their analysis on 
the fact that rational individuals may have other-regarding preferences or may 
value certain moral virtues so that they voluntarily conform to a social norm in 
a situation where a perfectly self-regarding and amoral agent would not. In such 
cases, the choreographer may be obeyed even at a cost to the players, provided 
that the cost of doing so is not excessive.

For instance, each agent’s payoff might consist of a public component that is 
known to the choreographer and a private component that reflects the idiosyn-
crasies of the agent and is unknown to the choreographer. Suppose the maxi-
mum size of the private component in any state for an agent is a, but the agent’s 
inclination to follow the choreographer has a strength greater than a. Then, the 
agent continues to follow the choreographer’s directions whatever the state of his 
private information. Formally, we say an individual has an a-normative predis-
position toward conforming to the social norm if he strictly prefers to play his 
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assigned strategy so long as all his pure strategies have payoffs no more than a 
greater than when following the choreographer. We call an a-normative predis-
position a social preference because it facilitates social coordination, but violates 
self-regarding preferences for a > 0. There are evolutionary reasons for believing 
that humans have evolved such social preferences for fairly high levels of a in a 
large fraction of the population through gene-culture coevolution.9

Suppose, for example, that police in a certain town are supposed to apprehend 
criminals, where it costs police officer i a variable amount fi(w) to file a crimi-
nal report. For instance, if the identified perpetrator is in the same ethnic group 
as i, or if the perpetrator offers a bribe to be released, fi(w) might be very high, 
whereas an offender from a different ethnic group, or one who does not offer a 
bribe, might entail a low value of fi(w). How can this society erect incentives to 
induce the police to act in a non-corrupt manner?

Assuming police officer i is self-regarding and amoral, i will report a crime 
only if fi(w) ≤ w, where w is the reward for filing an accurate criminal report 
(accuracy can be guaranteed by fact-checking). A social norm equilibrium that 
requires that all apprehended criminals be prosecuted cannot then be sustained 
because all officers for whom fi(w) > w with positive probability will, at least at 
times, behave corruptly. Suppose, however, officers have a normative predisposi-
tion to behave honestly, in the form of a police culture favoring honesty that is 
internalized by all officers. If fi(w) < w + a with probability one for all officers 
i, where a is the strength of police culture, the social norm equilibrium can be 
sustained, despite the fact that the choreographer has incomplete information 
concerning events in which criminal behavior is detected.

The following is a more complex example of a social norm equilibrium that 
requires a normative predisposition of honesty.

10. A reputational model of honesty and corruption

Consider a society in which sometimes people are needy, and sometimes others 
help the needy. In the first period, a pair of members is selected randomly, one 
of the pair being designated ‘Needy’ and the other ‘Giver’. Giver and Needy then 
play a game G in which if Giver helps, a benefit b is conferred on Needy at a cost 
c to Giver, where 0 < c < b. Alternatively, if Giver defects, both players receive 
zero. In each succeeding period, Needy from the previous period becomes Giver 
in the current period. Giver is then paired with a new, random Needy, and the 
game G is played by the new pair. If we assume that helping behavior is common 
knowledge, there is a Nash equilibrium of the following form, provided the dis-
count factor d is sufficiently close to unity. At the start of the game, each player is 
labeled ‘in good standing’. In every period Giver helps if and only if his partner 
Needy is in good standing. Failure to do so puts a player ‘in bad standing’, where 
he remains for the rest of the game.

To see that this is a Nash equilibrium in which every Giver helps in every peri-
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od for d sufficiently close to one, let vc be the present value of the game to a Giver 
and let vb be the present value of the game for an individual who is not current-
ly Giver or Needy. Then we have vc = –c + dvb and vb = p(b + dvc) + (1 – p)dvb, 
where p is the probability of being chosen as Needy. The first equation reflects 
the fact that a Giver must pay c now and becomes a candidate for Needy in the 
next period. The second equation expresses the fact that a candidate for Needy 
is chosen with probability p and then gets b, plus is Giver in the next period, and 
with a probability of 1 – p remains a candidate for Needy in the next period. If 
we solve these two equations simultaneously, we find that vc > 0 precisely when 
d > c/(c + p(b – c)). Because the right-hand side of this expression is strictly less 
than one, there is a range of discount factors for which it is a best response for a 
Giver to help, and thus remain in good standing.

Suppose, however, the informational assumption is that each new Giver knows 
only whether his partner Needy did or did not help his own partner in the previous 
period. If Alice is Giver and her partner Needy is Bob, and Bob did not help when 
he was Giver, it could be because when he was Giver, Carole, his Needy partner, 
had defected when she was Giver or because Bob failed to help Carole even 
though she had helped Donald, her previous Needy partner, when she was Giver. 
Because Alice cannot condition her action on Bob’s previous action, Bob’s best 
response is to defect on Carole, no matter what she did. Therefore, Carole will 
defect on Donald, no matter what he did. Thus, there can be no Nash equilibrium 
with the pure strategy of helping.

This argument extends to the richer informational structure where a Giver 
knows the previous k actions for any finite k. Here is the argument for k = 2, 
which the reader is encouraged to generalize. Suppose the last five players are 
Alice, Bob, Carole, Donald, and Eloise, in that order. Alice can condition her 
choice on the actions taken by Bob, Carole, and Donald, but not on Eloise’s 
action. Therefore, Bob’s best response to Carole will not be conditioned on 
Eloise’s action, and hence Carole’s response to Donald will not be conditioned on 
Eloise’s action. So, finally, Donald’s response to Eloise will not be conditioned 
on her action, so her best response is to defect when she is Giver. Thus, there is 
no helping Nash equilibrium.

Suppose, however, back in the k = 1 case, that instead of defecting uncondi-
tionally when facing a Needy who has defected improperly, a Giver helps with 
probability p = 1 – c/b and defects with probability 1 – p. The gain from helping 
unconditionally is then b – c, while the gain from following this new strategy is 
p(b – c) + (1 – p)pb, where the first term is the probability p of helping times the 
reward b in the next period if one helps minus the cost c of helping in the cur-
rent period and where the second term is the probability 1 – p of defecting times 
the probability p that you will be helped anyway when your are Needy times the 
benefit b. Equating this expression with b – c, the cost of helping unconditionally, 
we get p = 1 – c/b, which is a number strictly between zero and one and hence a 
valid probability.
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Consider the following strategy. In each round, Giver helps if his partner 
helped in the previous period, and otherwise helps with probability p and defects 
with probability 1 – p. With this strategy each Giver i is indifferent to helping or 
defecting, because helping costs i the amount c when he is Giver, but i gains b 
when he is Needy, for a net gain of b – c. However, defecting costs zero when 
Giver, but gives bp = b – c when he is Needy. Because the two actions have the 
same payoff, it is incentive compatible for each Giver to help when his partner 
Needy helped and to defect with probability p otherwise. This strategy thus gives 
rise to a Nash equilibrium with helping in every period.10

However, there is no reason for rational self-regarding players to implement this 
Nash equilibrium. To see this, note that each player chooses a totally mixed strat-
egy as Giver, and hence is indifferent between helping and defecting. Therefore, 
Givers have no incentive to play the equilibrium strategy. Erecting a social norm 
does not improve the situation because a Giver who is instructed by the choreog-
raphy to help or to defect has no incentive to follow the instruction. However, if 
we add an e > 0 of normative predisposition, an omniscient choreographer could 
implement this Nash equilibrium by acting as the appropriate randomizing device. 
Moreover, suppose Givers have private preferences that, for instance, favor some 
players (for example, friends or coreligionists) over others (for example, enemies 
or infidels). In this case, the choreographer’s instructions will be followed only if 
players have a commitment to norm following that is greater than their personal 
preferences to give or withhold aid to particular individuals.

11. Conclusion

In the first pages of The Grammar of Society, Cristina Bicchieri asserts that ‘social 
norms . . . transform mixed-motive games into coordination ones’.11 As we have 
seen in Section 2, this transformation is not always the case, but Bicchieri’s affir-
mation is generally on the mark, and indeed, as shown in this article, is the key to 
understanding the relationship between rational choice theory and social norms. 
Section 7 developed the central principle12 that every state of an epistemic game 
G in which players are rational can be implemented as a correlated equilibrium 
distribution, provided the appropriate epistemic conditions hold (common priors 
and choreographer omniscience). The associated correlated equilibrium is indeed 
a Nash equilibrium of an augmented game G+, in which an additional player, the 
choreographer (aka social norm) who implements the equilibrium, is added.

I believe that the epistemic game theoretic analysis of social norms presented 
in this article can serve as the theoretical core for a general social theory of 
human strategic interaction. This analysis shows precisely where classical game 
theory goes wrong: it focuses on Nash as opposed to correlated equilibria, and 
hence ignores the rich social fabric of potential conditioning devices (W, f), each 
corresponding to a distinct social structure of interaction. Moreover, the theory 
renders salient the epistemic conditions for the existence of a social norm, con-
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ditions that are fulfilled only in an idealized, fully equilibrated social system. 
In general, social norms will be contested and only partially implemented, and 
the passage from one choreographed equilibrium to another will be mediated by 
forms of collective action and individual heroism that cannot be currently expli-
cated in game theoretic terms.
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