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1 Introduction

Interactive epistemology is the study of the distribution of knowledge among ratio-

nal agents, using modal logic in the tradition of Hintikka (1962) and Kripke (1963),

and agent rationality based on the rational actor model of economic theory, in the

tradition of Von Neumann and Morgenstern (1944) and Savage (1954). Epistemic

game theory, which is interactive epistemology adjoined to classical game theory

(Aumann, 1987, 1995), has demonstrated an intimate relationship between ratio-

nality and correlated equilibrium (Aumann 1987, Brandenburger and Dekel 1987),

and has permitted the rigorous specification of the conditions under which rational

agents will play a Nash equilibrium (Aumann and Brandenburger 1995).

A central finding in this research is that rational agents use the strategies sug-

gested by game-theoretic equilibrium concepts when there is a communality of

knowledge in the form of common probability distributions over the stochastic

variables that arise in the play of the game (so-called common priors), and com-

mon knowledge of key aspects of the strategic interaction. We say an event E is

common knowledge for agents i D 1; : : : ; n if the each agent i knows E, each i

knows that each agent j knowsE, each agent k knows that each j knows that each

i knows E, and so on (Lewis 1969, Aumann 1976).

Specifying when individuals share knowledge and when they know that they

share knowledge is among the most challenging of epistemological issues. Con-

temporary psychological research has shown that these issues cannot be resolved

by analyzing the general features of high-level cognitive functioning alone, but in

fact concern the particular organization of the human brain. Humans have a theory
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of mind that is possessed in extremely rudimentary form by other primate species

and not at all by most other species, even those with complex forms of social orga-

nization (Premack and Woodruff 1978, Heyes 1998, Tomasello et al. 2005). This

mental capacity permits us to attribute mental states to others, and to assess when

other share our beliefs, intentions, and goals (Baron-Cohen 1991, 1995).

Epistemic game theory has the potential to be a major theoretical instrument

in modeling and collecting data concerning social epistemology. However, the

standard knowledge framework of epistemic game theory glosses over the general

conditions of knowledge sharing. My goal in this paper is to clarify the standard

approach to interactive epistemology in a manner that makes explicit the funda-

mental epistemological assumptions behind knowledge sharing.

The standard semantic model (Aumann 1976) derives collective representa-

tions of the state of affairs from axioms of epistemic logic, in the form of a theorem

asserting that if an event E is self-evident (i.e., is known when it is true) for each

of a set of agents, then E is necessarily common knowledge among these agents.

Clearly, deep epistemological assumptions must be buried in the structure of the

standard semantic model that allows us to pass from what each agent knows to

what each agent knows concerning the knowledge of the other agents. Certainly

no principle of Bayesian rationality permits us to assert that two rational agents

share beliefs and that they know that this is the case. I will show exactly what

these buried assumptions are and how they can be rendered salient for analytical

treatment.

This analysis does not imply that the semantic model must be discarded. In

fact, if we have independent epistemic arguments justifying common knowledge

of those events for which common knowledge holds in the semantic model, then

we are justified in using the semantic model. The argument, however, goes from

the justification of common knowledge to the use of the semantic model, not the

other way around. By contrast, common knowledge of rationality, I will argue is

never an acceptable epistemic assumption.

The framework proposed in this paper for generating propositions concerning

common knowledge from basic epistemic assumptions employs three inferential

stages. First, there are some events E with the property that if i knows E, then i

knows that any other agent j also knowsE. For instance, consider a natural occur-

renceN , such as “the ball is yellow,” or “it is raining in Paris” that are immediately

perceived by individuals as first-order sensory experience. Under some conditions

these natural occurrences are mutually accessible to members of a group, meaning

that if one member knowsN , then he knows that each other member knowsN . For

instance, if i and j are both looking at the same yellow ball, the ball’s color may

be mutually accessible: i knows that j knows that the ball is yellow. Similarly,

there are rules R such that in a group of players, if one player i knows that R is a
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rule, then i knows that any other player j knows the rule as well, presumably by

virtue of a social process parallel to that through which i obtained this knowledge.

Second, there are higher-order socially defined events which we may call games

G, which specify the type of strategic interaction appropriate to the social situation

at hand. Games are not mutually accessible, but social conventions may spec-

ify that a mutually accessible event F indicates G. We call F a frame, we write

G D F .F /, and we think of the relation “F indicates G to agent i” as asserting

that when i knows F , he proceeds through a series of mental steps involving the

consideration of known social regularities, such as norms and conventions, at the

conclusion of which i knows G (Lewis 1969, Cubitt and Sugden 2003). Knowing

G entails knowing the rules of G, which then become common knowledge by virtue

of the reasoning in the previous paragraph. Assuming F is a public indicator of G,

and that the individuals involved are symmetric reasoners (precise definitions are

left for later), then G will be common knowledge.

Third, given epistemic game G, certain social processes that transform private

into public information may justify the assumption of a common prior for G, which

in turn determines a correlated equilibrium of G. The correlating device is a social

norm or convention N D C.G/, which specifies exactly how the game will be

played by rational agents. Note that the common prior assumption is extremely

demanding, because it requires not only that individuals have the same priors, but

that this fact is common knowledge.

Of course, in the real world, at any stage there may be irregularities, lacunae,

and clashes that produce non-equilibrium outcomes, and become the object of a

more dynamic analysis of strategic interaction when the rules, the payoffs, and

the games themselves and their social cues are the object of cultural evolution and

strategic intervention.

2 The Standard Semantic Model and Common Knowledge

Let � be a set of possible states that a social system can assume. We call � the

universe and each ! 2 � is a possible state of the universe. Suppose there are

n > 1 agents, i D 1; : : : n. We assume that in each state !, agent i knows only

that he is in some subset Pi! � � of states. We say ! 0 2 Pi! is possible for

i at !. We assume ! 2 Pi! (i.e., i thinks his current state is possible), and

! 0 2 Pi! � Pi!
0 D Pi! (i.e., if two of i ’s possibility sets intersect, they are

identical). This implies that the sets fPi!j! 2 �g form a partition of� (i.e., every

state is in exactly one of the fPi!g). We call this partition the knowledge partition

Pi of the universe� for agent i .

An event E is an arbitrary subset of �. We say the event E occurs when the
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system is in state ! 2 � if ! 2 E � �. We say that agent i knows the event E

when the state is actually ! if Pi! � E. Note that since ! 2 Pi!, when i knows

event E in state !, then E actually is true at !: knowledge implies truth.

We define KiE � � as the event that i knows eventE. It is clear that! 2 KiE

if and only if Pi! 2 E, so KiE is the union of all cells Pi 2 Pi that lie completely

in E. If agent i knowsE for all ! 2 E, we say E is self-evident for i . An event E

is thus self-evident for i if i knows that E is true in every state where E is in fact

true. Note that E is self-evident for i if and only if KiE D E.

It is easy to see that a self-evident event for i is the union of cells of the knowl-

edge partition Pi . Moreover, the union of any number of events that are self-

evident for i is also self-evident for i . Hence, for any event E, KiE is the largest

self-evident event contained in E.

We say an event E is common knowledge for agents i D 1; : : : ; n if, for any

state ! 2 E, and for any finite sequence of subscripts l1; : : : ; lr , where each lj 2

f1; : : : ng, agent l1 knows that agent l2 knows that . . . knows that agent lr knows E

in state !, or more succinctly, Kl1
Kl2

: : :Klr
E D E.

Suppose an event E is self-evident for all i D 1; : : : ; n agents. We will prove

that E is common knowledge. Consider the event Kl1
Kl2

: : :Klr
E. We must

show that this event is simply E. Because E is self-evident to agent lr , we have

Klr
E D E. Therefore, we have

Kl1
Kl2

: : :Klr
E D Kl1

Kl2
: : :Klr�1

E:

We can proceed similarly for the remaining agents, proving the theorem, which is

due to Aumann (1976).

The conclusion that when an event is self-evident to all agents it is common

knowledge is quite striking, for it asserts that self-evidence, which appears to de-

scribe the epistemic position of an isolated agent, when shared among agents, per-

mits agents to know the content of the minds of other agents.

In fact, the background assumption that gives rise to the assertion that mu-

tual self-evidence implies common knowledge is that each agent “knows” the in-

formation partitions of the other agents.1 For a simple example of this, suppose

Pi! � Pj! � E for two agents i and j . Then in state !, j knows that E is true

in every state that i considers possible, and hence j knows that i knows that E in

state !.

Aumann (1976) defends the semantic model by asserting that no additional

assumptions are involved:

1The quotation marks are to signal that this is an informal notion of knowledge not captured in

the model itself.
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The implicit assumption that the information partitions. . . are them-

selves common knowledge. . . constitutes no loss of generality. In-

cluded in the full description of a state of the world is the manner

in which information is imparted to the two persons. (p. 1273)

In fact, in the standard presentations of the epistemic model found in the literature,

states of the world do not include such full descriptions. Moreover, as we shall

see, expanding the model to allow states to include such full descriptions does not

lead to a model in which one can assert that individuals know the beliefs of others,

unless substantive principles are added to the usual axioms of the modal logic of

knowledge.

Aumann (1987) expands on his reasoning as follows:

Because the specification of each ! includes a complete description of

the state of the world, it includes also a list of those other states ! 0 of

the world that are, for Player 2, indistinguishable from !.. . . Therefore

the very description of the !’s implies the structure of [the parti-

tion]. . . . The description of the !’s involves no ‘real’ knowledge; it is

only a kind of code book or dictionary. (p. 9)

However, there is nothing in the definition of common knowledge that specifies

what one agent knows about the partition of another agent. Aumann asserts that one

can prove in complete generality that using the “tautology” of partition structures,

mutual self-evidence implies each agent knows what other agents know. There

is surely something amiss here. As we shall see, when the knowledge system

“involves no real knowledge,” a non-trivial common knowledge condition does not

obtain.

For instance, consider a game with two players, Alice and Bob, in which there

are two cards, one labeled ‘h’ and the other labeled ‘l’. At the start of the game each

player is given one card. The semantic model for this game has two states, which

we can label ‘hl’ and ‘lh’ corresponding to the two possible distribution of cards.

It is easy to see that the event E D “Bob holds the h” is self-evident to both Alice

and Bob. Hence, E is common knowledge. This argument does not prove that E

is common knowledge; rather, our assumptions concerning the mental capacities

and social relations between Alice and Bob lead us to believe that E is common

knowledge. If, for instance, Bob lacked a “theory of mind” (Baron-Cohen 1991),

he might not be able to deduce from the fact that he holds the h that Alice knows,

by virtue of the fact that she holds the l, that Bob holds the h. Indeed, if the species

involved were any other than humans, we would not expect the semantic model

to reflect the commonality of knowledge between the two players (Premack and

Woodruff 1978). Note that there is nothing in Bayesian rationality that suggests

that rational individuals possess such a “theory of mind.”

5



If the problem were simply the failure of the semantic model to apply to non-

humans, a deeper analysis might not be worth the trouble for those of us who

confine our studies to the behavior of our own species. However, the problem

applies also to humans in real-world contexts where there is no experimenter laying

down the rules of the game, but rather agents must infer the structure of the game

and its epistemic properties from possibly ambiguous social cues. In such cases,

an explicit social epistemology will be needed to conclude that the semantic model

is an appropriate representation of the game.

3 A Syntactic Model of Distributed and Shared Knowledge

Aumann (1999) elaborates on his defense of the notion that the partition structure is

purely a formalism, developing a syntactic model of common knowledge in which

partitions of the universe are not employed, and shows that it has a canonical rela-

tionship with a semantic model that employs the partition machinery. This model

lays bare the epistemological presumptions of the standard semantic model of com-

mon knowledge and reveals the presuppositions that permit common knowledge to

be inferred. In fact, we will see that Aumann’s construction shows the substan-

tive rather than the tautological nature of the partition construction in the standard

semantic model.

My exposition follows Aumann (1999), except that I omit most proofs. Sup-

pose we have n > 1 individuals, and a set of letters from an alphabet X D

fx; y; z; : : :g which we think of as events, logical symbols _, :, k1; : : : ; kn and

left, ’(’ and right, ’)’ parentheses. Formulas are constructed recursively as follows:

a. Every letter is a formula.

b. If f and g are formulas, so are .f / _ .g/, :.f /, and ki .f / for each i .

We abbreviate .:f /_g as f � g, :.:f _:g/ as f ^g, .f � g/^ .g �

f / as f , g, and we drop parentheses where no ambiguity results, assuming the

usual precedence ordering of the propositional calculus, and assigning the high-

est order to the knowledge symbols ki . The above conditions ensure that every

tautology of the propositional calculus based on X is a formula (Hedman 2004).

A list L is a set of formulas. A formula is a tautology if it is a tautology of

the propositional calculus, or it has one of the following forms, where f and g are

formulas:

kif � f (1)

kif � kikif (2)

ki .f � g/ � .kif � kig/ (3)
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:kif � ki :kif: (4)

Equation (1) mirrors the semantic property KiE � E for any event E. Equation

(2) mirrors the fact that KiE is self-evident for any event E in the semantic model.

Equation (3) asserts that modus ponens applies to the knowledge operator. Finally,

(4), called the axiom of transparency, is required to ensure that the semantic real-

ization of the syntactic system has a partition structure. We call a system consisting

of the alphabet X , the formulas and the tautologies a syntactic system S . We gen-

erate the set of tautologies T by assuming modus ponens (i.e., f; .f � g/ 2 T

implies g 2 T ) and agents know all the tautologies (i.e., f 2 T implies kif 2 T ).

A state ! of the syntactic system S is list that is closed under modus ponens,

and for every formula f , exactly one of f and :f is in !. In other words, a

state is a maximally consistent set of formulas, and so represents a possible state

of the system and the epistemic state of the agents concerning the system. For

instance, suppose there is one letter, x, and let ! be a state of S . Then, either

x 2 ! or :x 2 !. Moreover, x _ :x 2 !. To see this, suppose x _ :x … !.

Then :.x _ :x/ 2 !. This can be rewritten as :x ^ x 2 !. But the formula

f ^ g � f is a tautology, so if f ^ g 2 !, then f 2 ! by modus ponens.

Similarly, g 2 !. Applying this to :x ^ x 2 !, we see that x 2 ! and :x 2 !,

which is impossible.

It is easy to see that if ! is a state, then every tautology is in ! (i.e., T � !).

For otherwise ! would contain a false formula from the propositional calculus,

which by modus ponens implies the ! contains all formulas, which is false by

construction. Moreover, every state ! is a complete list of the formulas that are

true in that state; i.e., we cannot add another non-equivalent formula to ! without

violating the list property.

Moving to the knowledge operators, suppose x 2 !. Then, for each agent i ,

either kix 2 ! or :kix 2 !. Moreover, we must have :ki :x 2 ! for each i .

This is because if x 2 !, then ki :x 2 ! would imply, by (1), that :x 2 !, which

is a contradiction. We often abbreviate :ki :f as pif , and we say “i considers

f possible.” Similarly, for any formula f 2 !, for each agent i , either kif 2 !

or :kif 2 !, and pif 2 !. Thus, every state ! of S includes arbitrarily long

finite strings of the form ‘i knows that j considers it possible that k knows that. . . ”

terminating in either x or :x.

States of S are thus very large sets, containing much redundant material. For

instance, if f 2 !, then f _ g 2 ! for any formula g whatever. Moreover, if f

is a tautology, then any string of the form kikj : : : krf 2 !. Nevertheless, a state

! does capture all of the epistemic relations among the agents and the underlying

letters x; y; z : : :.
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For any formulas f and g and any state !, we have:

:f 2 ! iff f … ! (5)

f _ g 2 ! iff f 2 ! or g 2 ! (6)

f ^ g 2 ! iff f 2 ! and g 2 ! (7)

f � g 2 ! iff f 2 ! implies g 2 ! (8)

f , g 2 ! iff f 2 ! iff g 2 !: (9)

4 The Semantic Interpretation of Syntactic System S

Let �� be the set of all states derived from the syntactic system S using the above

construction. We define a semantic knowledge system on universe�� as follows.

A set E � �� is called an event. Let �i .!/, ! 2 �� be the set of all formulas

in ! of the form kif for some formula f . The cells of the partition P�

i of ��

for player i are defined by P
�

i ! D f! 0 2 ��j�i .!/ D �i .!
0/g. Thus, an agent

can distinguish between two states in �� if and only if he has some knowledge in

one state that he does not have in the other. The knowledge operator K
�

i is defined

in the usual manner by K
�

i E D f!jP�

i ! � Eg. We call the resulting system the

canonical semantic knowledge system �� corresponding to S .

To construct a map from S to ��, we define

Ef D f! 2 ��jf 2 !gI (10)

i.e., the event Ef is the set of states in which f is true. The most important impli-

cations of this mapping are

KiEf D Eki f (11)

Ef � Eg iff .f � g/ 2 T I (12)

KiE D
˚

!j \ki f 2! Ef � E
	

: (13)

These properties imply that the syntactic operator ki does in fact correspond to the

knowledge operator Ki , and logical implication in the syntactic system is the coun-

terpart of set inclusion in the semantic system. Moreover, what an agent knows,

given an event E, is whatever follows logically from the formulas that the agent

knows, given E.

In terms of ��, the theorem that an event is common knowledge if and only if

it is self-evident for all agents is of course true. However, it is easy to see that no

event in�� that is in the image of S can be self-evident to all agents. For ifE is in

the image of S under the above mapping, theE D Ef for some formula f . If f is

a tautology, the E D ��, which is trivially common knowledge. Otherwise, if f
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has no knowledge operators, then :kif 2 E holds for all i , so E is not common

knowledge. If f begins with ki , then :kjf 2 E for j ¤ i , so E is not common

knowledge. Finally, if f begins with :ki , the E is not common knowledge by

definition. We conclude that no event in the image of S is common knowledge

except the trivial event �� itself.

However, there are common knowledge events in ��, which we can charac-

terize by forming a set X consisting of subset of the letters x; y; z; : : :, some of

which may be prefixed by :, and including a state ! in an event E if and only if

! includes all formulas in X , as well as all formulas of the form k�

l1
k�

l2
: : : k�

lr
f ,

where f 2 X and k� is either k or p. To ensure that ! is a state, we must also

include :kiy for letters y not included inX , and filling out ! with consistent for-

mulas terminating in :kiy. Each such event may be called a common knowledge

subuniverse of ��.

5 The Universal Property of Semantic Model �
�

The map f ! Ef from the syntactic system S to the semantic system �� is

injective in the sense that Ef D Eg for formulas f and g if and only if f , g

is a tautology of the syntactic system. Moreover, (11), (12), and (13) show that the

mapping preserves the epistemic properties of the syntactic system. While all non-

trivial common knowledge events fail to be in the image of this map, the semantic

system �� is universal in the sense that all semantic models derivable from S are

common knowledge subuniverses of ��.

To see this, let �C be an arbitrary semantic system with n agents and a set

of possibility operators P
C

i . For every letter x; y; z; : : : in the syntactic system S ,

let �.x/, �.y/, �.z/ be arbitrary subsets of �C. We interpret �.x/ as the set of

states of �C at which x is true. We can extend the mapping � to all of S using the

following rules:

�.:f / D f! 2 �Cj! … �.f /gI (14)

�.f _ g/ D �.f / [ �.g/I (15)

�.kif / D K
C

i
�.f /; (16)

where K
C

i is the knowledge operator in�C derived from the P
C

i .

In this manner, we can map the syntactic system S into an arbitrary semantic

system�C representing some specification of the meaning of the letters x; y; z; : : :

of the syntactic system. The key property of this association is that if we define

 .!C/ for any state !C 2 �C by

 .!C/ D ff 2 Sj!C 2 �.f /gI (17)
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that is,  .!C/ is the set of formulas of the syntactic system that are interpreted as

true in state !C 2 �C. It is straightforward to show that ! D  .!C/ is closed

under modus ponens and for every formula f , ! contains exactly one of f and

:f . Hence ! is a state of the semantic system��. It follows that  is a mapping

from �C to��.

Let �� be the image of �C under the mapping  , and let �� be the smallest

common knowledge subuniverse of� containing�� . It is straightforward to show

that the following diagram commutes:
S

�� �C

���

 

where �� is the mapping f ! Ef \�� . This shows that every semantic model is

isomorphic to a common knowledge subuniverse of the canonical semantic model

associated with an appropriate syntactic model (Aumann 1999).

6 A Semantic Model with no Nontrivial Common Knowledge

It is possible to construct a finite semantic epistemic model � in which states di-

rectly incorporate the distribution of knowledge. This model shows that without

additional substantive assumptions, we cannot conclude that any agent knows that

another agent knows something.

Suppose the syntactic system S has agents i D 1; : : : ; n and a single letter, so

X D fxg. We define a semantic system �C in which each state is of the form

! D f!0; !1; : : : ; !ng, where !0 2 fx;:xg, and !i 2 ft; f g for i D 1; : : : ; n.

We interpret !0 as the “underlying” state of the system, and !i D t if i knows this

underlying state, and !i D f otherwise.

For agent i , we define Pi! D f! 0 2 �Cj! 0
0 D !0 ^ !i D ! 0

i g if !i D t ,

and Pi! D �C if !i D f . It is easy to check that if event E D Pi! where

!i D t , then KiE D E � �C and for j ¤ i , KjKiE D ;. In other words, in

this semantic system, no agent knows whether other agents know the underlying

state of the system. It follows that the only event that is common knowledge is the

trivial event �C.

We can define a natural mapping from S to �C by defining �.x/ D f! 2

�Cj!0 D xg, and extending � to S using (14-16). It is easy to show that for
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z 2 fx;:xg and j ¤ i , �.kj kiz/ D ; and �.:kj kiz/ D �C. The common

knowledge subuniverse �� corresponding to �C is then the common knowledge

subuniverse generated by Ef , where the syntactic formula f is give by

f D

n̂

i;j D1
i¤j

:kj kix ^ :kj ki:x:

Clearly, in this subuniverse, no agent knows which other agents know the underly-

ing state of the system.

7 The Three Tactful Ladies: a Syntactic Analysis

While walking in the garden, Alice, Bonnie and Carole encounter a violent thun-

derstorm and duck hastily into a nearby salon for tea. Carole notices that Alice

and Bonnie have dirty foreheads, although each is unaware of her own condition.

Carole is too tactful to mention this embarrassing situation, which would surely

lead them to blush, but she observes that, like herself, each of the two ladies knows

that someone has a dirty forehead but is also too tactful to mention this fact.

At this point, a little boy walks by the three ladies’ table and exclaims “I see a

dirty forehead!” Alice comments, “I can’t say that I have a dirty forehead.” “Nor

can I,” says Bonnie. Carole realizes that she has a dirty forehead, and blushes.

The problem is interesting because the three ladies already knew what the little

boy told them, and Alice and Bonnie would have said the same thing before hearing

the little boy’s announcement. It thus appears mysterious that Carole can deduce

anything after the little boy’s exclamation that she could not have decided before.

The standard semantic model for this problem is to suppose � consists of

eight states of the form ! D xyz, where x; y; z 2 fd; cg describe Alice, Bon-

nie, and Carole, respectively, and where d and c stand for “dirty forehead” and

“clean forehead,” respectively. Thus, for instance, ! D ccd is the state where

Carole has a dirty forehead but Alice and Bonnie both have clean foreheads. When

Carole sits down to tea, she knows EC D fddc; dddg, meaning she sees that Al-

ice and Bonnie have dirty foreheads, but her own forehead could be either clean

or dirty. Similarly, Alice knows EA D fcdd; dddg and Bonnie knows EB D

fdcd; dddg. Clearly, no lady knows her own state. What does Bonnie know about

Alice’s knowledge? Because Bonnie does not know the state of her own fore-

head, she knows that Alice knows the event “Carole has a dirty forehead,” which is

EBA D fcdd; ddd; ccd; dcdg. Similarly, Carole knows that Bonnie knows that

Alice knows ECBA D fcdd; ddd; ccd; dcd; cdc; ddc; ccc; dccg D �. Assum-

ing Carole has a clean forehead, she knows that Bonnie knows that Alice knows
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E 0

CBA
D fcdc; ddc; dcc; cccg. After the little boy’s announcement, Carole then

knows that Bonnie knows that Alice knows E 00

CBA
D fcdc; ddc; dccg, so if Bon-

nie did not have a dirty forehead, she would know that Alice knowsE 00

BA
D fdccg,

so Bonnie would conclude that Alice would blush. Thus, Bonnie’s assumption that

she herself has a clean forehead would be incorrect, and she would blush. Because

Bonnie does not blush, Carole knows that her assumption that she herself has a

clean forehead is incorrect, so she blushes.

This is a very famous problem that puts the semantic model through its paces.

But, there are many unstated epistemological assertions involved in the conclusion

that Carole knows the state of her forehead. We can see exactly what they are by

working within the syntactic model for the problem.

Let xi be the condition that i has a dirty forehead, and let ki be the knowl-

edge operator for i , where i D A;B; C , standing for Alice, Bonnie, and Carole,

respectively. When we write i without qualification, we mean any i D A;B; C ,

and when we write i; j , we mean any i; j D A;B; C with j ¤ i . Finally, let

yi be the condition that i blushes. The six symbols xi and yi represent the let-

ters of a syntactic structure S , with universe �. Let E be the event prior to the

little boy’s exclamation. The statement of the problem tells us that for all ! 2 E,

xi 2 !, and kixj 2 !, for i ¤ j ; i.e., each lady sees the forehead of the other

two ladies, but not her own. It is easy to check that these conditions are compatible

with :kixi 2 ! 2 E; i.e., no lady knows the state of her own forehead at event E.

The problem also asserts that when kixi occurs, yi also occurs. Moreover, the

problem presumes that yi is mutually visible in the sense that when yi occurs, so

does kjyi . In fact, we will need the stronger statement that when yi occurs, so

does klkjyi for any agents i; j; l . This is because, in the above analysis, Carole

infers that Bonnie knows that Alice does not blush from the fact that Alice does

not blush. This may appear to be a weak assumption, but in fact it is the first time

we have made a substantive assertion of the form kikjf . We say that a natural

occurrence z is public to order r if the occurrence of z entails the occurrence of

kikj : : : klz for all atomic formulas starting with r k-operators; i.e., z 2 ! implies

kikj : : : klz 2 !. In our problem, we must assume yi is public of order two.

Publicity is the second mechanism we have encountered for asserting that agents

share beliefs.

The public property is actually the conjunction of two properties worthy of

separate definition. We say natural occurrence z is external at event E if z implies

kiz; i.e., z 2 ! 2 E implies �iz 2 !. We say that z is mutually accessible at E

if kiz 2 ! 2 E implies kikj z 2 !. Both terms are defined with respect to all

agents, or to a particular subset of agents. An event is public order two if the event

is external and mutually accessible.

The problem also asserts that kixi 2 ! 2 E implies yi 2 !. The problem
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does not assert the equally important fact that kj .kixi � yi / 2 !, but this

fact is surely needed to solve the problem, especially in the contrapositive form

kj .:yi � :kixi/ 2 !; i.e., if a lady does not blush, the other ladies know that

she does not know she has a dirty forehead. This characteristic of yi as a pub-

lic natural occurrence gives us a third manner of inferring second-order epistemic

statements: yi is external, but entails knowledge of the “internal” event :kixi .

An external natural occurrence z that entails kj kiw for some w may be called

an external indicator of kiw. If z is also mutually accessible, we may call z a

public indicator of w. In particular, :yi is a public indicator of :kixi in our prob-

lem. We actually never use the assumption that yi implies kixi ; many different

mental states can be associated with bluffing without altering the logic of the ar-

gument. However, Carole’s reasoning is logically sound only if she knows that

Bonnie knows that Alice’s failure to blush means Carole knows that Bonnie knows

that Alice does not know the state of her forehead. That is, we require that yi be

mutually accessible to order three.

Note that the fact than a natural occurrence z is public says something about

how agents know that they share the external world around them and turn percep-

tions in a parallel manner into knowledges. The concept of publicity is the closely

associated with the fact the agents know that they share certain species-level sen-

sory and information processing systems, and certain types of mental events are

reliably connected to sensory experiences across individuals. The fact that z is

an indicator of an internal state may also be rooted in elementary physiology and

sense perception. For instance, there are reliable, universal external events indicat-

ing fear, pain, joy, sleepiness, anger, and other primary emotions (i.e., emotions we

share with many other vertebrate species). However, the property of being an indi-

cator may also be socially specific. Blushing is a human universal (Brown 1991),

but the mental states that lead to blushing are highly socially specific. Ladies blush

when they have dirty forehead in some societies, but not in others. Moreover, little

boys generally do not blush when their foreheads are dirty.

Where does the little boy’s exclamation enters the analysis? Let E 0 be the state

of knowledge following the exclamation p D xA _xB _xC ? We must assume p is

public to some appropriate order, or the problem cannot be solved. Moreover, kip

is true in E because xi is external to j ¤ i . Assuming xi is mutually accessible to

j; l ¤ i , kj kip is also true in E. So, if p gives new information, it must be public

of order three. We now have the following argument.

The reasoning following the little boy’s statement can be summarized as fol-

lows. Step 1: Carole assumes :xC and infers kA:xC and kB:xC ; Step 2: Bonnie

assume :xB and concludes, using the fact that yi is a public event for j ¤ i ,

that kA:xB . Step 3: Suppose :xB and :xC are mutually accessible. then by

assumption kB:xB , so kBkA:xB , and also by assumption kB:xC , so kB�A:xC .
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Because kBkA.xA _ xB _ xC /, we have

kB .kA.xA _ xB _ xC / ^ kA:xB ^ :xC / � kBkAxA � kByA:

However, yA is false, so kByA is false. Thus Bonnie’s assumption that :xB is

wrong, so she logically concludes xB , which means kBxB , and hence yB . Step

4: Because p is third-order public and assuming xi are also third order mutually

accessible, Carole knows all of the above reasoning, and hence she knows that

:xC implies yB . Because yB is false, she concludes that xC , so kCxC , which

implies yC .

8 Mutually Accessible Events and Symmetric Reasoning

Given the syntactic systemS with agents i D 1; : : : ; n, we define a setN of natural

occurrences (letters of the alphabet X ) to be mutually accessible if, for any i; j and

any x 2 N , kix � kikjx, We say x 2 N is a public signal at eventE if x 2 ! 2

E implies kix 2 ! for i D 1; : : : ; n. We say eventE is common knowledge in S at

state ! if ! includes all atomic formulas of the form ki1ki2 : : : kirE for all orders

r > 0. Finally, we say i and j are symmetric reasoners with respect to a mutually

accessible event A if for any event E, kiA � kiE implies kiA � kikjE.

Before deploying these concepts in proving Theorem 1, it is well to pause to

see what they mean. A mutually accessible event must be a natural occurrence pro-

viding first-order sensory data to the agents involved. Thus, mental events are not

mutually accessible, nor are inferences of mental events by virtue of overt behavior

(e.g., “John believes he knows the answer” is not the type of event that could be

mutually accessible, although “John looks ill” may be, and “John looks green” is

even more likely to be mutually accessible). Moreover, the mutual accessibility

of an event depends on the agents involved being aware that they all are receiving

the same sensory input, that all possess normal mental capacities, all are attentive

to the event, etc. Mutually accessible natural occurrences are the minimum irre-

ducible transmission mechanisms of mental constructs across minds.2 In humans,

only sight and sound give rise to reliably mutually accessible events. It is unclear

whether mutually accessible events occur in other species, although there is (dis-

puted) evidence that chimpanzees share the capacity to recognize mutually accessi-

ble events (Premack and Woodruff 1978, Heyes 1998, Tomasello 1999, Tomasello

et al. 2005).

2The relationship between natural occurrences and the ‘sense data’ of the logical positivists

(Wittgenstein 1999[1921]) is close. However, I do not grant natural occurrences the epistemolog-

ical primacy accorded them in logical positivist thought. Such occurrences are simply the first links

in a chain of constructs that jointly explain common knowledge.
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The concept of symmetric reasoning allows agent i to infer from the fact that

he shares mutually accessible events with agent j , that both i and j will engage

in a parallel sequence of mental activities in transforming the data that they share

into further knowledges, so they will share certain mental constructs derived from

the parallel processing of the same information. For instance, if an event E is

mutually accessible, so i knows that j knows E and conversely, i might reason

that j knows that i knows E, and the therefore i might know that j knows that

they share the knowledge that i knows that j knows E. Of course, the symmetric

reasoning assumption is very strong and will often fail to apply, because it may

be the case that several people witness the same natural occurrences and draw

extremely heterogeneous conclusions therefrom (the ‘Rashamon Effect’).3

THEOREM 1. Consider the syntactic systemS on lettersX with agents i D 1; : : : ; n.

Let N � X be a set of natural occurrences that are public signals and mutually

accessible at !. If the agents are symmetric reasonsers with respect to each x 2 N ,

then N is common knowledge at !.

Proof: Choose an x 2 N . Then, if x 2 !, ! includes the first-order atomic formu-

las kix because x is mutually known. Because x is mutually accessible, ! contains

the second order atomic formulas fkikjxg for all i; j . The proof follows by induc-

tion. Suppose ! contains all r-order atomic formulas ki1ki2 : : : kirx. For all i ,

kix 2 ! implies kiki2 : : : kirx 2 !, so because agents are symmetric reasoners

with respect to x, for any j , kix 2 ! implies kikj ki2 : : : kirx 2 !. Hence, all

.r C 1/-order atomic formulas of the form kikj : : : klx 2 !.

9 Homo Ludens: Rules as Mutually Accessible Conditions

Humans are not the only species that play games. Dogs chase and wrestle without

causing harm. They are playing and learning the rules of their games (Bekoff

2008). In many mammalian species, animals signal, learn fair play, and punish

others who do not play fair, and apologize when caught violating the rules.

However, there is no non-human animal that is capable of playing a game us-

ing new rules that are not part of its natural repertoire. This is why there is no

experimental data illustrating how non-human species play the Ultimatum game or

the Prisoner’s Dilemma. Of course, one can formally place two ravens in an game-

theoretic situation, but there is no evidence that either participant realizes that the

other is obeying a set of rules imposed by the experimenter.

3The term “symmetric reasoning” is defined in Vanderschraaf and Sillari (2007), who attribute

the term to personal communication with Chris Miller and Jarah Evslin. The concept is attributed to

Lewis (1969).
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The fact that game-playing is a deep feature of human culture was stressed

by Huizinga (1955[1938]), although in a context uninformed by epistemic game

theory. Humans can play games not only because they have a level of cognitive

ability that permits learning the rules of the game, but also because they understand

that the rules are mutually accessible: if A learns the rules of a game and knows

that B and C have experienced the same social process through which such learning

occurs, then A knows that B and C know the rules, that B and C know that A knows

the rules, that A knows that B and C know that A knows the rules, and so on. In

game theory, the assumption of common knowledge of the rules of the game is

rarely even mentioned, much less justified through an explicit epistemic argument.

Yet, from the point of view of the evolved psychology of our species, this is a most

remarkable, and virtually unexplored, human capacity.

Of course, by assuming that the rules of the game are mutually accessible, an

argument similar to our analysis of natural occurences justifies common knowledge

of the rules of the game.

10 Public Indicators and Social Frames

Let G be the event that the current social situation is a game G. G is not a natural

occurrence and hence cannot be mutually accessible to the players of G. How-

ever, mutual knowledge that G is being played is a condition for Nash equilibrium

according to Aumann and Brandenburger’s (1995) Theorem B. How does G be-

come mutually known? There may be a mutually accessible event F that reliably

indicates that G is the case, in the sense that for any individual i , KiF � KiG

(Lewis 1969, Cubitt and Sugden 2003, Vanderschraaf and Sillari 2007). We think

of G as representing the game that is socially appropriate when the “frame” F oc-

curs. For instance, if I wave my hand at a passing taxi in a large city, both I and

the driver of the taxi will consider this an event of the form “hailing a taxi.” The

underlying mutually accessible natural occurrences F constituting a frame for this

game include the color of the automobile (yellow), the writing on the side of the

automobile (“Joe’s Taxi”), and my frantic waving of a hand while looking at the

automobile. When the driver stops to pick me up, I am expected to enter the taxi,

give the driver an address, and pay the fare at the end of the trip. Any other behav-

ior would be considered bizarre and perhaps suspicious. For instance if, instead of

giving the driver an address, I invited the taxi driver to have a beer, or asked him to

lend me money, or sought advice concerning a marital problem, the driver would

consider the situation to be egregiously out of order.

In many social encounters, there are mutually accessible cues F that serve

as a frame indicating that a specific game G is being played, or is to be played.
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These frames are learned by individuals through a social acculturation processes.

When one encounters a novel community, one undergoes a process of learning

the particular mutually accessible indicators of social frames in that community.

Stories of misunderstanding such indicators, and hence misconstruing the nature

of a social frame is the common subject of amusing anecdotes and tales.4

We may summarize these concepts by defining a frame F � � as a public

indicator of G for n individuals if F indicatesG for all agents, and F is mutually

accessible for all pairs of agents. We then have

THEOREM 2. Suppose F is a public indicator of G and F is mutually accessible

to all agents i D 1; : : : n. Then G is mutually known for all ! 2 F .

11 Common Knowledge of Rationality

A rational agent has an objective function and a subjective prior over events in the

world, and act to maximizes the expected payoff associated with various strategies.

Game theorists widely accept the notion that common knowledge of rationality

(CKR) is a plausible epistemic assumption in a model where in fact all agents are

rational. Indeed, the elimination of dominated strategies (Pearce 1984, Bernheim

1984) and the use of backward induction (Aumann 1995) without even mention

of the common knowledge of rationality assumption is virtually universal. In fact,

however, the common knowledge of rationality assumption is extremely strong

(Aumann 1996). Indeed, it is not a defensible epistemic assumption (Gintis 2009).

It is difficult to assess the conditions under which CKR is plausible, because

CKR is not derived from more elementary, and themselves plausible, epistemic

conditions. Rationality is surely neither a natural occurrence or a rule of the

game. Perhaps some symmetric reasoning assumption could adduced to the proof

of CKR, but it is easy to show that such an assumption would necessarily depend

on the payoffs of the game being played, which shows that CKR cannot be treated

as a purely epistemic conditions. In particular, we could not claim that CKR is an

“idealized” extension of agent rationality.

To see this, we may use a game in which it is implausible that rational players

will eliminate dominated strategies. Consider the following game Gn, known as

the Traveler’s Dilemma (Basu 1994). Two business executives pay bridge tolls

while on a trip but do not have receipts. Their superior tells each of them to report

4I am reminded of such an event that I experienced in an unfamiliar city, Shanghai. At rush

hour, I went through our usual motions to hail a taxi, with no success—several available taxis simply

passed on by. A stranger motioned to us to stand at a certain spot along the street and hail from

there. Although this spot looked no different to me than any other spot on the street, a taxi pulled

over almost immediately.
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independently an integral number of dollars between 2 and n on their expense

sheets. If they report the same number, each will receive this much back. If they

report different numbers, each will get the smaller amount, plus the low reporter

will get an additional $2 (for being honest) and the high reporter will lose $2 (for

trying to cheat).

6; 2

5; 1

0; 4

0; 4

4; 0

s4 s5s3

s2

s2

s3

s4

s5

2; 2

3; 3

4; 4

5; 5

4; 04; 0

0; 4

5; 1

1; 5

1; 5 2:6

Figure 1: The Traveler’s Dilemma

Let sk be strategy “report k.” Figure 1 illustrates the game G5. Note first that

a mixed strategy �s2 C .1 � �/s4 strongly dominates s5 whenever 1=2 > � > 0.

When we eliminate s5 for both players, a mixed strategy �s2 C .1 � �/s3 strongly

dominates s4 for any � > 0. When we eliminate s4 for both players, s2 strongly

dominates s3 for both players. Hence .s2; s2/ is the only strategy pair that survives

the iterated elimination of strongly dominated strategies. It follows that s2 is the

only strategy that can be played, assuming CKR.

A similar analysis holds for all games Gn. Suppose nD100. It is not plausible

to think that individuals would actually play s2; s2 because by playing a number

greater than, say, 92, either is assured of at least 90. Experiments confirm that

players almost never play the CKR strategy (Basu 1994, Capra et al. 1999).

If CKR is not plausible for this game, it is not clear why it should ever be

plausible as an initial epistemic assumption.

12 Common Knowledge of Rationality and Epistemic Blindspots

I have argued that there is no plausible basis for the assumption of CKR. Yet, it is

generally considered in economic theory that if something is true and there is no

reason to believe that there is asymmetric information concerning this fact, then it

is harmless to assume that the truth is common knowledge. There is, in fact, good

reason to reject this argument. Given a few basic rules of the modal logic of knowl-

edge, it can easily be shown that a proposition can be true yet cannot be known to

be true (Sorensen 1988). Consider, for instance, the Surprise Examination Paradox.

A group of game theorists once took an intensive Monday-through-Friday logic
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course. After several weeks, the professor announced that there would be a surprise

examination one day the following week. Each student thought to himself, “The

exam cannot be given next Friday because then it would not be a surprise.” Each

then concluded that, for similar reasons, the exam could not be given next Thurs-

day, next Wednesday, next Tuesday, or next Monday. Each student thus concluded

that the professor was mistaken. The professor gave the exam the next Tuesday,

and all of the students were surprised.

Kaplan and Montague (1960) were the first to notice that there is nothing para-

doxical about the professor’s assertion, but adding the assumption that a student

knows the assertion does produce an inconsistent logical system. I will follow

Binkley (1968), who weakened the epistemic conditions under which the contra-

diction appears. Let us assume there are only two days, Monday and Tuesday. The

five-day argument is similar, but longer. We take the case of a single student with

knowledge operator k. We assume for any knowledge operator that

A1 kf � :k:f

A2 kf ^ k.f � g/ � kg

A3 kf � kkf

Note that A1 is weaker than the usual assumption kf � f ; i.e., “what is known

is possible” is weaker than “what is know is true.” We also assume the student

knows all tautologies of the propositional calculus and all axioms.

Let kmf mean “the student knows f on Monday” and let kt mean “the student

knows f on Tuesday.” Let Em be the event “the exam is given on Monday,” and

let Et be the event “the exam is given on Tuesday.” We assume
A4 :Em � kt :Em

A5 kmf � kmktf
A4 says that if the exam is not given on Monday, then on Tuesday the student

knows this fact, and A5 says that if the student knows something on Monday, he

knows on Monday that he will continue to know it on Tuesday. The professor’s

assertion can be written as

E D .:Em ” Et / ^ .Em � :kmEm/ ^ .Et � :ktEt /: (18)

Let us assume kmE. From A4 we have

km.:Em � kt :Em/: (19)

From kmE we have km.Et � :Em/, which with (19) gives

km.Et � kt :Em/: (20)

Now from kmE and A5, we have kmkt .:Em � Et/, so

km.kt :Em � ktEt /: (21)
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From (20) and (21), we have

km.Et � ktEt/: (22)

Now kmE implies km.Et � kt :Et/, which together with (22) implies km.:Et/,

and hence kmEm. This, together with kmE gives

km:kmEm: (23)

However, kmEm and A3 imply kmkmEm, so by A1, we have :km:kmEm, which

contradicts (23). Therefore the original assumption kmE is false. E is thus true

but it is inadmissible to assume therefore that the student knows that E is true.

This example of epistemic blindspot should be a cautionary tale for the assump-

tion of CKR. In the surprise examination case, the student may have good reason to

“know” that the exam will actually occur and will be a surprise (e.g., because this

has happened in previous years, it is an ironclad school policy, the professor never

lies, etc.), but cannot “know” in the formal sense of the admissibility of the as-

sumption kmE. Similarly, in a game-theoretic setting, there may be CKR is some

informal sense, but the assumption may contradict other assumptions of the model.

The following is an example of this.

13 How to Play the Repeated Prisoner’s Dilemma

R,R

P ,P

S ,T

T ,S

C

C D

D

In cases where a stage game is repeated a finite but consid-

erable number of times, it is reasonable to assume Bayesian

rationality, avoid backward induction, and use decision the-

ory to determine player behavior. Consider, for instance, the

Prisoner’s Dilemma, the stage game of which is shown to

the right with T > R > P > S , repeated until one player defects or 100 rounds

have been played. Backward induction implies that both players will defect in the

very first round, and indeed, this is the only Nash equilibrium of the game, and is

implied by CKR.

Suppose Player 1 conjectures that Player 2 will cooperate up to round k and

then defect, with probability gk . Then, Player 1 will choose a roundm to defect in

that maximizes the expression

�m D

m�1
X

iD1

..i � 1/RC S/gi C ..m� 1/RC P/gm (24)

C ..m � 1/RC T /.1 �Gm/;
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whereGm D g1 C : : :Cgm. For plausible conjectures, maximizing this expression

suggests cooperating for many rounds. For instance, suppose gk is uniformly dis-

tributed in the rounds m D 1; : : : ; 99. Suppose, for concreteness, .T; R; P; S/ D

.4; 2; 1; 0/. Then, it is easy to show that (24) implies it is a best response to co-

operate up to round 98. Indeed, if Player 1 conjectures that player 2 will defect in

round 1 with probability 0.95 and otherwise defect with equal probability on any

round from 2 to 99, then it is still a best response to defect in round 98. Introducing

CKR leads to an inconsistent set of assumptions for this model because CKR now

implies the players are not rational, given their conjectures.5

14 Conclusion

Throughout much of the previous century, economic theory placed little value on

the commonality of beliefs. The Walrasian general equilibrium model required no

restriction on the heterogeneity of preferences, and admitted no role for individ-

ual beliefs. The increased importance of game theory in the last quarter of the

century presented serious conceptual issues concerning the relationship between

rationality and equilibrium criteria. Interactive epistemology in general, and epis-

temic game theory in particular, have shown that the commonality of beliefs, in the

form of common priors, common knowledge, and correlating devices, is central in

explaining how rational actors successfully coordinate their activities.

Yet, economists have avoided grappling with the question of where common

priors, common knowledge, and correlating devices come from. Harsanyi’s doc-

trine, asserting that all differences in subjective priors of rational individuals is due

to asymmetric information has a degree of plausibility in dealing with what we

have called, following Aumann (1999), “natural occurrences,” but not otherwise.

Semantic knowledge models (Aumann 1987) assert that mutual self-evidence log-

ically implies common knowledge, but as we have seen, they achieve this by mak-

ing implausible tacit assumptions concerning the structure of knowledge. Using

Aumann’s (1987) syntactic knowledge model, we have shown that explicit epis-

temological assumptions concerning the sharing of knowledge among individuals

are required to prove common knowledge.

5It might be thought that the above conjectures are themselves incompatible with CKR. This

is not the case, although the conjectures are incompatible with common knowledge of common

conjectures, as the reader can easily check.
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