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Abstract

Hamilton’s Rule provides conditions for the evolutionary success of a

gene. These conditions ensure that the gene is selfish in the sense described

by Richard Dawkins (1976). By this very fact, inclusive fitness does not

explain why the genome of a successful species consists of genes that pre-

dominantly cooperate in promoting the fitness of their carriers.

Hamilton’s rule shows that prosocial altruistic genes, antisocial predatory

genes, and antisocial spiteful genes can all enjoy evolutionary success, and

gives no reason why or how the prosocial altruistic genes come to predomi-

nate in successful organisms.

The genome evolves when it suppresses alleles that detract from, and pro-

motes alleles that enhance, the fitness of the reproductive population. This

implies first that genes do not maximize inclusive fitness but rather interact

strategically in complex ways involving collaboration, promotion, and sup-

pression across loci and across individual carriers. It also implies that for any

species there is a core genome that specifies the common phenotypic char-

acteristics of the species, including biochemical interactions among loci and

social interactions among individuals. The core genome, not the gene, is the

central replicator in species evolution.

Hamilton’s Rule provides conditions for the evolutionary success of a gene.

These conditions ensure that the gene is selfish in the sense described by Richard

Dawkins (1976). In particular, as Hamilton’s rule makes clear, the conditions for

the evolutionary success of a gene are distinct from the conditions under which the

gene enhances the fitness of its carrier. However, it is equally true that the evo-

lutionary success of a gene does not ensure that it enhances the mean fitness of

members of the reproductive population. Therefore inclusive fitness does not ex-

plain why the genome of a successful species consists of genes that predominantly
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cooperate in promoting the fitness of the reproductive population. Indeed, Hamil-

ton’s rule equally predicts the evolutionary success of prosocial altruistic genes,

antisocial predatory genes, and antisocial spiteful genes (these terms are formally

defined below).

The genome evolves when it suppresses alleles that detract from and promotes

alleles that enhance the fitness of reproductive population. This bears two impli-

cations that are developed in this paper. First, genes do not maximize inclusive

fitness, but rather interact strategically in a biochemically, and socially complex

manner involving collaboration, promotion, and suppression across loci and across

carriers. Second, for any species there is a core genome that specifies the com-

mon phenotypic characteristics of the species, including biochemical interactions

among loci and social interactions among individuals. The core genome is a repli-

cator in sense of remaining intact across many generations, despite meiosis and

crossover. The core genome, not the gene is the central replicator in species evolu-

tion.

1 Hamilton’s Rule

Classical genetics did not model cases in which individuals sacrifice on behalf of

non-offspring, such as sterile workers in an insect colony (Wheeler 1928), cooper-

ative breeding in birds (Skutch 1961), and altruistic behavior in humans (Darwin

1871). This problem was addressed by William Hamilton (1963, 1964ab, 1970),

who noted that if a gene favorable to helping others is likely to be present in the

recipient of an altruistic act, then the gene could evolve even if it reduces the fitness

of the carrier. Hamilton called this inclusive fitness theory.

Hamilton developed a simple inequality, operating at the level of the gene,

determining the conditions for the evolutionary success of an allele. The contem-

porary formulation of this rule (we will return to Hamilton’s original formulation

later) says that if an allele in individual A increases the fitness of individual B

whose degree of relatedness to A is r , and if the cost to A is c, while the fitness

benefit to B is b, then the allele will evolve if

br > c: (1)

We call br � c the inclusive fitness of the focal allele. Subsequent research sup-

ported some of Hamilton’s major predictions (Maynard Smith and Ridpath 1972;

Brown, 1974; West-Eberard 1975; Krackauer, 2005).

To derive Hamilton’s Rule in the case of a haploid species, suppose there is an

allele at a locus of the genome that induces carrier A to incur a fitness change c

that leads to a fitness change b to individual B. If b > 0, A bestows a gain upon
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B, and if c > 0, A experiences a fitness loss. However, in general we make no

presumption concerning the signs or magnitudes of b and c, except that selection

is not so strong that the population becomes extinct in a single period. Suppose the

frequency of this allele in the population is q, where 0 < q < 1, and the probability

that B has a copy of the allele is p. Then if the size of the population is n, there

are qn individuals with the focal allele, they change the number of members of the

population from n to n C qn.b � c/, and they change the number of focal alleles

from qn to qn C qn.pb � c/. Thus the frequency of the allele from one period to

the next will increase if

�q D
qn C qn.pb � c/

n C qn.b � c/
� q D

q.1 � q/

1 C q.b � c/

�

b
p � q

1 � q
� c

�

> 0: (2)

The condition for an increase in the focal allele thus is

b

�

p � q

1 � q

�

> c: (3)

Note that when carriers interact only with other carriers, p D 1, so Hamilton’s

rule is satisfied whenever b > c, while if interaction is random, so p D q, then

Hamilton’s rule can never be satisfied when the cost c is positive.

The equivalence of (3) with Hamilton’s rule (1) requires

p D r C .1 � r/q: (4)

In this equation, r is commonly interpreted as the probability that an agent A with

focal allele a will encounter another agent B who also has the allele, through some

biophysical or social regularity specific to the species. With probability 1 � r ,

it is assumed that the recipient B is a random member of the population, so B

has the focal allele with a probability equal to the frequency q of the allele in the

population. Because r is a probability under this interpretation, 0 � r � 1, so if

c > 0, then from (1) it follows that b > 0 as well, so b�c D br �cCb.1�r/ > 0.

But then the population change qn.b � c/ is also strictly positive.

Often (4) is explained using the concept of identity by descent (Malécot 1948,

Crow 1954), where r is the probability that both donor A and recipient B have

inherited the same focal allele from a common ancestor. For instance, if A and B

are full siblings, then r D 1=2 because this is the probability that both have inherited

the focal allele from the same parent. Moreover, if the siblings have inherited the

focal allele from different parents, then they will still be the same allele with a

probability equal to the frequency of the allele in the population, assuming no

assortative mating. In general, r will then be the expected degree of identity by

descent of recipients.
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The rather stunning conclusion from this exercise in elementary algebra and

gene-counting is what we may call Hamilton’s Harmony Principle. To state this

principle succinctly, we say the allele a is helpful if its carriers enhance the fitness

of other individuals that it encounters (b > 0), altruistic if it incurs a fitness cost

in so doing (c > 0), and prosocial if increases mean population fitness. We then

have:

Hamilton’s Harmony Principle: A helpful gene is evolutionarily successful only

if it satisfies Hamilton’s rule (1), in which case it is necessarily prosocial.

Note that it is possible but not necessary that such a gene be altruistic, although the

altruistic case is the one that is not handled by classical genetics.

The importance of this principle for sociobiology is inestimable, and mirrors

similar assertions concerning the social value of selfishness in humans offered by

Bernard Mandeville in his famous Fable of the Bees (1705), in which “private

vices” give rise to “public virtues,” and Adam Smith’s (1776) equally famous dic-

tum, “It is not from the benevolence of the butcher, the brewer, or the baker that we

expect our dinner, but from their regard to their own interest.” While economists

have determined the precise conditions—they are far from universal–under which

Mandeville and Smith are correct (Mas-Colell et al. 1995), Hamilton’s Harmony

Principle is true in general.

However, the assumption in this principle that the gene is helpful leaves open

the question as to the evolutionary status of genes that are not helpful. An alter-

native to Hamilton’s Harmony Principle is, indeed, prima facie equally possible.

Suppose the focal allele is predatory in the sense that its carriers benefit (c < 0),

and is harmful in that it imposes costs on other individuals (b < 0). Then Hamil-

ton’s rule becomes .�b/r < .�c/, which can be satisfied even though the focal

allele is antisocial in the sense that b � c < 0. For instance, suppose b D �4,

c D �3 and r D 1=2. Then br � c D 1 > 0, so Hamilton’s rule is satisfied,

but b � c D �1, so the allele is antisocial. In fact, the focal allele in this case is

evolutionarily successful yet antisocial for any r < 3=4.

It is common for sociobiologists to invoke what I have termed Hamilton’s Har-

mony Principle to explain the appearance of design in nature (Dawkins 1996), and

the tendency for species exhibiting a high level of social cooperation to exhibit a

high degree of relatedness as well. For instance, in a letter to the journal Nature

protesting a critique of Hamilton’s rule by Nowak et al. (2010), signed by 153

biological researchers, Abbot et al. (2011) assert:

Natural selection explains the appearance of design in the living world,

and inclusive fitness theory explains what this design is for. Specif-

ically, natural selection leads organisms to become adapted as if to
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maximize their inclusive fitness.

In fact, inclusive fitness theory does nothing of the sort, because we have an equally

possible scenario:

Hamilton’s Disharmony Principle: A predatory gene that is harmful may satisfy

Hamilton’s rule despite being antisocial.

where we say an allele is antisocial if it is evolutionarily successful at the expense

of mean population fitness.

Moreover, in our basic equation (3) for Hamilton’s rule, p < q is prima facie

as likely as p > q. In the case p < q, we see that r in (4) must be negative,

so r cannot be interpreted as a probability at all. In particular, r cannot then be

interpreted as a degree of relatedness in the usual sense of the term. Indeed, it is a

common occurrence that helping is costly (c > 0), but helping involves reducing

the fitness of others, so b < 0, and (4) can hold with r < 0, while the focal allele is

still altruistic (c > 0). Examples are warfare in ants (Hölldobler and Wilson 1990)

and humans (Bowles and Gintis 2011), as well as generally spiteful behavior in

many species (Hamilton 1970, Foster et al. 2001, Gardner et al. 2004).

Hamilton’s Rule can be extended to deal with heterogeneous relatedness, di-

ploidy, dominance, coordinated cooperation, local resource competition, inbreed-

ing, as well as other complications (Uyenoyama and Feldman 1980, Michod and

Hamilton 1980, Queller 1992, Wilson et al. 1992, Taylor 1992, Rousset and Billard

2007), with an equation closely resembling (1) continuing to hold. In general, how-

ever, the frequency q will appear in (1), and if selection is strong, b and c may be

functions of q as well, so the interpretation of r as relatedness becomes accordingly

more complex (Michod and Hamilton 1980).

Of course, in general b and c will also depend on the frequency of alleles at

other loci of the genome, and since the change in frequency q of the focal allele

in the population will affect the relative fitnesses of alleles at other loci, inducing

changes in frequency at these loci, which in turn will affect the values of b, c, and

even r . For this reason, Hamilton’s rule presupposes weak selection, in the sense

that gene frequencies do not change appreciably in a single reproduction period.

Therefore Hamilton’s rule does not imply that a successful allele will move to

fixation in the genome. Moreover, alleles at other loci that are enhanced in inclusive

fitness by the focal allele’s expansion may undergo mutations that enhance the

inclusive fitness of the focal allele, while alleles at other loci that are harmed by

the expansion of the focal allele may develop mutations that suppress the focal

allele.
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2 What Hamilton’s Rule Does and Does Not Say

Hamilton’s inclusive fitness criterion provides an analytically rigorous condition

for the evolutionary success of an allele. Because this condition can be satisfied

in the case of genes that sacrifice on behalf of relatives (b; c; r > 0). Hamilton

(1964b) provided a plausible explanation of social cooperation. However, inclu-

sive fitness theory renders equally plausible biochemical and social behaviors that

are comparatively rarely observed. This is because, as is clear from (3) and (4),

Hamilton’s Rule does not place any limitations on the signs of the three variables

that occur therein. For instance, assuming random mutations, spiteful behavior,

where r; b < 0 and c > 0, is prima facie equally as likely as r; b; c > 0, in

the sense that to every pair .r; b/ satisfying Hamilton’s rule, there is another pair

.�r; �b/ that does so as well. Moreover, the condition for the focal allele to en-

hance the fitness of the population is n C qn.b � c/ > n, or b > c, as we see

from (2). If Hamilton’s Rule is satisfied by .b; r; c/ with b; r; c > 0, then the rule is

equally satisfied by .�b; �r; c/, in which case b � c < 0. Inclusive fitness theory

therefore makes no prediction concerning the effect of a successful gene on the

fitness of its carrier when c > 0.

It might be thought that in fact the case r < 0 is relatively rarely encoun-

tered, and therefore this problem with Hamilton’s rule can be safely ignored. The

problem, however, is that Hamilton’s rule does not explain why this case is rarely

encountered. Of course, we can simply say that natural selection is unfavorable

to such cases, which is true. However, this brings us back to the state of popula-

tion biology in 1963, before the appearance of Hamilton’s rule, when there was no

genome-level analysis of social interaction among individuals.

A new set of problems arise if c < 0, which is prima facie as plausible as

c > 0. These problems are suggested by the Hamilton Disharmony Principle.

Indeed, a mutant allele with c < 0 has no relatives, so r D 0 and Hamilton’s Rule

is necessarily satisfied. Moreover, when the focal allele increases in frequency and

r > 0, then for b < 0 and jbj > jcj, the focal allele, which we call predatory,

is necessarily both harmful (b < 0/ and antisocial (b � c < 0). Evolutionary

dynamics of course generally suppress such “outlaw” mutants (Leigh 1977). The

dynamics of outlaw suppression, however, are not and cannot be represented in

inclusive fitness theory, which does not model the interaction among genetic loci.

In principle there are twelve possibilities for the signs of b, r , and c, ignoring

cases where b or c is zero, but four of these cannot satisfy Hamilton’s rule. As

stressed by Hamilton (1964a), Bourke (2011) and van Veelen (2009), Hamilton’s

Rule allows us to study the other eight categories of social interaction in terms of

the concepts altruistic, cooperative, predatory, and spiteful. These possibilities are

depicted in Table 1. We call the allele altruistic if b; c > 0, so when Hamilton’s
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b c r > 0 r D 0 r < 0

> 0 > 0 Altruistic —

> 0 < 0 Cooperative

< 0 > 0 — Spiteful

< 0 < 0 Predatory

Table 1: Variety of Behaviors that can Satisfy Hamilton’s Rule

rule is satisfied we have r > 0 and the focal allele sacrifices an amount of fitness

c in order to add an amount b of fitness to the recipient. If b > 0 > c, then the

allele is cooperative, and since b � c > 0, the allele contributes unambiguously

to the fitness of its carrier. A cooperative allele will always be selected, as in this

case Hamilton’s Rule is always satisfied. If r < 0 in this case, the helping allele is

conferring benefits preferentially on non-relatives, and so long as these benefits are

not too large, i.e., as long as bjrj < jcj, the focal allele will increase in frequency.

If c < 0 and b < 0, we call the allele predatory. When r > 0 in this case,

if Hamilton’s rule is satisfied provided relatives are not too greatly harmed; i.e.,

provided jbjr < jcj. When r < 0 in the selfish case, Hamilton’s Rule is necessarily

satisfied and the gene will evolve, although it enhances the fitness of the genome

only if the harm b is sufficiently small (jbj < jcj). Finally, if c > 0 > b, we

call the allele spiteful because the focal individuals pays a fitness cost to hurt the

recipient. According to Hamilton’s Rule, a spiteful allele will evolve if r < 0

and jbjjrj > c, although it is uniformly destructive to carriers of the genome.

(Hamilton 1970, Gardner et al. 2004). For example, a worker in an insect colony

who cares for larvae may have a gene that leads it to kill larvae that are not full

siblings, or in a diploid species, a germline allele may disable the other allele when

the carrier is heterozygous at the focal locus.

3 Inclusive Fitness and Kin Selection

William Hamilton’s early work in inclusive fitness focused on the role of genealog-

ical kinship in promoting prosocial behavior. Hamilton writes, in his first full pre-

sentation of inclusive fitness theory (Hamilton 1964a, p. 19):

In the hope that it may provide a useful summary, we therefore hazard

the following generalized unrigorous statement of the main principle

that has emerged from the model. The social behaviour of a species

evolves in such a way that in each distinct behaviour-evoking situation

the individual will seem to value his neighbours’ fitness against his
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own according to the coefficients of relationship appropriate to that

situation.

Because of this close association between inclusive fitness and the social relations

among genealogical relatives, John ? called Hamilton’s theory kin selection, by

which he meant that individuals are predisposed to sacrifice on behalf of highly

related family members.

A decade after Hamilton’s seminal inclusive fitness papers, motivated by new

empirical evidence and Price’s equation (Price 1970), ? revised his views, writing:

Kinship should be considered just one way of getting positive regres-

sion of genotype. . . the inclusive fitness concept is more general than

kin selection.

Nevertheless the two are often equated, even in the technical literature. For in-

stance, throughout his authoritative presentation of sexual allocation theory, Stuart

?, identifies inclusive fitness with kin selection in several places and never distin-

guishes between the two terms at any point in the book.

This idiosyncratic identification is a source of confusion, because for most so-

ciobiologists, kin selection remains, as conceived by ?, a social dynamic based on

close genealogical association:

By kin selection I mean the evolution of characteristics which favour

the survival of close relatives of the affected individual.

The Wikipedia definition is similar:

Kin selection is the evolutionary strategy that favours the reproductive

success of an organism’s relatives, even at a cost to the organism’s own

survival and reproduction.. . . Kin selection is an instance of inclusive

fitness.

Moreover, while kin selection is a special case of inclusive fitness in the sense

that Hamilton’s rule applies generally, not just to situations where organisms fa-

vor their close genealogical kin, in another sense kin selection is far more general

than inclusive fitness. This is because in all but the simplest organisms, kin selec-

tion does not describe the behavior at a single locus, but rather an inherently so-

cial behavior in which individuals recognize their close relatives through complex

phenotypic associations that require higher-level cognitive functioning. Indeed, in

general these phenotypic associations arise precisely to permit cooperation among

close genealogical kin. Moreover, if a mutant gene induces its carriers to interact

preferentially with others who have copies of the gene, as recognized by pheno-

typic characteristics that produced by genes that are linked with the mutant gene,
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then such a mutant will be evolutionarily successful only if the association is help-

ful rather than harmful. Then Hamilton’s Harmony principle proves that this gene

will be prosocial. We can thus expect kin selection to arise spontaneously in many

situations. This of course is observed in many species.

This example shows that, despite the fact that inclusive fitness theory has noth-

ing to say about interactions among loci, it can be a powerful analytical tool when

deployed in models of interaction among loci.

4 A Generalized Hamilton’s Rule

The focal allele in Hamilton’s rule does not confer benefits randomly across the

population, but rather targets carriers of the allele (or non-carriers if r < 0); i.e.,

when Hamilton’s rule holds, we have p ¤ q in (3). But in general the focal allele

could be pleiotropic and have more than one targeting pattern. We explore two

additional such patterns. First, the focal allele may additionally impose a cost ˇ

uniformly on all members of the population. The case ˇ > 0 occurs in “tragedy of

the commons” cases (Hardin 1968, Wenseleers and Ratnieks 2004), such as when

the focal allele bestows benefits preferentially on copies of itself in other carriers

through an action that depletes a protein used in chemical processes by somatic

cells (Noble 2011). The case ˇ < 0 occurs in a parasite when the focal allele

induces its carriers to suppress members of a rapidly growing strain that kills its

host prematurely (Frank 1996).

We will also consider the case where the focal allele imposes a cost ˛ on carri-

ers who do not have a copy of the focal allele (Keller and Ross 1998). For example,

˛ > 0 can occur if A redirects brooding care from non-relative to relative larvae in

an insect colony, and ˛ < 0 can occur if the focal allele helps other alleles at the

focal locus that benefits carriers by avoiding possibly deleterious homozygosity at

the focal locus. If f̨ .q/ is the fitness reduction of non-relatives when the fraction

of focal alleles in the population is q, we must have f .0/ D f .1/ D 0, and we

can assume f 0.0/ D 1 and f 0.1/=0. We assume the simplest function with these

properties is f .q/ D q.1 � q/2, although the exact shape of the function is not

important.

If the population size is n in the current period, population size n0 in the next

period will include n C qn.b � c/ individuals because of the helping behavior,

but this will be reduced by nˇq and n f̨ .q/. The number of relatives of the help-

ing allele in the current period is qn, which is increased by the helping behavior

by qn.pr � c/, and decreased through lower efficiency by qnˇq. Thus the new

population size is
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n0 D n.1 � ˛q.1 � q/2 � ˇq/ C qn.b � c/; (5)

and (2) becomes

�q D
qn.1 � ˇq/ C qn.pb � c/

n.1 � ˛q.1 � q/2 � ˇq/ C qn.b � c/
� q > 0; (6)

which simplifies to

b.p � q/ C ˛q.1 � q/2 > c.1 � q/: (7)

Substituting p D r C .1 � p/q, we get the Generalized Hamilton’s Rule

br > c � ˛q.1 � q/: (8)

An alternative derivation of the Generalized Hamilton’s Rule using the regression

approach is presented in Appendix A1.

The effect of an increase in the focal allele on population fitness is the sign of

dn0=dq, which is given by

dn0

dq
D n.b � c � ˛.1 � 4q C 3q2/ � ˇ/: (9)

Note that in the case of Hamilton’s Rule, which is the above with ˛ D ˇ D 0,

population fitness increases with the frequency of the helping allele in the case of

altruism or cooperation, where b > c, and decreases in the case of spite (b�c < 0).

In the case of the Generalized Hamilton’s Rule, the fitness effect is indeterminate.

As we explain below, Hamilton (1964a) included the ˇ ¤ 0 affect in his calcu-

lations, but he did not consider the case where the generalized fitness effects are

unevenly distributed among the alleles at the focal locus (˛ ¤ 0).

It is useful to give descriptive names to the social interactions when ˛ and/or ˇ

is nonzero. We may call the case ˛ > 0 theft, the case ˇ > 0 pollution, and the case

ˇ < 0 and ˛ < 0 as social generosity and non-kin generosity, respectively. In the

socially generous case, we also say that the allele is producing a public good (West

et al. 2007, p. 57). This follows the common use of the term in economic theory

(Olson 1965). Equation (8) shows the degree of pollution or social generosity

has no bearing on whether the allele can evolve. Moreover, a thieving altruist

(b; c; ˛ > 0) will evolve, as will a thieving cooperative allele (b; ˛ > 0 > c).

Finally, the producer of a public good will evolve only if it gains in inclusive fitness

from so doing (br > c).

The most critical implication of the Generalized Hamilton’s Rule is that neither

social generosity nor pollution has any bearing on whether an allele will evolve, as
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seen in equation (8), despite the fact that a socially generous allele unambiguously

enhances the fitness its host, and a polluting allele unambiguously has the opposite

effect, as seen in equation (9).

It is interesting to note that Hamilton’s seminal paper (1964a) explicitly in-

cludes the pollution and public goods aspect of inclusive fitness, an aspect of his

analysis that later writers have ignored. Hamilton called the public good/pollution

effect of Generalized Hamilton’s rule a dilution effect because it affect the rate but

not direction of change in the frequency of the focal allele. Hamilton also notes

that the dilution effect can lead a successful allele to reduce population fitness.

A streamlined presentation of Hamilton’s argument, which is quite opaque in the

original, is presented in Appendix A3.

5 Genes Do Not Maximization Inclusive Fitness

If the genome’s success is based on a pattern of cooperation, promotion, and sup-

pression across loci, which will occur, for instance, if the production of a protein,

RNA sequence, or social behavior requires the collaborative activity of many genes

(Noble 2011), or if there are frequency dependent social interactions among indi-

viduals in a social species (Maynard Smith 1982), then neither genes nor individ-

uals can be characterized as maximizing inclusive fitness. The conditions under

which a population genetics model of gene flow implies fitness maximization at

the gene or individual level has been carefully explored (Grafen 1999, 2002, 2006;

Metz et al. 2008; Gardner and Wild 2011; Gardner West and Wild 2011). With

frequency independence, they affirm the maximization hypothesis. With frequency

dependence, the hypothesis it is in general false, and no careful researcher has ever

claimed otherwise.

For a simple example, consider two loci, with alleles a1; b1 at the first locus

and alleles a2; b2 at the second. Suppose b2 is favored over a2 by an amount 
2,

but suppose a1 produces a substance that favors a2. Suppose a1 is favored over b1

by an amount 
1, but a2 produces a substance that favors b1. Let q1 and q2 be the

frequency of a1 and a2 in the population, respectively. Assuming the interactions

are linear, we can write

dq1

dt
D q1.
1 � ˇ1q2/ (10)

dq2

dt
D q2.ˇ2q1 � 
2/; (11)

where ˛1; ˛2; ˇ1; ˇ2 > 0 and ˛1=ˇ1; ˛2=ˇ2 < 1. The unique equilibrium of this

system is .q�

1 ; q�

2/ D .˛1=ˇ1; ˛2=ˇ2/. This is a neutrally stable focus known as the

Lotka-Voltera model (Takeuchi 1996). Because paths through time in this model
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are closed loops, all alleles eventually return to an earlier level of inclusive fitness,

which means that the fitness of individual alleles oscillate in time. This precludes

fitness maximization (Moran 1964, Akin 1982). Moreover, it is likely that only one

of the four combinations .ai ; bj / for i; j 2 f1; 2g maximizes the fitness of carriers

of the genome. Therefore, a mutant regulator gene that suppresses the unfavorable

combinations may well arise, in which case it will grow to fixation, as will the

favorable alleles at the two loci.

The general point is that if there is a conflict among loci concerning fitness

maximization, and if the frequency of alleles at one locus affect the fitness costs

and payoffs at other loci, then it is logically impossible that the allele at each lo-

cus maximize its inclusive fitness. Rather, the proper setting is evolutionary game

theory, in which players (i.e., loci) respond strategically to the behavior of other

players (i.e., change allele frequency at a locus), and equilibrium, if it is attained,

is likely to be a Nash equilibrium in the genome in which each gene plays a best

response to the strategy choice of other genes; that is, inclusive fitness cannot be

increased at any locus without inducing inclusive fitness-reducing costly counter-

moves at other loci (Maynard Smith 1982, Hammerstein and Reichert 1988, Taylor

1989, Weibull 1995, Nowak 2006, Traulsen and Nowak 2006, Gintis 2009). In a

dynamic context, standard game theory must be supplemented by additional analyt-

ical tools that deal with the fact that the rules of the game themselves, as inscribed

in the genomes of the players, will evolve according to the dynamics of natural se-

lection (Levin 2009, Akçay and Roughgarden 2011, Akçay and van Cleve 2012).

For instance, the rate of recombination in the genome can evolve to counteract

collusion among mutant alleles.

6 The Core Genome as Replicator

Many biologists have recognized that a gene promotes the fitness of its host only

if it is complemented by a well-orchestrated configuration of genes with which it

interacts (Sober and Lewontin 1982, Hammerstein and Leimar 2006, Noble 2011).

Some theorists rely on Hamilton’s Rule to maintain the contrary position that the

gene is the only, or the most important, replicator (Dawkins 1976). Because in

species that reproduce using meiosis and recombination, the genome dies with the

body it inhabits, and is torn apart and reassembled in its offspring, Dawkins (1982b,

p. 47) argues, the individual is but a vehicle for the transportation of genes across

metazoan bodies. Dawkins writes that a replicator must have a

low rate of spontaneous, endogenous change, if the selective advan-

tage of its phenotypic effects is to have any significant evolutionary

effect.. . . too long a piece of chromosome will quantitatively disqual-
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ify itself as a potential unit of selection, since it will run too high a risk

of being split by crossing over in any generation.

Dawkins is correct in maintaining that the individual is a vehicle and not a

replicator. However, the results of gene sequencing show that all but a small frac-

tion of genes in a metazoan species, abstracting from rare mutations, are shared

by all individuals in the reproductive population, or fall into a few categories that

are preserved across generations. Among these categories are synonymous, neu-

tral, and mixed strategy gene sets. A synonymous gene set consists of alleles at

a single locus whose differences are base substitutions that entail identical pro-

tein, enzyme, and regulatory products, and hence do not have distinct phenotypic

effects. Non-synonymous alleles that have fitness neutral, or near-neutral, pheno-

typic effects (e.g., tail length or eye color), form neutral gene sets that are highly

stable across generations despite their somewhat labile internal composition. For

instance, body size may be fitness independent over some range, and many genes

interact to produce a phenotypic body size that is generally in the fitness-neutral

range. The frequency distribution of these genes in the core genome is determined

by natural selection and unchanged by meiosis and crossover.

In addition, if a set of alleles at a particular locus have equal fitness but dis-

tinct phenotypic effects, and if this set is preserved across generations, the alleles

are likely to be equally fit alternative strategies in a Nash equilibrium among loci,

each being a fitness enhancing best response to the probability distribution of the

other loci in the genome. We call such alleles mixed strategy sets. For exam-

ple, a population equilibrium can sustain a positive fraction of altruistic and selfish

alleles, or alleles promoting aggressive vs. docile behavior, under certain condi-

tions. Similarly, loci that protect carriers against frequency-dependent variations

in environmental conditions, including that of bacterial and viral enemies, can be

maintained in a polyallelic state as a means of species-level risk reduction. These

include the immune system gene sets that maintain considerable heterogeneity to

deal with a variety of possible infectious agents.

Another example of a mixed strategy gene set is the interaction of suppressor

genes and their targets, where the fitness of the suppressor depends on a posi-

tive frequency of target genes. Leffler (2013) document such a set stabilized by

balancing selection at least since the primate-hominin split. Finally, heterozygote

advantage involves a pair of alleles that maintain positive frequency despite the

fitness cost to homozygous carriers. We may call this an overdominance set. Addi-

tional features arise in dealing with sex-linked genes, including maternal-paternal

conflict, but these also can be identified as characteristics of the species that are

conserved across many generations.

13



In species that recognize individuals, including many birds and mammals, such

recognition is based wholly on genes outside the core genome, which are shuffled

and redistributed through meiosis and recombination. Species that recognize group

differences, such as humans, succeed because of linkage disequilibrium among

non-core loci that is maintained by assortative mating.

In sum, the typical phenotypic characteristics of the species, including bio-

chemistry, physiology, and social behavior, are conserved despite crossover and

meiosis. We call the genes that support this phenotypic commonality the species’

core genome and the loci that are more or less intraspecifically heterogeneous the

variant genome—see Riley and Lizotte-Waniewski (2009) for an application to

bacterial species. The core genome is a replicator and hence subject to the laws

of natural selection. Individuals, social groups, as well as their extended pheno-

types and constructed niches, simply vehicles for the expression and evolution of

the core genome.

The sociobiological point is that the core genome of social species codes not

only for the general phenotypic character of the individual, but also for the species’

extended phenotype and characteristic social behaviors. If the species is commonly

partitioned into groups, such as insect colonies, schools of fish, herds of elephants,

primate communities, and hunter-gatherer groups, then these groupings are the

phenotypic expressions of the core genome of the species, as modulated by its

characteristic environment, and are subject to selection on that basis.

Another way of expressing this point is to note that sociality in a species is

an extension of multicellular cooperation within the genome, and indeed there is

a common population model which subsumes both as special and virtually iso-

morphic cases (Gardner et al. 2007). Because cooperation among loci within the

genome is limited to a single instance of a genetic locus, even the simplest of

fitness-enhancing processes, such as the sharing of genetic material in microbes

and sexual reproduction in metazoans, requires the interaction of two or more

copies of key genetic loci, and this can occur only through interactions between

carriers. This interaction of loci is precisely the subject matter of sociobiology,

and the processes involved are characteristic of social species. Just as the genome

codes for the patterns of interaction among loci in the genome, so it codes for

the characteristic patterns of interactions of loci in two or more carriers; i.e., the

genome codes for the social structure of the organisms it creates. In particular, so-

cial species live in groups precisely when the conditions for such groups are coded

in the core genome.

Just as a computer program includes different functional subprograms, some

of which work alone and others of which operate with many copies functioning in

parallel, with an overarching set of signaling and behavior protocols that facilitate

communication and collaboration across subprograms, so the core genome endows
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its carriers with the protocols for fitness-enhancing interaction among genetic loci

located in a plurality of individuals. If the carriers of the core genome form social

groups of characteristic size, composition, and behavior, this is because the core

genome provides its carriers with instructions as to which environments to seek,

and within these environments, how to interact with conspecifics. Social groups

are thus genetic rather than epigenetic, although in advanced social species epige-

netic cultural forces may be integrally involved in the constitution of social groups.

Because social groups are expressions of the core genome, and groups with partic-

ular characteristics will evolve only if they enhance the fitness of the reproductive

population supported by the core genome, we conclude that if we are to use the

term “group selection” at all, it must be understood as section for the network of

genes that underlie the constitution of the social group. In this context, the idea of

group selection as competition among groups with the reproduction of the success-

ful groups is misleading because social groups are not units of selection, but rather

vehicles that are generally reconstituted anew in each generation.

7 Conclusion

William Hamilton’s inclusive fitness theory is the analytical starting point of mod-

ern sociobiology. Inclusive fitness theory justifies the stress by Richard Dawkins

and his followers on the selfish nature of the gene, as well as on the status of the

individual as vehicle rather than replicator. But neither inclusive fitness theory, nor

any other plausible theory, supports the notion that the gene is the most important

replicator, or that genes maximize inclusive fitness. We have argued that the core

genome is the critical replicator in the evolution of complex multicellular species,

and that the success of the core genome depends on its solving coordination prob-

lems among its genetic loci.

The evolutionary process, from the first RNA molecules to advanced meta-

zoans and complex social species, involves solving the problem of promoting co-

operation among selfish genes (Maynard Smith and Szathmáry 1995). That genes

generally contribute to the fitness of the individuals in which they reside is the

result, not of inclusive fitness maximization, but of a complex evolutionary and

intragenomic dynamic involving the suppression of antisocial and promotion of

prosocial alleles (Leigh 1971, Buss 1987, Michod 1997, Noble 2011).

The evolutionary forces that determine the complex interactions among loci

in metazoans and among individuals in social species must be studied using, in

addition to inclusive fitness theory, the phenotypic gambit (Grafen 1984), evolu-

tionary game theory (Wilson 1977, Taylor 1992, Taylor 1996), agent-based model-

ing (Gintis 2009), the physiology of suppressor and promoter genes (Leigh 1977,
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Noble 2011), as well as species-level systematics and ecology.

In their famous critique of inclusive fitness theory as an explanation of co-

operation in general, and eusociality in particular, Nowak et al. (2010) correctly

observe:

Advocates of inclusive fitness theory claim that many empirical stud-

ies support their theory. But often the connection that is made between

data and theory is superficial. For testing the usefulness of inclusive

fitness theory it is not enough to obtain data on genetic relatedness

and then look for correlations with social behaviour. Instead one has

to perform an inclusive fitness type calculation for the scenario that is

being considered and then measure each quantity that appears in the

inclusive fitness formula. Such a test has never been performed.

The error of these advocates is to argue that inclusive fitness theory, in the form of

Hamilton’s Rule, shows that costly cooperation can evolve, then to observe costly

cooperation, and finally to claim that their data support inclusive fitness theory.

In fact, inclusive fitness theory does not favor cooperation over conflict, so the

assertion that it explains cooperation in complex multicellular species and social

groups is simply false. Cooperation is the product of evolution at the level of

the core genome, a notion not available to inclusive fitness theory as currently

formulated.

A1 Regression Approach to the Generalized Hamilton’s Rule

Hamilton (1970) developed a more general notion of relatedness based on the Price

equation (Price 1970), an approach developed by Queller (1992), Frank (1998),

and many others. We can show that this approach can also be used to derive the

Generalized Hamilton’s Rule (suggested by Laurent Lehmann, personal communi-

cation).

Suppose in each period each individual is called upon once to help and once

potentially to receive help. Only the individual with the helping allele actually

helps. Let wij be the fitness of an individual where i D 1 if the individual has the

helping allele, i D 0 otherwise, and j D 1 if the individual is helped, and j D 0

if not helped. Then we can write

wij D 1 � ci C bj � .1 � i /˛ � ˇq; (A1)

where all parameters are as defined in the previous section. The frequency pij of
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type ij is given by

p00 D .1 � q/.r C .1 � r/.1 � q//

p01 D p10 D .1 � q/q.1 � r/

p11 D q.r C .1 � r/q/:

We can write the regression equations for wij as

wij D Owij C �ij

D 
0 C 
1i C 
2j C �ij ;

where Owij is the additive fitness and �ij is an error term. For least squares estima-

tion we minimize

1
X

iD0

1
X

j D0

pij .wij � Owij /2 D

1
X

iD0

1
X

j D0

pij �2
ij

with respect to 
0, 
1, and 
2. We find that


0 D 1 � ˛ � qˇ


1 D ˛ � c


2 D b:

The additive portion of fitness f1 for the helping allele and f0 for the non-helping

allele are then given by

f0 D .p01 Ow01 C p00 Ow00/=.1 � q/

f1 D .p11 Ow11 C p10 Ow10/=q

The condition f1 > f0 then becomes, after some simplification,

br C ˛ > c;

which is the correct Generalized Hamilton’s Rule expression. Note that br C ˛ �

c D 
2r C 
1, which means that the reasoning leading to the Generalized Hamil-

ton’s Rule is the same as for the traditional Hamilton’s rule, only the parameters

being altered.
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A2 A Model of Outlaw Suppression

We can model outlaw suppression formally in terms of the Generalized Hamilton’s

Rule. Suppose a polluting allele x satisfies (8), so the GHR is simply Hamilton’s

Rule:

bxrx C ˛x > cx : (A2)

Suppose further that an allele at locus y imposes a punishment py D �˛y > 0

on each carrier of the x allele at a cost cb to itself. The gain to copies of y from

suppression of x is

by D �˛x C qxˇx ;

where � is the probability that the host of allele y does not contain a copy of the x

allele. Allele y also receives the gain by so y’s net fitness sacrifice is cy � by . We

assume the cost of punishing py is cy D �py , for some � > 0. The punishment py

is dissipated, so it does not appear as a transfer of fitness to the y allele. Thus the

GHR for the y allele becomes

.�˛x C qxˇx/.1 C ry/ > �py : (A3)

The effect of suppression on allele x is to increase the cost of x’s action from cx to

cx C qypy . Thus the revised GHR for allele x becomes

bxrx C ˛x > cx C qypy : (A4)

If there is an interior equilibrium to this two-equation system, it is easy to check

that the equilibrium values q�

x and q�

y satisfy

q�

x D
pyqx�

.1 C ry /.�˛x C qxˇx/
(A5)

q�

y D
bxrx � cx C ˛�

x

py
: (A6)

Clearly if py is sufficiently large, the x allele will have a low but non-zero fre-

quency in the population. Thus the GHR shows that an equilibrium level of an

outlaw gene can be maintained, and the suppression is more complete the larger

is the punishment py , the smaller the cost of punishing �py , the higher the relat-

edness ry at the suppressor gene, the stronger the pollution effect ˇx , the stronger

the thieving effect ˛x , and the lower the probability � that the suppressor locus

contains a copy of the thieving allele. The GHR also shows that suppression will

occur where there are no relatedness effect is the outlaw gene; i.e., when bx D 0

or rx D 0 but cx < 0, so the outlaw gene’s gain is purely in personal fitness.
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A3 Hamilton’s Seminal Analysis

The original derivation of the inclusive fitness criterion in Hamilton (1964a) is

more general than Hamilton’s Rule as commonly expressed, and by modifying one

of his assumptions, his derivation gives our Generalized Hamilton’s Rule. Follow-

ing Hamilton (but with simplified notation), suppose the population is diploid, and

the alleles at the focal locus are numbered k D 1; : : : ; m. Let Rij be the fitness

increment (positive or negative) over baseline fitness unity conferred by an individ-

ual of genotype ij at the focal locus on members of the population who carry the

i allele, and let Tij be the total fitness increment conferred by an individual with

genotype ij on the population. Let the frequency of genotype ij be pij , and let

pi be the frequency of allele i in the population. With random mating, we have

pij D pi pj . Hamilton (1964a) assumes this, but this plays no role in the analysis.

The total fitness effect of one individual carrying allele i at the focal locus is then

given by

Ti D
X

j

pij Tij ; (A7)

and the total fitness effect on allele i due to one carrier of allele i is given by

Ri D
X

j

pij Rij : (A8)

We then define

Si D Ti � Ri (A9)

for i D 1; : : : ; m, which Hamilton (1964a) calls the dilution effect for reasons

discussed below. Note that the signs of Ri ; Si , and Ti are indeterminate, but if we

assume sufficiently weak selection at this locus, which we do, and if T is the total

increment in population fitness in one period, then

T D
X

i

pi Ti > �1; (A10)

so population fitness 1 C T is strictly positive.

Following Hamilton, let us assume that the dilution effect Si is uniformly dis-

tributed over the alleles at the focal locus, and let

S D
X

i

pi Si (A11)

R D
X

i

pi Ri ; (A12)
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so T D R C S . Then the expression for an increase in the frequency of allele i is

given by

�pi D
pi C pi Ri C pi S

1 C T
� pi (A13)

D pi
1 C Ri C S

1 C R C S
� pi (A14)

D pi
Ri � R

1 C T
: (A15)

From this we get Hamilton’s Rule, in the form that allele i will increase through

natural selection exactly when

Ri > R: (A16)

We can thus define the inclusive fitness of allele i as Ri . Because the rate growth

of allele i is gi D �pi=pi , we observe that Ri > Rj exactly when gi > gj , so

alleles at the focal locus are relatively successful in proportion to their inclusive

fitness. If the Ri are frequency independent, we can then say that genes “maximize

their inclusive fitness.”

As Hamilton stresses, the sign and magnitude of S do not affect (A16), but

only the rate at which the frequency of allele i changes in the population. It is for

this reason that Hamilton calls S a ‘dilution’ effect.

Hamilton assumes without comment that Ri > 0, but this need not be the case.

For instance, suppose m D 2, R22 D 0, and R21 D �˛ < 0; i.e., there are two

alleles, and the heterozygote imposes a fitness loss ˛ on the second allele. Then

R2 D �˛p12, R D �˛p2p12, and Ri � R D Ri C ˛p2p12, which can be positive

even if Ri < 0: This of course is the case of the “outlaw” allele.

In general, the assumption that S is uniformly distributed among alleles at the

focal locus is overly restrictive. In biochemical terms it prevents using inclusive

fitness theory to analyze segregation distortion and other allele actions that disfavor

other alleles at the focal locus (Ratnieks 1988, Ratnieks and Reeves 1992, Burt and

Trivers 2006), or to analyze social helping behaviors .b; r; c > 0/ that involve

imposing costs on non-relatives. So let us assume that allele i at the focal locus

receives fraction 
i S , where 
i � 0 and
P

i 
i D 1. Then (A13) becomes

�pi D
pi C pi Ri C pi 
iS

1 C T
� pi (A17)

D pi
1 C Ri C 
iS

1 C R C S
� pi (A18)

D pi
Ri � R � .1 � 
i/S

1 C T
(A19)
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It is clear that the revised condition for allele i to proliferate,

Ri � .1 � 
i/S > R; (A20)

is the appropriate generalization of our GHR. Note that this inequality can be sat-

isfied even if Ri < 0, so the successful allele is uniformly harmful to carriers of

the genome.

Note that this analysis does not depend on any particular notion of relatedness.

However, (A16) reduces to our expression for Hamilton’s Rule (1) if we assume

there are two alleles at the focal locus one of which is the wild type with zero

fitness contribution and the other conferring fitness b on all individuals other than

itself, with self-fitness increment �c. In this case Ri D br � c, R D pi .br � c/,

so (A16) reduces to (1). In addition T D b � c and S D .1 � r/b, which are

both positive when b > 0. This gives the standard contemporary interpretation of

Hamilton’s Rule. In particular, if the gene is indeed a helping gene (b > 0), some

of the benefits to the recipient will be directed to non-carriers of the allele, so all

members of the population gain from the helping behavior. Moreover, we get the

GHR expression (8) with 
i D 0 and S D �˛.

The dilution effect is important not because it affects the rate of change in the

frequency of the focal allele, but because when S < 0, the success of the focal

allele can come at the expense of a lower mean population fitness 1CT even when

R > 0. Indeed, the above analysis shows that the conditions for allele success and

the conditions for contributing to the success of the reproductive population are

distinct.
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and Eörs Szathmáry, “The Major Evolutionary Transitions,” Nature 374

(1995):227–232.

and M. G. Ridpath, “Wife Sharing in the Tasmanian Native Hen, Tribonyx

mortierii: A Case of Kin Selection?,” American Naturalist 96 (1972):447.

24



Metz, J. A. J., S. D. Mylius, and O. Diekmann, “When Does Evolution Optimize,”

Evolutionary Ecology Research 10 (2008):629–654.

Michod, Richard E., “Cooperation and Conflict in the Evolution of Individuality.

1. The Multilevel Selection of the Organism,” American Naturalist 149 (April

1997):607–645.

and William Hamilton, “Coefficients of Relatedness in Sociobiology,” Na-

ture 288 (18/25 December 1980):694–697.

Moran, P. A. P., “On the Nonexistence of Adaptive Topographies,” Annals of Hu-

man Genetics 27 (1964):383–393.

Noble, Denis, “Neo-Darwinism, the Modern Synthesis and Selfish Genes: Are they

of Use in Physiology?,” Journal of Physiology 589,5 (2011):1007–1015.

Nowak, Martin A., Evolutionary Dynamics: Exploring the Equations of Life (Cam-

bridge, MA: Belknap Press, 2006).

, Corina E. Tarnita, and Edward O. Wilson, “The Evolution of Eusociality,”

Nature 466,26 August (2010):1057–1062.

Odling-Smee, F. John, Kevin N. Laland, and Marcus W. Feldman, Niche Construc-

tion: The Neglected Process in Evolution (Princeton: Princeton University

Press, 2003).

Olson, Mancur, The Logic of Collective Action: Public Goods and the Theory of

Groups (Cambridge: Harvard University Press, 1965).

Price, George R., “Selection and Covariance,” Nature 227 (1970):520–521.

Queller, David C., “A General Model for Kin Selection,” Evolution 42,2

(1992):376–380.

Ratnieks, Francis, “Reproductive Harmony via Mutual Policing by Workers in Eu-

social Hymenoptera,” American Naturalist 132,2 (August 1988):217–236.

Ratnieks, Francis L. W. and H. Kern Reeves, “Conflict in Single-queen Hy-

menopteran Societies: the Structure of Conflict and Processes that Reduce

Conflict in Advanced Eusocial Species,” Journal of Theoretical Biology 158

(1992):33–65.

Riley, Margaret A. and Michelle Lizotte-Waniewski, “Population Genomics

and the Bacterial Species Concept,” Methods in Molecular Biology 532

(2009):367–377.

25



Rousset, François and S. Billard, “A Theoretical Basis for Measures of Kin Se-

lection in Subdivided Populations,” Procedings of the National Academy of

Science 61 (2007):2320–2330.

Skutch, A. F., “Helpers Among Birds,” Condor 63 (1961):198–226.

Sober, Elliot and Richard C. Lewontin, “Artifact,Cause, and Genic Selection,”

Philosopohy of Science 48 (1982):157–180.

Takeuchi, Y., Global Dynamical Properties of Lotka-Volterra Systems (World Sci-

entific, 1996).

Taylor, Peter, “Evolutionary Stability in One-parameter Models under Weak Selec-

tion,” Theoretical Population Biology 36,2 (1989):125–143.

, “Altruism in Viscous Populations: An Inclusive Fitness Model,” Evolution-

ary Ecology 6 (1992):352–356.

, “Inclusive Fitness Arguments in Genetic Models of Behavior,” Journal of

Mathematical Biology 34 (1996):654–674.

Traulsen, Arne and Martin A. Nowak, “Evolution of Cooperation by Multilevel

Selection,” Proceedings of the National Academy of Sciences 103,29 (July

18 2006):10952–10955.

Uyenoyama, Marcy K. and Marcus W. Feldman, “Theories of Kin and Group Se-

lection: A Population Genetics Approach,” Theoretical Population Biology

17 (1980):380–414.

van Veelen, Matthijs, “Group Selection, Kin Selection, Altruism, and Coopera-

tion: When Inclusive Fitness is Right and When it can be Wrong,” Journal of

Theoretical Biology 259 (2009):589–500.

Weibull, Jörgen W., Evolutionary Game Theory (Cambridge, MA: MIT Press,

1995).

Wenseleers, Tom and Francis L. W. Ratnieks, “Tragedy of the Commons in

Melipona Bees,” Proceedings of the Royal Society of London B 271

(2004):S310–S312.

West-Eberhard, Mary Jane, “The Evolution of Social Behavior by Kin Selection,”

Quarterly Review of Biology 50 (1075):1–33.

26



West, Stuart A., Stephen P. Diggle, Angus Buckling, Andy Gardner, and Ashleigh

S. Griffin, “The Social Lives of Microbes,” Annual Review of Ecology, Evo-

lution, and Systematics 38 (2007):53–77.

Wheeler, William Morton, The Social Insects (New York: Harcourt, Brace, 1928).

Wilson, David Sloan, “Structured Demes and the Evolution of Group-

Advantageous Traits,” American Naturalist 111 (1977):157–185.

, G. B. Pollock, and Lee Alan Dugatkin, “Can Altruism Evolve in Purely

Viscous Populations?,” Evolutionary Ecology 6 (1992):331–341.

cnpapersnGeneralized Hamilton RulenGeneralizedHR.tex September 9, 2013

27


