The Local Best Response Criterion: An Epistemic Approach to Equilibrium Refinement

Herbert Gintis*

February 6, 2009

Abstract

The standard refinement criteria for extensive form games, including sub-game perfect, perfect, perfect Bayesian, sequential, and proper, reject important classes of reasonable Nash equilibria and accept many unreasonable Nash equilibria. This paper develops a new refinement criterion, based on epistemic game theory, that captures the concept of a Nash equilibrium that is plausible when players are rational. I call this the local best response (LBR) criterion. This criterion is conceptually simpler than the standard refinement criteria because it does not depend on out-of-equilibrium, counterfactual, or passage to the limit arguments. The LBR is also informationally richer because it clarifies the epistemic conditions that render a Nash equilibrium reasonable. The LBR criterion appears to render the traditional refinement criteria superfluous.

1 Introduction

A Nash equilibrium refinement of an extensive form game is a criterion that applies to all Nash equilibria that are deemed reasonable, but fails to apply to other Nash equilibria that are deemed unreasonable, based on our informal understanding of how rational individuals might play the game. A voluminous literature has developed in search of an adequate equilibrium refinement criterion. A number of criteria have been proposed, including subgame perfect, perfect, perfect Bayesian, sequential, and proper equilibrium (Harsanyi, 1967; Myerson, 1978; Selten, 1980, Kreps and Wilson 1982; Kohlberg and Mertens, 1986), that introduce player error.

*Santa Fe Institute and Central European University. I would like to thank Robert Aumann, Jeffrey Ely, Larry Samuelson, and Fernando Vega-Redondo for their help, and the European Science Foundation for financial support.
model beliefs off the path of play, and investigate the limiting behavior of perturbed systems as deviations from equilibrium play go to zero.\footnote{Distinct categories of equilibrium refinement for normal form games, not addressed in this paper, are focal point (Schelling, 1960; Binmore and Samuelson, 2006) and risk-dominance (Harsanyi and Selten, 1988) criteria. The perfection and sequential criteria are virtually coextensive (Blume and Zame, 1994) and extend the subgame perfection criterion.}

I present a new refinement criterion that better captures our intuitions and elucidates the criteria we use implicitly to judge a Nash equilibrium as reasonable or unreasonable. The criterion does not depend on counterfactual or disequilibrium beliefs, trembles, or limits of nearby games. I call this the \textit{local best response} (LBR) criterion. The LBR criterion appears to render the traditional refinement criteria superfluous.

We assume a finite extensive form game G of perfect recall, with players $i = 1, \ldots, n$ and a finite pure strategy set S_i for each player i, so $S = S_1 \times \ldots \times S_n$ is the set of pure strategy profiles for G, with payoffs $\pi_i: S \rightarrow \mathbb{R}$. Let S_{-i} be the set of pure strategy profiles of players other than i, and let $\Delta^* S_{-i} = \Pi_{j \neq i} \Delta S_j$ be the set of mixed strategies over S_{-i}. Let \mathcal{N} be the set of information sets of G, and let \mathcal{N}_i be the information sets where player i chooses. For player i and $v \in \mathcal{N}_i$, we call $\phi^v \in \Delta^* S_{-i}$ a conjecture of i at v. If ϕ^v is a conjecture at $v \in \mathcal{N}_i$ and $j \neq i$, we write ϕ^v_{ij} for the marginal distribution of ϕ^v on $\mu \in \mathcal{N}_j$, so ϕ^v_{ij} is i’s conjecture at v of j’s behavioral strategy at μ.\footnote{A behavioral strategy p at an information set v is a probability distribution over the actions A_v available at v. We say p is part of a strategy profile σ if p is the probability distribution over A_v induced by σ. We say a mixed strategy profile σ reaches an information set v if a path through the game tree that occurs with strictly positive probability, given σ, passes through a node of v with strictly positive probability. Note that a behavioral strategy p at information set v is part of a strategy profile σ only if v is reached, given σ.} Let \mathcal{N}_v be the set of Nash equilibrium strategy profiles that reach information set v, and let \mathcal{N}^σ be the set of information sets reached when strategy profile σ is played. For $\tau \in \mathcal{N}_v$, we write p^τ_μ for the behavioral strategy at μ (that is, the probability distribution over the choices A_μ at μ) induced by τ. We say a set of conjectures $\{\phi^v | v \in \mathcal{N} \}$ supports a Nash equilibrium σ if, for any i and any $v \in \mathcal{N}^\sigma \cap \mathcal{N}_i$, σ_i is a best response to ϕ^v.

We say Nash equilibrium σ is an LBR equilibrium if there is a set of conjectures $\{\phi^v | v \in \mathcal{N} \}$ supporting σ with the following properties: (a) For each i, each $j \neq i$, each $v \in \mathcal{N}_i$, and each $\mu \in \mathcal{N}_j$, if $\mathcal{N}_\mu \cap \mathcal{N}_v \neq \emptyset$, then $\phi^v_{ij} = p^\tau_{ij}$ for some $\tau \in \mathcal{N}_\mu \cap \mathcal{N}_v$; and (b) If player i choosing at v has several choices that lead to different information sets of the other players (we call such choices decisive), i chooses among those with the highest payoff.

We can state the first condition verbally as follows. An LBR equilibrium is a Nash equilibrium σ supported by a set of conjectures of players at each information...
set reached, given σ, where players are constrained to conjecture only behaviors on the part of other players that are part of a Nash equilibrium.

2 Subgame Perfection

In the game to the right, first suppose $a = 3$. All Nash equilibria have the form (L, σ_B) for arbitrary mixed strategy σ_B for Bob. At v_A, any conjecture for Alice supports all Nash equilibria. Since no Nash equilibrium reaches v_B, there are no constraints on Alice’s conjecture. At v_B, Bob’s conjecture must put probability 1 on L, and any σ_B for Bob is a best response to this conjecture. Thus, all (L, σ_B) equilibria satisfy the LBR criterion. While only one of these equilibria is subgame perfect, none involves an incredible threat, and hence there is no reason a rational Bob would choose one strategy profile over another. This is why all satisfy the LBR criterion.

Now, suppose $a = 1$ in the figure. The Nash equilibria are now (R, r) and (L, σ_B), where $\sigma_B(r) \leq 1/2$. Alice conjectures r for Bob because this is the only strategy at v_B that is part of a Nash equilibrium. Because R is the only best response to r, the (L, σ_B) are not LBR equilibria. Bob must conjecture R for Alice because this is her only choice in a Nash equilibrium that reaches v_B. Bob’s best response is r. Thus (R, r), the subgame perfect equilibrium, is the unique LBR equilibrium.

Note that this argument does not require any out-of-equilibrium belief or error analysis. Subgame perfection is assured by epistemic considerations alone (i.e., a Nash equilibrium in which Bob plays l with positive probability is an incredible threat).

One might argue that subgame perfection can be defended because there is, in fact, always a small probability that Alice will make a mistake and play R in the $a = 3$ case. However, why single out this possibility? There are many possible “imperfections” that are ignored in the passage from a real-world strategic interaction to the game depicted in above figure, and they may work in different directions. Singing out the possibility of an Alice error is thus arbitrary. For instance, suppose l is the default choice for Bob, in the sense that it costs him a small amount ϵ_d to decide to choose r over l, and suppose it costs Bob ϵ_B to observe Alice’s behavior. The new decision tree is depicted in Figure 1.

In this new situation, Bob may choose not to observe Alice’s choice (i), with payoffs as before, and with Bob choosing l by default. But, if Bob chooses to view (v), he pays inspection cost ϵ_B, observes Alice’s choice and shifts to the non-default r when she accidentally plays R, at cost ϵ_d. If Alice plays R with
probability ϵ_A, it is easy to show that Bob will choose to inspect only if $\epsilon_A \geq \epsilon_B/(1 - \epsilon_d)$.

The LBR criterion is thus the correct refinement criterion for this game. Standard refinements fail by rejecting non-subgame perfect equilibria whether or not there is any rational reason to do so (e.g., that the equilibrium involves an incredible threat). The LBR gets to the heart of the matter, which is expressed by the argument that when there is an incredible threat, if Bob gets to choose, he will choose the strategy that gives him a higher payoff, and Alice knows this. Thus Alice maximizes by choosing R, not L. If there is no incredible threat, Bob can choose as he pleases.

In the remainder of this paper, I compare the LBR criterion with traditional refinement criteria in a variety of typical game contexts. I address where and how the LBR differs from traditional refinements and which criterion better conforms to our intuition of rational play. I include some cases where both perform equally well, for illustrative purposes. Mainly, however, I treat cases where the traditional criteria perform poorly and the LBR criterion performs well. I am aware of no cases where the traditional criteria perform better than the LBR criterion. Indeed, I know of no cases where the LBR criterion, possibly strengthened by other epistemic criteria, does not perform well, assuming our intuition is that a Nash equilibrium will be played. My choice of examples follows (Vega-Redondo, 2003). I have tested the LBR criterion for all of Vega-Redondo’s examples, and many more, but present only a few of the more informative examples here.

The LBR shares with the traditional refinement criteria the presumption that a Nash equilibrium will be played, and indeed, in every example in the paper I would expect rational players to choose an LBR equilibrium (although this expectation is not backed by empirical evidence). In many games, however, such as the Rosenthal’s centipede game (Rosenthal, 1981), Basu’s traveler’s dilemma (Basu, 1994), and Carlsson and van Damme’s global games (Carlsson and van Damme, 1993), both our intuition and the behavioral game theoretic evidence (Gintis, 2009) violate the presumption that rational agents play Nash equilibria. The LBR criterion
does not apply to these games.

Many games have multiple LBR equilibria, only a strict subset of which would be played by rational players. Often epistemic criteria supplementary to the LBR criterion single out this subset. In this paper, I use the Principle of Insufficient Reason and what I call the Principle of Honest Communication to this end.

3 The LBR Rejects Unreasonable Perfect Bayesian Equilibria

Figure 2: Only the equilibrium BbV is reasonable, but there is a connected set of Nash equilibria, including the pure strategy AbU, all members of which are perfect Bayesian.

Figure 2 depicts a game in which all Nash equilibria are subgame perfect and perfect Bayesian, but only one is reasonable, and this is the only equilibrium that satisfies the LBR. The game has two sets of equilibria. The first, A, chooses A with probability 1 and $\sigma_B(b)\sigma_C(V) \leq 1/2$, which includes the pure strategy equilibrium AbU, where σ_A, σ_B, and σ_C are mixed strategies of Alice, Bob, and Carole, respectively. The second is the strict Nash equilibrium BbV. Only the latter is a reasonable equilibrium in this case. Indeed, while all equilibria are subgame perfect because there are no proper subgames, and AbU is perfect Bayesian if Carole believes Bob chose a with probability at least $2/3$, it is not sequential because if Bob actually gets to move, Bob chooses b with probability 1 because Carole chooses V with positive probability in the perturbed game.

The forward induction argument for the unreasonability of the A equilibria is as follows. Alice can insure a payoff of 1 by playing A. The only way she can secure a higher payoff is by playing B and having Bob play b and Carole play V. Carole knows that if she gets to move, Alice must have chosen B, and because choosing b is the only way Bob can possibly secure a positive payoff, Bob must have chosen b, to which V is the unique best response. Thus, Alice deduces that if
she chooses B, she will indeed secure the payoff 2. This leads to the equilibrium BbV.

To apply the LBR criterion, note that the only moves Bob and Carole use in a Nash equilibrium where they get to choose (i.e., that reaches one of their information sets) are b and V, respectively. Thus, Alice must conjecture this, to which her best response is B. Bob conjectures V, so choose b, and Carole conjectures b, so chooses V. Therefore, only BbV is an LBR equilibrium.

4 LBR Picks Out the Sequential Equilibrium

The figure to the right depicts another example where the LBR criterion rules out unreasonable equilibria that pass the subgame perfection and perfect Bayesian criteria, but sequentiality and LBR are equally successful in this case. In addition to the Nash equilibrium Ba, there is a set A of equilibria in which Alice plays A with probability 1 and Bob plays b with probability $\geq 2/3$. The set A are not sequential but Ba is sequential. The LBR criterion requires that Alice conjecture that Bob plays a if he gets to choose because this is Bob’s only move in a Nash equilibrium that reaches his information set. Alice’s only best response to this conjecture is B. Bob must conjecture B, because this is the only choice by Alice that is part of a Nash equilibrium and reaches his information set, and a is a best response to this conjecture. Thus, Ba is an LBR equilibrium, and the others are not.

5 Selten’s Horse: Sequentiality and LBR Disagree

Selten’s Horse is depicted in Figure 3. This game shows that sequentiality is neither strictly stronger nor strictly weaker than the LBR criterion since the two criteria pick out distinct equilibria in this case.

There is a connected component \mathcal{M} of Nash equilibria given by

$$\mathcal{M} = \{(A, a, p_\lambda \lambda + (1 - p_\lambda)\rho)|0 \leq p_\lambda \leq 1/3\},$$

where p_λ is the probability that Carole chooses λ, all of which of course have the same payoff $(3,3,0)$. There is also a connected component \mathcal{N} of Nash equilibria given by

$$\mathcal{N} = \{(D, p_\lambda \lambda + (1 - p_\lambda)\rho, \lambda)|1/2 \leq p_\lambda \leq 1\}.$$
where \(p_a \) is the probability that Bob chooses \(a \), all of which have the same payoff (4,4,4).

The \(M \) equilibria are sequential but the \(N \) equilibria are not even perfect Bayesian, since if Bob were given a choice, his best response would be \(d \), not \(a \). Thus the standard refinement criteria select the \(M \) equilibria as reasonable.

The only Nash equilibrium in which Carole gets to choose is in the set \(N \), where she plays \(\lambda \). Hence, for the LBR criterion, Alice and Bob must conjecture that Carole chooses \(\lambda \). Also \(a \) is the only choice by Bob that is part a Nash equilibrium that reaches his information set. Thus, Alice must conjecture that Bob play \(a \) and Carole play \(\lambda \), so her best response is \(D \). This generates the equilibrium \(Da\lambda \).

At Bob’s information set, he must conjecture that Carole plays \(\lambda \), so \(a \) is a best response. Thus, only the pure strategy \(Da\lambda \) in the \(N \) component satisfies the LBR criterion.

Selten’s horse is thus a case where the LBR criterion chooses an equilibrium that is reasonable even though it is not even perfect Bayesian, while the standard refinement criteria choose an unreasonable equilibrium in \(M \). The \(M \) equilibria are unreasonable because if Bob did get to choose, he would conjecture that Carole play \(\lambda \) because that is her only move in a Nash equilibrium where she gets to move and, hence, will violate the LBR condition of choosing an action that is part of a Nash equilibrium that reaches his choice node. However, if he is rational, he will violate the LBR stricture and play \(d \), leading to the payoff (5,5,0). If Alice conjectures that Bob will play this way, she will play \(a \), and the outcome will be the non-Nash equilibrium \(Aa\lambda \). Of course, Carole is capable of following this train of thought, and she might conjecture that Alice and Bob will play non-Nash strategies, in which case, she could be better off playing the non-Nash \(\rho \) herself. But of course, both Alice and Bob might realize that Carole might reason in this manner. And so on. In short, we have here a case where the sequential equilibria are all unreasonable, but there are non-Nash choices that are as reasonable as the Nash equilibrium singled out by the LBR.
6 The Spence Signaling Model: LBR Correctly Rejects a Sequential Pooling Equilibrium

Figure 4: The Unreasonable Pooling Equilibrium is Rejected by the LBR

Figure 4 represents the famous Spence signaling model (Spence, 1973). Alice is either a low quality worker (L) with probability \(p = 1/3 \) or a high quality worker (H) with probability \(p = 2/3 \). Only Alice knows her own quality. Bob is an employer who has two types of jobs to offer, one for an unskilled worker (U) and the other for a skilled worker (S). If Bob matches the quality of a hire with the skill of the job, his profit is 10; otherwise his profit is 5. Alice can invest in education (Y) or not (N). Education does not enhance Alice’s skill, but if Alice is low quality, it costs her 10 to be educated, while if she is high quality, it costs her nothing. Education is thus purely a signal, possibly indicating Alice’s type. Finally, the skilled job pays 6 more than the unskilled job, the uneducated high quality worker earns 2 more than the uneducated low quality worker in the unskilled job, and the base pay for a low quality, uneducated worker in an unskilled job is 12. This gives the payoffs listed in Figure 4.

This model has a separating equilibrium in which Alice gets educated only if she is high quality, and Bob assigns educated workers to skilled jobs and uneducated workers to unskilled jobs. In this equilibrium, Bob’s payoff is 10 and Alice’s payoff is 17.33 prior to finding out whether she is of low or high quality. Low quality workers earn 12 and high quality workers earn 20. There is also a pooling equilibrium in which Alice never gets an education and Bob assigns all workers to skilled jobs. Indeed, any combination of strategies SS (assign all workers to skilled jobs) and SU (assign uneducated workers to skilled jobs and educated workers to unskilled jobs) is a best response for Bob in the pooling equilibrium. In this equi-
librium, Bob earns 8.33 and Alice earns 19.33. However, uneducated workers earn 18 in this equilibrium and skilled workers earn 20.

Both sets of equilibria are sequential. For the pooling equilibrium, consider a completely mixed strategy profile \(\sigma_n \) in which Bob chooses \(SS \) with probability \(1 - 1/n \). For large \(n \), Alice’s best response is not to be educated, so the approximate probability of being at the top node \(a_r \) of Bob’s right-hand information set \(v_r \) is approximately \(1/3 \). In the limit, as \(n \to \infty \), the probability distribution over \(v_l \) is computed by Bayesian updating approaches \((1/3,2/3)\). Whatever the limiting distribution over the left-hand information set \(v_l \) (note that we can always assure that such a limiting distribution exists), we get a consistent assessment in which \(SS \) is Bob’s best response. Hence the pooling equilibrium is sequential.

For the separating equilibrium, suppose Bob chooses a completely mixed strategy \(\sigma_n \) with the probability of \(US \) (allocate uneducated workers to unskilled jobs and educated workers to skilled jobs) equal to \(1 - 1/n \). Alice’s best response is \(NY \) (only high quality Alice gets educated), so Bayesian updating calculates probabilities at \(v_r \) as placing almost all weight on the top node, and at Bob’s left-hand information set \(v_l \), almost all weight is placed on the bottom node. In this limit, we have a consistent assessment in which Bob believes that only high quality workers get educated, and the separating equilibrium is Bob’s best response given this belief.

Both Nash equilibria specify that Bob choose \(S \) at \(v^l_B \), so Alice must conjecture this, and that Alice choose \(N \) at \(L \), so Bob must conjecture this. It is easy to check that \((NN,SS)\) and \((NY,US)\) thus both satisfy the LBR criterion.

7 Sequentiality is Sensitive, and the LBR Insensitive, to Irrelevant Node Additions

![Figure 5](image)

Figure 5: The only reasonable equilibrium for \(1 < x \leq 2 \) is \(ML \), which is sequential and satisfies the LBR criterion. However, the unreasonable equilibrium \(TR \) is sequential in the left panel, but not the right, when an “irrelevant” node is added.
Kohlberg and Mertens, 1986 use Figure 5 with \(1 < x \leq 2\) to show that an irrelevant change in the game tree can alter the set of sequential equilibria. We use this game to show that the LBR criterion chooses the reasonable equilibrium in both panes, while the sequential criterion only does so if we add an “irrelevant” node, as in the right panel of Figure 5. The reasonable equilibrium in this case is \(ML\), which is sequential. However, \(TR\) is also sequential in the left panel. To see this, let \(\{\sigma_A(T), \sigma_A(B), \sigma_A(M)\} = \{1 - 10\epsilon, \epsilon, 9\epsilon\}\) and \(\{\sigma_B(L), \sigma_B(R)\} = \{\epsilon, 1 - \epsilon\}\). These converge to \(T\) and \(R\), respectively, and the conditional probability of being at the left node of \(v_2\) is 0.9; thus Bob’s mixed strategy is \(\epsilon\) distance from a best response. In the right panel, however, \(M\) strictly dominates \(B\) for Alice, so \(TR\) is no longer sequential.

To apply the LBR criterion, note that the only Nash equilibrium allowing Bob to choose is \(ML\), which gives Alice payoff 3, as opposed to the payoff 2 from choosing \(T\). Therefore, conjecturing this, Alice maximizes her payoff by allowing Bob to choose (i.e., \(ML\) is the only LBR equilibrium).

8 The LBR Criterion Rejects Improper Sequential Equilibria

Consider the game to the right. There are two Nash equilibria, \(Fb\) and \(Aa\). These are also sequential equilibria since if Alice intends \(F\), but if the probability that \(B\) is chosen by mistake is much greater than the probability that \(A\) is chosen, then \(b\) is a best response. Conversely, if the probability of choosing \(A\) by mistake is much greater than the probability that \(B\) is chosen by mistake, then \(a\) is a best response. Since \(B\) is the more costly mistake for Alice, the proper equilibrium concept assumes it occurs very infrequently compared to the \(A\) mistake, Bob will play \(a\) when he gets to move, so Alice should chose \(A\). Therefore, \(Aa\) is the only proper equilibrium (Myerson, 1978).

To see that \(Aa\) is the only LBR equilibrium of the game, note that the only Nash equilibrium that reaches Bob’s information set is \(Aa\). The LBR criterion therefore stipulates that Alice conjecture that Bob chooses \(a\), wo which her best response is \(A\).

The reader will note how simple and clear this justification is of \(Aa\) by comparison with the properness criterion, which requires an order of magnitude assumption concerning the rate at which trembles go to zero.
Figure 6: Money Burning

9 The LBR Criterion Includes Second-order Forward Induction

Figure 6 depicts the famous Money Burning game analyzed by (Ben-Porath and Dekel, 1992), illustrating second order forward induction. By “burning money,” (to the amount of 1) Alice can ensure a payoff of 2, so if she does not burn money, she must expect a payoff of greater than 2. This induces her battle of the sexes partner to act favorably to Alice, giving her a payoff of 3.

The set of Nash equilibria can be described as follows. First, there is $\mathcal{Y}B$ in which Alice plays Yb (don’t burn money, choose favoring Bob), and Bob chooses any mixture of BB (play B no matter what Alice did) and SB (play S if Alice played X and play B if Alice played Y). This set represents the Pareto-optimal payoffs favoring Bob. The second is $\mathcal{Y}S$, in which Alice plays Ys (don’t burn money, choose favoring Alice), and Bob chooses any mixture of BS (play B against X and S against Y) and SS (play S no matter what) This set represents the Pareto-optimal payoffs favoring Alice. The third is $\mathcal{X}S$, in which Alice plays Xs and Bob chooses any mixed strategy combination of SB and SS in which the former is played with probability $\geq 1/2$. This is the money-burning Pareto-inferior battle of the sexes equilibrium favoring Bob. The fourth set is the set \mathcal{M} in which Alice plays Y and then $(1/4)b + (3/4)s$ and Bob chooses any mixed strategy that leads to the behavioral strategy $(3/4)B + (1/4)S$. Second order forward induction selects out $\mathcal{Y}S$.

All equilibria are sequential and result from two different orders in eliminating weakly dominated strategies. The only Nash equilibrium where Bob chooses at v_{2l} involves choosing S there. Thus, Alice conjectures this and knows that her best response compatible with v_{2l} is Xs, which gives her payoff 2. There are three sets of Nash equilibria where Alice chooses Y. In one, she chooses Yb and Bob
chooses B, giving her payoff 2. In the second, she chooses Ys and Bob chooses S, giving her payoff 3. In the third, Alice and Bob play the battle of the sexes mixed strategy equilibrium, with payoff of 3/2 for Alice. Each of these is compatible with a conjecture of Alice that Bob plays a Nash strategy. Hence, her highest payoff is with Ys. Because Y is decisive and includes a Nash equilibrium, where Alice plays Ys, with higher payoff for Alice than any Nash equilibrium using X, when Bob moves at v_{2r}, the LBR stipulates that he conjectures this, and hence his best response is S. Thus, Alice must conjecture that Bob plays S when she plays Y, to which Ys is the only best response. Thus, Ys is the only LBR equilibrium.

10 Beer and Quiche without the Intuitive Criterion

This is perhaps the most famous example arguing the importance of “beliefs” in equilibrium refinement, the Real Men Don’t Eat Quiche game (Cho and Kreps, 1987). It also illustrates the well-known Intuitive Criterion (Cho and Kreps, 1987), which is complementary to sequentiality. However, the LBR criterion singles out the reasonable equilibrium without recourse to an additional criterion.

This game has two sets of (pooling) Nash equilibria. The first is Q, in which Alice plays QQ (Q if wimp, Q if strong) and Bob uses any mixture of DN (play D against B and play N against Q) and NN (play N no matter what) that places at least weight 1/2 on DN. The payoff to Alice is 21/10. The second is B, in which Alice plays BB (B if wimp, B if strong) and Bob uses any mixture of ND (play N against B and play D against Q) and NN that places at least weight 1/2 on ND. The payoff to Alice is 29/10.
The Intuitive Criterion that by playing QQ, Alice earns 21/10, while by playing BB, she earns 29/10. Therefore, a rational Alice will choose BB. To find the LBR equilibrium, we note that both the B and Q equilibria satisfy the first LBR conditions. Moreover, B is decisive with respect to Q and has higher payoff for Alice. Thus, the only LBR equilibria are the B.

11 The LBR Criterion Selects Reasonable Equilibria in Cases where Sequentiality Fails

![Figure 8](image)

Figure 8: An Example where Perfection is Not Sensible, but the LBR criterion is

The game in Figure 8, taken from McLennan (1985), has a strict Nash equilibrium at RLU and an interval of sequential equilibria L of the form Lr and D with probability at least 3/4. The L equilibria are “unintuitive” for many reasons. Perhaps the simplest is forward induction. If Carole gets to move, either Alice played R or Bob played l. In the former case, Alice must have expected Carole to play U, so that her payoff would be 3 instead of 2. If Bob moved, he must have moved l, in which case he also must expect Carole to move U, so that his payoff would be 2 instead of 1. Thus, U is the only reasonable move for Carole.

For the LBR criterion, note that L is ruled out, since the only Nash equilibrium reaching Carole’s information set uses U with probability one. The RLU equilibrium, however, satisfies the LBR criteria.
12 The Principle of Insufficient Reason

The figure to the right, due to Jeffery Ely (private communication) depicts a game the only reasonable Nash equilibria of which form a connected component A in which Alice plays A and Bob plays a with probability $\sigma_B(a) \in \{1/3, 2/3\}$, guaranteeing Alice a payoff of 0. There are two additional equilibria Ca and Bb, and there are states at Alice’s information set that are consistent with each of these equilibria. At Bob’s choice information set all conjectures σ_A for Alice with $\sigma_A(A) < 1$ are permitted. Thus, all Nash equilibria are LBR equilibria. However, by the Principle of Insufficient Reason and the symmetry of the problem, if Bob gets to move, each of his moves is equally likely. Thus, it is only reasonable for Alice to assume $\sigma_B(a) = \sigma_B(b) = 1/2$, to which A is the only best response.

13 The Principle of Honest Communication

It is easy to check that the coordination game to the right has three Nash equilibria, each of which satisfies all traditional refinement criteria, and all are LBR equilibria as well. Clearly, however, only Ll is a reasonable equilibrium for rational players. One justification of this equilibrium is that if we add a preliminary round of communication, and each player communicates a promise to make a particular move, and if each player believes the Principle of Honest Communication, according to which players keep their promises unless they can benefit by violating these promises and being believed, then each will promise to play L or l, and they will keep their promises.

14 Discussion

The LBR criterion is an improvement of refinement criteria, meant to render other standard refinement criteria superfluous. However, the LBR is not an impediment to standard game-theoretic reasoning. If a game has a unique Nash equilibrium, this will be both a subgame perfect and an LBR equilibrium. If a game has a non-subgame perfect equilibrium with an incredible threat, this equilibrium cannot be LBR because in an LBR equilibrium, players never conjecture incredible threats.
In a repeated game, it is reasonable to argue, as does the LBR criterion, that players maximize at every information set that they reach. We do not need the extra baggage of the sequential equilibrium concept to justify this assumption.

The LBR supplies a rigorous and insightful equilibrium refinement criterion. Moreover, it clarifies the meaning of an “intuitively reasonable” equilibrium as being one in which players conjecture that other players use actions that are part of Nash equilibria, and choose actions themselves that maximize their payoffs subject to such conjectures.

REFERENCES

