
Review 2. Rationality and its Discontents*

Ken Binmore needs no introduction to readers of this Journal. In Rational Decisions,
this mathematician turned economist turned philosopher combines brief introduc-
tions to Bayesian decision theory and game theory with a far-reaching and synthetic
assessment of the limits of Bayesian decision theory and offer new directions in
extending decision theory to situations where the traditional approach does not apply.
Binmore’s arguments are generally sketchy and impressionistic, seeking to convey ideas
rather than rigorously justifying them. His references to the literature are broad and
deep, hence likely to keep the interested reader busy for a good period of time. This
book is thus not for the economist who is blissfully contented with the usual version of
the theory learned in graduate school (Varian, 1992; Mas-Colell et al., 1995). Nor is this
book for the beginner, who would do better reading Savage (1954) directly, or a more
recent didactic exposition (Kreps, 1988; Gintis, 2009b). For instance, Binmore follows
Anscombe and Aumann (1963) in deriving the expected utility theorem axiomatically,
thus side-stepping the behaviourally important issue of how consistent preferences lead
to probability distributions when the choices involved do not include lotteries with
objective probabilities. More generally, Binmore passes seamlessly from elementary
exposition to deep and complex issues that are bound to leave the novice in the dust.

1. Small Worlds, Large Worlds

Binmore begins by defining the enemy as Bayesianism, which he describes as the
doctrine that ‘Bayesian decision theory is always rational’. The doctrine entails, for
example, that David Hume was wrong to argue that scientific induction cannot be
justified on rational grounds. Lindley (1988) is one of many scholars who are con-
vinced that Bayesian inference has been shown to be the only coherent form of
inference’ (p. 1). By contrast, Binmore holds that there are broad areas that, following
Savage (1954), he calls ‘Large Worlds’, over which rational choice does not conform to
Bayesian principles. ‘I hope to distinguish Bayesian decision theory,’ he asserts in the
opening chapter, ‘from Bayesianism. We can hold on to the virtues of the former
without falling prey to the excesses of the latter.’

Binmore’s claim of course requires that we define ‘rational’ in a manner indepen-
dent from its representation in standard decision theory, which is the theory taught in
the textbooks and shared by most economists. I have always been comfortable with
identifying rationality with the Savage axioms, which may be described in shorthand as
‘preference consistency over lotteries with subjective probabilities’. Binmore reminds
us that Savage himself had a much broader concept of rationality, one that allowed him
to assert that in the ‘Small World’ described by his axioms, rationality equals consistent
preferences over lotteries but, in other ‘Large Worlds’, rationality must be captured in
some other (unspecified) manner.

Whereas most decision-theorists simply ignore Savage’s ruminations concerning
Small and Large Worlds, Binmore elevates the distinction to the central theme of
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Rational Decisions. Like Savage, Binmore considers the idea that one can use the
Bayesian model in any setting whatever as implausible or, in Binmore’s more decisive
terms, ‘utterly ridiculous’ and ‘preposterous’ (p. 117). Like Savage before him,
Binmore does not explicitly specify the nature of Small Worlds, although he does
comment that ‘the Worlds of macroeconomics and high finance most certainly don’t
fall into this category’ (p. 2). Neither Savage nor Binmore defines rationality, so their
quest for a Large World is ineluctably impressionistic. Binmore writes, ‘No formal
definition of rationality will be offered.… To insist on an a priori definition would be to
make the Pythagorean mistake of prematurely closing our minds to possible future
inventions’ (p. 2). I submit, however, that a tentative definition that fits the bill until
some ‘future invention’ renders it obsolete is: a rational decision is one that assesses the
implications of alternative choices as accurately as possible given the evidence available
and the cost of obtaining new evidence, and chooses a course of action that is best fit to
achieve the decision-maker’s goals.

Binmore’s idea of a Small World is one in which we know that events are governed by
one of a fixed number of possible models. Considering an event E, we start out without a
subjective prior P(E ) but rather, for every possible piece of information F, we use our gut
reaction to form a conditional probability P(E | F). If the resulting array of conditional
probabilities cannot be deduced from a subjective prior over events, we ‘massage’ our
conditional probabilities until they can be so deduced. The resulting probability dis-
tribution P(E ) will satisfy the Savage axioms, Binmore asserts, and in addition P(F ) > 0
for any possible new information, so Bayesian updating is always possible.

In a Small World, then, there is no real learning in the face of new information.
Rather, new information merely leads us to favour one of our pre-existing models over
another. In Binmore’s words, ‘After the massaging is over, Pandora would then be
invulnerable to surprise, because she would have already taken account of the impact
that any future information might have on the internal model that she uses in deter-
mining her beliefs.… Bayes’ rule is therefore reduced to nothing more than a book-
keeping tool that saves Pandora from having to remember all her massaged posterior
probabilities’ (p. 132).

The attractiveness of Binmore’s depiction of the Small World in which Bayesian
decision theory is valid lies in its conformance with the Savage axioms, especially the
independence of irrelevant alternatives, which is key to the establishment of condi-
tional probabilities and the assumption that preference consistency is assumed only on
‘non-null’ events, which is equivalent to the assumption that all events have positive
probability. In this situation, as Binmore asserts, nothing essentially new or unexpected
can happen and, should true novelty arise, the poor Bayesian would have no means of
adjusting.

According to this theory, which certainly could be tested in the psychologist’s labor-
atory, a ‘Small World’ is one in which

(a) all events that occur with positive probability are non-null and
(b) decision-makers believe that (a) is the case.

Note that it is not at all a tautology to say that a null event could occur with positive
probability. Indeed, my subjective prior for event E may be zero but E could still occur
and I might even entertain that my subjective prior is incorrect. When I make plans
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to go to the hardware store, I attach probability zero to the event that I there might
encounter something looking like a rotten tree-stump eating green garden hose, and
when I get a take-away from the local shop, I attach probability zero to, and hence do
not make provisions for, the server slipping her hand in my shirt and blowing in my ear
while handing me my package. Nevertheless, the objective probability of both events is
surely strictly positive. The important point is that I have no pre-given way of updating
should either of these events occur.

I am deeply impressed with Binmore’s elevating the Small vs. Large World concep-
tual dichotomy to the centrepiece in evaluating rational decision theory. We live our
daily lives in a Large World. Many times in my life I have encountered events that I
could never have conceived of occurring and that did not fit into any of the alternative
world-views that were represented in my mind as among the possible. The fact is that
human beings update following zero probability events and, indeed, do so very ably,
while Bayesian decision theory gives no hint as to how that might be done, or how
decisions are made when people realise that they are in a situation for which they have
no appropriate model.

2. Deliberative Choice: The Psychologist’s Large World Model

Most psychologists working in Small World contexts accept the rational actor model
as appropriate (Luce, 2000; Baron, 2007). For instance, Newell et al. (2007) assert,
‘We view judgment and decision making as often exquisitely subtle and well-tuned to
the world, especially in situations where we have the opportunity to respond repeatedly
under similar conditions where we can learn from feedback’ (p. 2). Yet Small World
psychologists recognise that there is no obvious way to extend the model to the more
complex, Large World, situations they study.

Psychologists who study complex decision-making, by contrast, appear in recent years
to have rejected the rational actor model altogether. Indeed, many have interpreted
the brilliant work of Daniel Kahneman, Adam Tversky and their colleagues as a refu-
tation thereof. ‘People are not logical’, the saying goes, ‘but rather are psychological’.
I recently went through several of the leading introductory graduate textbooks in
cognitive psychology, and found a striking uniformity: decision-making is not dealt with
until very late in the book (doubtless the teacher rarely gets to this material), and the
message is always that humans are poor decision-makers, they cannot apply Bayes’s rule
and the rational actor model is simply a pipe dream of armchair economists. Thus, for
most psychologists, there simply is no Small World in the real world, so we must start
from scratch to understand human choice behaviour.

The problem with this view is not only that economists have done quite strikingly
decent analysis of real-world problems using the Bayesian rational actor but also
the psychological literature on decision-making, while rich, multifaceted and having
developed neural net theory and neuroscientific data on brain functioning (Kahneman
et al., 1982; Baron, 2007; Oaksford and Chater, 2007; Hinton and Sejnowski, 1999;
Newell et al., 2007; Juslin and Montgomery, 1999; Bush and Mosteller, 1955; Gigerenzer
and Todd, 1999; Betch and Haberstroh, 2005; Koehler and Harvey, 2004), has not
even come close to developing a unitary model of the psychology of judgment and
decision-making.
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The sorts of decision-making studied by psychologists include the formation of
long-term goals, which are evaluated according to the value if attained, the range of
probable costs and the probability of goal attainment. All three dimensions of goal
formation have inherent uncertainties, so among the strategies of goal choice is the
formation of subgoals with the aim of reducing these uncertainties. The most complex
of human decisions tend to involve goals that arise infrequently in the course of a life,
such as choosing a career, whether to marry and to whom, how many children to have,
and how to deal with a health threat, where the scope for learning from mistakes is
narrow. Psychologists also study how people make decisions based on noisy single or
multi-dimensional data under conditions of trial-and-error learning.

The difficulty in modelling such deliberative choice in Large Worlds is exacerbated
by the fact that, because of the complexity of such decisions, much human decision
making has a distinctly group dynamic, in which some individuals experiment and
other imitate the more successful of the experimenters (Bandura, 1977). This dynamic
cannot be successfully modelled on the individual level. I return to this theme below.

If we recognise the power of the Bayesian model in the Small World context and
admit that we need additional concepts to deal with Large Worlds, there is then no
conceptual divide between the psychological approach to decision-making and the
economic approach. While in some important areas, human decision-makers appear to
violate the consistency condition for rational choice, in virtually all such cases, as I
suggest in Gintis (2009a, ch. 12) consistency can be restored by assuming that the
current state of the agent is an argument of the preference structure. Another possible
challenge to preference consistency is preference reversal in the choice of lotteries.
Lichtenstein and Slovic (1971) were the first to find that in many cases, individuals
who prefer lottery A to lottery B are nevertheless willing to take less money for A than
for B. Reporting this to economists several years later, Grether and Plott (1979)
asserted, ‘A body of data and theory has been developed… [that] are simply incon-
sistent with preference theory… ’(p. 623). These preference reversals were explained
several years later by Tversky et al. (1990) as a bias toward the higher probability of
winning in a lottery choice and toward the higher maximum amount of winnings in
monetary valuation. However, the phenomenon has been documented only when the
lottery pairs A and B are so close in expected value that one needs a calculator (or a
quick mind) to determine which would be preferred by an expected value maximiser.
For instance, in Grether and Plott (1979) the average difference between expected
values of comparison pairs was 2.51% (calculated from Table 2, p. 629). The
corresponding figure for Tversky et al. (1990) was 13.01%. When the choices are so
close to indifference, it is not surprising that inappropriate cues are relied upon to
determine choice, as would be suggested by the heuristics and biases model
(Kahneman et al., 1982) favoured by behavioural economists and psychologists.

The expected utility model is close to the concerns of psychologists because it deals
with uncertainty in a fundamental way, and applying Bayes’ rule certainly may involve
complex deliberations. The Ellsberg paradox is an especially clear example of the failure
of the probability reasoning behind the expected utility model. Nevertheless the model
has a considerable body of empirical support, so the basic modelling issue is to be able to
say clearly when the expected utility theorem is likely to be violated and to supply an
alternative model outside this range (Newell et al., 2007; Oaksford and Chater, 2007).
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3. Beyond Bayesian Updating: The Role of Imitation

Binmore’s proposal to develop a version of the rational actor model that applies to Large
Worlds begins with the suggestion by Luce and Raiffa (1957, ch. 13) that in Large Worlds
decisions are made in complete ignorance, and are based on the principle of insufficient
reason and the maximin criterion. Binmore presents the complete ignorance axiomatic
system of Milnor (1954), followed by his own model of choice when subjective probab-
ilities are closed intervals rather than points. While this material is of interest, it certainly
is not the case that Large Worlds mean either complete ignorance or simple uncertainty
concerning subjective priors. Indeed, one of Binmore’s first references is to an approach
to Large Worlds, based on the phenomenon of imitation, by economists Gilboa and
Schmeidler (2001), of which I was unfamiliar. The book is a major step forward, although
I am afraid its law-schoolish title is likely to lead many economists to ignore it,

There have been several important theoretical and empirical contributions to the
study of imitation by economists, including the seminal studies of Conlisk (1988) and
Bikhchandani et al. (1992), the learning models of Bannerjee (1992), Ellison and
Fudenberg (1995), Vega-Redondo (1997) and Schlag (1998,1999), as well as experi-
mental work by Offerman and Schotter (2008), Abbink and Brandts (2008) and others.
However, before Gilboa and Schmeidler imitation was not considered a fundamental
part of rational decision theory.

Offerman and Schotter (2008), for instance, open their paper with the sentence
‘imitation may be called the poor man’s rationality’. By contrast, animal behaviourists
have shown that the capacity to learn by imitation is extremely rare in the animal world
(Tomasello, 1999; Meltzoff and Prinz, 2002) and generally requires sophisticated
understanding of intersubjective epistemology when more than one sensory modality is
involved. Moreover, imitiation is the driving mechanism in most models of the
dynamics of cultural evolution (Gintis, 2009b, ch. 12).

Gilboa and Schmeidler start with decision problem p and they assume the decision-
maker has a repertoire M of ‘cases’ [q, a, r], where q is another decision problem, a is
the action taken in the case of decision problem q, and r is the result of the action. The
decision-maker then forms a subjective ‘similarity’ s[p, q] 2 R+ of the current problem p
with the problem q, and set the value

U ½a� ¼
X

½q;a;r �2M

s½p; q�u½r �;

where u[r] is the utility of the result. Finally, the decision-maker chooses the action a
that maximises U [a]. Note that the repertoire M can include both the decision-maker’s
own past experience and the experience of others with whom the decision-maker is
sufficiently familiar that a plausible similarity rating can be found.

Gilboa and Schmeidler do not stress the interpersonal aspect of their theory, but it
appears to me to represent the most critical way their approach goes beyond the
standard Savage model of rational choice. It should be clear from a number of studies
of human behaviour that a central weakness in the Bayesian decision model lies in its
failure to use the choice experience of others in updating one’s own knowledge base in
Large Worlds. In general, the social dimension in Bayesian decision-making should
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extend to the assessment of utilities as well as probabilities. This is easily incorporated
into Gilboa and Schmeidler’s case-based decision theory. Gilboa and Schmeidler stress
that their approach is not contradictory to Bayesian theory. Indeed, if we interpret
‘similarity’ as the ‘probability’ that the act will lead to the result r, then case-based
reduces to Bayesian decision theory, where the choice set is limited to what the
decision-maker actually knows.

One of the more intriguing possibilities is that the repeated application of
case-based decision-making, under appropriate conditions, might lead to standard
Bayesian choices in the long run. This is especially important because, although
humans are excellent Bayesian decision-makers on the level of language acquisition,
word recognition, and the like (see below), they are notoriously poor formal decision-
makers, as has been repeatedly shown by Daniel Kahneman, Amos Tversky and their
colleagues. Because most decisions in real life depend on assessing how others have
fared making ‘similar’ decisions rather than on a purely subjective expected utility
maximisation, case-based reasoning may lead to quasi-Bayesian outcomes in the
long run.

4. Rational Decisions, Imitation and Large World Macroeconomics

The world of macroeconomics ‘most certainly’ does not fall into the Small World
category, asserts Binmore. The standard Walrasian and rational expectations models of
the macroeconomy, however, most certainly do fall into the Small World category. In
the Walrasian model, for instance, prices are public knowledge given by the auctioneer,
firms know their production functions, consumers know their utility function and
budget constraints and nothing else is needed to determine production and con-
sumption decisions. Could this Small World framework be why there is no plausible
Walrasian macrodynamics?

While the equilibrium properties of the Walrasian model have been well known since
Arrow and Debreu (1954), progress in understanding its dynamical properties has been
meagre. In Walras’s original description of general equilibrium (Walras 1954 [1874]),
market clearing was effected by a central authority. This authority, which has come to
be known as the ‘auctioneer’, remains today because no one has succeeded in pro-
ducing a plausible decentralised dynamic model of producers and consumers engaged
in market interaction in which prices and quantities move towards market-clearing
levels. Only under implausible assumptions can the continuous ‘auctioneer’ dynamic
be shown to be stable (Fisher, 1983), and in a discrete model, even these assumptions
(gross substitutability, for instance) do not preclude instability and chaos in price
movements (Saari, 1985; Bala and Majumdar, 1992).

Suppose we move to a Large World in which there is no auctioneer, so expected
future prices are private information, consumers form price expectations through
search in each period, producers adjust pricing and production parameters by
imitating more successful firms, and individual workers’ formulate wage offers by
imitating other, more successful workers. In Gintis (2007), I presented an agent-based
model of such an economy and found that the resulting dynamic had a globally stable
stationary state using plausible parameters for economies that are unstable in the
traditional tâtonnment process.
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Two characteristics of this model are relevant for rational decision theory. First, moving
from a Small World with complete information and straightforward profit and utility
maximisation to a Large World in which rational decision-making takes the form of
search and imitation, we move from instability to stability. Second, even without any
aggregate shocks to the system, there is considerable short-term volatility in all markets,
due to the fact that the imitation process gives rise to correlated distributions of individual
behaviour and, hence, of ‘fat tails’ that lead to periodic significant excursions from
equilibrium. It need hardly be mentioned that such excursions are well-known aspects of
competitive markets that cannot be explained either in the Walrasian Small World (where
prices are chaotic) or the rational expectations Small World (where markets always clear).

Figure 1, taken from Gintis (2007), shows the time series of the standard deviation of
prices in an agent-based model of a ten-sector Walrasian macroeconomy, where
quantities are normalised so that equilibrium prices are all unity. Note that there is
considerable short-term price volatility but relative prices closely approximate their
equilibrium values in the long run. The reason for the volatility is the same as the
reason there is long-run (approximate) equilibrium: we are in a Large World where
rational decisions involve search and imitation.

5. The Logical Impossibility of Large World Bayesianism

Binmore offers an ingenious second attack on the feasibility of Large World Baye-
sianism. He suggests in Chapter 8 that Bayesian decision is based on an epistemology
that becomes self-contradictory in Large Worlds. Binmore identifies Bayesian epi-
stemology with standard interactive epistemology in the modal logic of knowledge
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Fig. 1. Deviation of Sectoral Prices from Equilibrium Values
Notes. Prices are volatile, but the standard deviation of prices is rarely more than 10% of
average prices and the mean standard deviation of prices is 5.8% of averages prices. Taken
from Figure 5 in Gintis (2007).
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(Kripke, 1963; Aumann, 1999; Gintis, 2009a) and argues that the completeness
assumption k(X) ¼ X and the consistency assumption k(E) ˚ E, where X is the
knowledge universe E ˚ X is any event and k(Æ) is the knowledge operator, are in fact
mutually contradictory. He does this by constructing a Turing machine using Gödel
numbering that defines an event E such that a state x 2 E if and only if x 2 k(� E).

Binmore’s argument, however, suffers from ambiguity, as the precise logical system
he is using is not defined. Certainly standard interactive epistemology, predicated upon
the propositional calculus, is sound and consistent. A system must include axioms as
strong as those of the Peano axioms for arithmetic, minus the axiom of mathematical
induction, in order to sustain Gödel numbering. We have to thank the philosopher
Binmore for bringing, perhaps for the first time, a rigorous logical analysis of knowl-
edge and self-reference to the general economic public. I add the following material,
which may help the reader to make sense of Binmore’s argument.

Binmore cites logicians Kaplan and Montague(1960) as having proved ‘a similar
result’. Indeed this famous paper deals with one old paradox, The Hangman, or the
Surprise Examination, and one totally new one, known as the Knower’s Paradox, that
spawned a large literature and is still going strong. The first will be more accessible to
economists and is related to the common knowledge of rationality assumption in game
theory (Gintis, 2009a, ch. 9), while the second is more closely related to the Liar’s
Paradox (Tarski, 1956[1933]; Kripke, 1975). I do not believe, however, that either
paradox is related to the issue of Small vs. Large Worlds in any obvious way.

For the Surprise Exam, consider a class of game theory students taking a thirteen
week logic course that meets each week from Monday to Friday. The school subscribes
to a learning theory that stresses surprise exams and dismisses any instructor who fails
to warn the students on the first day of class that there will be a surprise exam on some
subsequent day, or who fails to give at least one surprise exam during the course of the
term. Moreover, a student who can prove to the Dean’s satisfaction that no surprise
exam was announced on the first day, or was not given on some subsequent day, would
be given a valuable reward.

The professor duly announces the surprise exam on the first day of class. One student
thought to himself, ‘The exam cannot be given on the last day of the semester because
then it would not be a surprise’. He then noted that a similar argument shows that the
exam could not be given on the next-to-last day. Reasoning similarly, he concludes that a
surprise exam cannot be given. He then excitedly explains this reasoning to all of the
other students, who of course agree with the ironclad reasoning. On Wednesday of the
eighth week, the professor gives an exam, and all the students are surprised.

For an overview of the many proposed solutions to the problem by philosophers and
logicians (I have read at least twenty papers on the subject and there are some that I
have not read); see Margalit and Bar-Hillel (1983) and Chow (1998) for insightful
reviews. Interpretations vary widely, and there is no single accepted solution. There are
a number of cogent analyses using standard logic and modal logic to show that the
professor’s statement is impermissively self-referential or self-contradictory and because
a false statement can validly imply anything, there is no paradox in the professor’s
prediction being correct.

I will follow Binkley (1968) in presenting a solution that is both elegant and close to
Binmore’s epistemic concerns. Let us assume there are only two days, Monday and
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Tuesday. The full term argument is similar, but (much) longer. We take the case of a
single student with knowledge operator k. We assume for any knowledge operator that

A1 kf ¼) �k�f
A2 kf & k( f ¼) g) ¼) kg
A3 kf ¼) kkf.

Note that A1 is weaker than the usual assumption kf ¼) f ; i.e., ‘what is known is
possible’ is weaker than ‘what is known is true’. We also assume the student knows all
tautologies of the propositional calculus and all axioms.

Let kmf mean ‘the student knows f on Monday’ and let ktf mean ‘the student knows f
on Tuesday’. Let Em be the event ‘the exam is given on Monday’, and let Et be the event
‘the exam is given on Tuesday’. We assume

A4 �Em ¼) kt�Em

A5 kmf ¼) km kt f.

A4 says that if the exam is not given on Monday, then on Tuesday the student knows
this fact, and A5 says that if the student knows something on Monday, he knows on
Monday that he will continue to know it on Tuesday. The professor’s assertion can be
written as

E ¼ ð:Em () EtÞ & ðEm ¼) :kmEmÞ & ðEt ¼) :ktEtÞ: ð1Þ

Let us assume kmE. From A4 we have

kmð:Em ¼) kt:EmÞ: ð2Þ

From kmE we have km(Et ¼) � Em), which with (2) gives

kmðEt ¼) kt:EmÞ: ð3Þ

Now from kmE and A5, we have kmkt(� Em ¼) Et), so

kmðkt: Em ¼) ktEtÞ: ð4Þ

From (3) and (4), we have

kmðEt ¼) ktEtÞ: ð5Þ

Now kmE implies km(Et ¼) kt�Et), which, together with (5), implies km(� Et) and,
hence, kmEm. This, together with kmE gives

km : kmEm : ð6Þ

However, kmEm and A3 imply kmkmEm, so by A1, we have �km�kmEm, which contradicts
(6). Therefore the original assumption kmE is false. E is thus true but it is inadmissible
to assume therefore that the student knows that E is true.

It may seem peculiar that something can be true but it is impossible for an individual
to know that this is the case. However, there are well-known examples of this, including
the so-called Moore paradox, an example of which is ‘It is raining outside but I don’t
know it’ (Green and Williams, 2007).

This example of epistemic blindspot (Sorensen, 1988) should be a cautionary tale for
the assumption of the common knowledge of rationality (CKR), to which I turn in the
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next Section. Economists tend to think of CKR as just a strong form of rationality. In
fact, we can show in the current case that CKR is self-contradictory and, hence,
impossible. CKR is then certainly not in general an acceptable assumption. In the
current case, let us assume CKR. The student knows the professor is rational; and hence
will not give the exam on the final day of the term, because the professor knows that the
student is rational and will tell the Dean that there was no surprise exam to get the
reward. But the professor knows that the student knows that he is rational and that he
knows the student is rational, so the professor knows that he cannot give the exam on
the next-to-last day of the term. But the student knows that the professor knows that he
knows that the professor is rational and that he the professor knows that he is rational,
so the student knows that the professor knows that he cannot give the exam on the
next-to-last day of the term. And so on. Therefore, CKR implies that no surprise can be
given. However, the professor still can give a surprise exam on Wednesday of the eighth
week and the student can follow the logic that indicates that is possible. Since CKR
implies a proposition and its negation, CKR must be false. Since CKR implies CKR is
false, CKR is self-contradictory.

The second paradox is much deeper, and is related to the famous proof by Tarski
(1956[1933]) that the truth predicate is not definable in any system that includes basic
arithmetic. Kurt Gödel proved that in any such system, for any well-formed predicate
P(n) that takes the values true or false for all natural numbers n ¼ 0,1, … , there is a
statement z concerning natural number such that z ” �P(#z), where #z is the Gödel
number associated with z (this is Gödel’s famous diagonalisation argument). Suppose
we let the predicate in question be the knowledge operator k, as in Binmore’s argument
above. The following properties of k are then inconsistent:

(A) k(#q) ¼) q ;
(B) (A) is known; i.e. k(#A);
(C) if / is a logical truth, then k(#/)
(D) modus ponens: if k(#(/ ¼) w))& k(#/) then k(#w).

In the above, we assume the knowledge operator k applies to the Gödel number of a
sentence rather than the sentence itself, so that all semantic notions are replaced by
simple arithmetic notions. If a is any sentence, we write its Gödel number as #a. To
prove the above four axioms are inconsistent, define the sentence s by s ” �k(#s),
which is possible by Gödel’s diagonalisation argument. Now suppose k(#s). By the
definition of s we have k(#s) ¼) �s, so by (D), we have �s. But by (A) and k(#s), we
have s. Thus the assumption k(#s) was false, and hence �k(#s) is true, which by modus
ponens implies s. This whole argument is logically true, so s is logically true and hence
by (C), k(#s). This is a contradiction, proving that axioms (A) to (D) are inconsistent.

The Surprise Examination and Knower’s paradoxes are important and interesting in
their own right, and they serve as cautionary tales to decision and game theorists who
would naively wander into the modal logic of knowledge unaware of its pitfalls. The
Surprise Examination paradox warns us of the pitfalls involved in backward induction
arguments based on self-references and the Knower’s paradox cautions us that seem-
ingly innocuous epistemological assumptions may have pitfalls for the unwary.

It might be thought that the Knower’s paradox is not relevant for the Small World vs.
Large World question because we can get away with an arithmetic system using only a
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portion of the Peano axioms, such that the Gödel diagonalisation algorithm cannot be
applied. However, Robinson (1950) showed that as long as both addition and multi-
plication are defined and satisfy the most basic laws of arithmetic, Gödel’s argument
goes through. It would be bizarre to banish arithmetic from either Small or Large
Worlds, so clearly Binmore is correct to raise this as an important question for decision
theory.

6. Common Priors and Common Knowledge of Priors

Binmore uses his account of the formation of subjective priors in Small Worlds to show
the implausibility of the assumption of common priors. ‘In complicated games’, he
comments, ‘one can expect the massaging process to converge on the same common
prior for all players only if their gut feelings are similar. But we can only expect the
player to have similar gut feelings if they all share a common culture and so have a
similar history of experience’ (p. 136). This insightful comment, like many others in
this book rich with lightly explored insights, is left without further development for the
reader to ponder.

Actually, there is much more to be said on this point, as well as the general issue of
common priors. If Binmore’s suggested process of prior formation is correct, we could
expect, at best only approximately common priors. Moreover, what is really needed in
game theory is common knowledge of common priors. If it is common knowledge among
rational agents that their priors are formed in a Binmorean manner, and it is common
knowledge that they all have the same gut feelings, then we could construct an
epistemological justification for the common knowledge of approximately common
priors assumption. But, it is hardly plausible that these epistemological preconditions
generally hold.

For an example of a case where approximately equal common priors gives a com-
pletely different result than common priors, however accurate the approximation,
consider a 100-round repeated Prisoner’s Dilemma where the first time either player
defects, the game is terminated. There is a unique Nash equilibrium in which both
players defect on round one and, if there is common knowledge of common priors and
common knowledge of rationality, this is what rational players will in fact do. To see this,
note that each player, by assumption, has a prior distribution over when his opponent
will defect for the first time and chooses when to defect to maximise his payoff subject
to this subjective prior. If both players have the same prior, they will choose to defect on
the same round. But, if this prior is common knowledge, the defection round would be
mutually known, so each would gain from defecting on the previous round, unless the
defection round is the first. In fact, it is well known that real players cooperate for many
rounds in this game. Assuming they are rational (cooperating, of course, does not
violate rationality, although it does violate common knowledge of rationality), there
cannot be common knowledge of common priors.

Binmore’s interpretation of Small World Bayesianism thus calls into question the
capacity of using Bayesian rationality as the basis for game theory, because common
knowledge of common priors is assumed as a condition for rational agents playing a
Nash equilibrium (Aumann and Brandenburger, 1995), or more generally, a correlated
equilibrium (Aumann, 1987).
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In Gintis (2009a), I come to the conclusion, as Binmore, that the common prior
assumption is the product not of ‘common culture’, but rather of common social
norms, in the context of a ‘social epistemology’ predicated upon evolved characteristics
of the human brain. Even then common priors are generally operative only in the case
of clear social norms and conventions. Thus, if I encounter a green light while driving,
I may place 100% probability on the fact that drivers on the cross street see a red light,
that red means ‘stop’, and that cross street drivers have the same prior.

7. Inference and Updating in Large Worlds

I wish I had read this book five years ago, when I was struggling with the problem of
explaining why whole disciplines, including psychology and sociology, so decisively and
almost uniformly rejected the rational actor model (each discipline has a small stable of
believers but they are generally not even mentioned in the graduate textbooks), despite
the fact that this rejection leaves the field devoid of an analytical core. Extensive dis-
cussions with anti-rational actor behavioural scientists led me to the realisation that
when they said ‘decision-making’, they instinctively thought of big, fuzzy, ill-specified
decisions, such as how to escape from a building on fire, how to choose a mate or a
career, or whether to have a life-threatening surgical procedure. By contrast, when
economists think of decision-making, they envision the Small World choice of how to
fill one’s basket at the supermarket. Of course, economists generally show no com-
punction at extending the model to apply to mate and career choice but it is clearly
pushing assumptions beyond their plausible limits to hold that people have complete
and consistent preferences over choices they make only once or twice in a lifetime.
Sociologists and psychologists reject the rational actor model then, because they do not
care about Small Worlds and it does not apply to Large Worlds. This, of course, is
exactly Binmore’s point about the preposterousness of applying Bayesian models to
Large World problems.

While these concerns may explain the rejection of the rational actor model outside
of economics, they certainly do not justify this rejection. Indeed, the rational actor
model is an important part of a correct theory of human choice behaviour. It is
reasonable to argue that the rational actor model must be modified and extended to
Large World contexts, not rejected outright. The following is one proposed extension
to what might be termed a ‘Medium World’.

8. Medium Worlds

Consider the belief revision approach of Alchourron et al. (1985) (AGM) inspired by
intelligent system computer design. Let L be a knowledge system, by which I mean the
set formulas of the propositional calculus, augmented by a set of atoms P and the
classical logical connectives. Let K � L be the set of formulas that the decision-maker
knows. I assume K includes the tautologies of the propositional calculus. For any
R � L, let CnðRÞ be the logical closure of R; i.e., the set of formulas in L that can be
proved using statements from R. If K ¼ CnðKÞ, so K is logically closed, I say that K is a
belief set (van Ditmarsch et al., 2007). I assume that all formulas in the agent’s belief set
are considered true with probability one.

2010] F173B O O K R E V I E W S

� The Author(s). Journal compilation � Royal Economic Society 2010



Suppose an agent with belief set K learns a new fact / 2 L. Then it is plausible to
define ‘expanding’ K to include / to be the smallest belief set K� / that includes both
K and /. I can then say that the agent rationally updates his subjective prior, moving
from belief set K to belief set K� /, provided K� / 6¼ L; i.e., provided / is not
contradictory to any belief in K.

Suppose, however, the agent learns / and this is contradictory to some belief in K.
Then I assume the individual updates by first dropping a subset of K such that his new
beliefs are a belief set K� / � K and :/ j2K � /. In general there will be more than
one way to accomplish this, so I must add additional specifications to indicate exactly
how this will be done. For instance, suppose there are several beliefs B � K that jointly
imply �/, and suppose each w 2 B asserts that a certain event will occur with positive
probability. I may decide to drop from B the formula with the lowest probability and
any others that imply this formula. Having determined K� /, the rational agent will
update his beliefs by adding /, getting ðK � /Þ � /.

In other Medium Worlds, I may suppose that the agent has a model of the choice set
that is used to define his preferences over the choice set. When an event occurs that
violates this model, the agent may make minimal changes in the model, giving rise to a
new model that generates consistent preferences, albeit preferences that violate the
pre-update preferences. Moreover, if the violation is sufficiently severe, the individual
may search for a complete alternative to his current model, with even more severe
violations of one or more preferences from the previous model.

Contemporary research in developmental psychology suggests that such a model
correctly characterises the way in which babies learn the nature of their environments
as well as the rules of language (see Section 10). Indeed, the learning of stereoscopic
vision in two to three month old infants can be modelled as updating a genetically
determined prior P(S) for the nature of a property S from input D from the visual
field, constructing a likelihood function P(D | S), and using a neural algorithm to find
the S that maximises P(D | S)P(S) (Yuille et al., 1999).

9. Rationality vs. Common Knowledge of Rationality

It is very common for economists to confuse the game-theoretic implications of
Bayesian rationality with the orders of magnitude stronger common knowledge of
rationality (CKR), a confusion that is unlikely to be corrected by reviewers, because they
too share in this confusion (Gintis 2009a). Binmore of course knows this very well, but
he often writes in a manner bound to mislead the reader. Consider for instance the
following analysis of updating.

For example, rational players in game theory are assumed to know that
their opponents are also rational. As long as everybody behaves rationally
and so play follows an equilibrium path, no inconsistency in what the players
regard as known can occur. But rational players stay on the equilibrium
path because of what would happen if they were to deviate. In the counterfactual
world that would be created by such a deviation, the players would have to
live with the fact their knowledge that nobody will play irrationally has proved
fallible. (p. 149)
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In fact, rationality does not imply that ‘play follows an equilibrium path’ and deviation
from an equilibrium path in an extensive form game certainly need not imply irratio-
nality. For instance, cooperating on the first round of a ten-round Centipede game
(Rosenthal, 1981) does not indicate that the player is irrational. Indeed, it takes ten
rounds of ‘A knows that B knows that A knows that… is rational’ to ensure that the first
player defects on the first round.

I have found this elision of rationality and common knowledge of rationality in several
of Binmore’s writings. In Binmore (1996), he objects to Robert Aumann’s (1995) proof
that CKR necessarily implies backward induction. First, Binmore writes ‘According to
Aumann (1995), common knowledge of rationality in the Centipede makes it irrational
for player I to choose across at his opening move.’ In fact, of course, it does not make
choosing across irrational; rather choosing across violates CKR. Therefore, choosing
across given CKR is self-contradictory, not irrational. Second, Binmore writes ‘If down is the
only Bayesian-rational action at the opening, then p < 1/2’. In fact, down is not the only
Bayesian-rational action; rather it is the only action compatible with CKR. Finally,
Binmore states ‘if nothing can be said about what would happen off the backward-
induction path, then it seems obvious that nothing can be said about the rationality of
remaining on the backward-induction path. How else do we assess the cleverness of
taking an action than by considering what would have happened if one of the alternative
actions had been taken? But this is precisely what Aumann’s (1995) definition of
rationality fails to do.’ In fact, Aumann’s proof says nothing about what happens off the
backward induction path, and certainly does not deny that agents are rational off the
backward induction path. He denies that there are nodes off the backward induction
path at which CKR holds. This is, of course, correct.

10. The Tiny World of Neuronal Bayesianism

If the passage from Small World to Large World requires considerable reworking of the
rational actor model, the passage from the Small World of Savage (1954) to the Tiny
World of neural architecture may require broader interpretation but little reworking of
the rules of Bayesian updating.

The idea that rational decision involves choice among a personal library of small scale
mental models can be traced back to Craik (1943). Mental models, according to Craik,
have a neural topology that corresponds to a proposed structure of the phenomena
they are candidates to represent (Conte and Castelfranchi, 1995). Craik’s small scale
mental models are accordingly akin to an architect’s drawings, to an electronic
engineer’s schematics, to a molecular biologists’ stick-and-ball representation of real
molecules, and to a computer scientist’s block diagram of a multiprocessor. Cognitive
scientists in the Bayesian tradition argue that infants come equipped with a rudimen-
tary repertoire of models for social relationships, for the nature of mind, for language,
for causality in the physical world and for other Large World spheres of life with which
they must come to terms in the course of maturation. The mind then modifies and
chooses among mental models through experience.

I want to review the recent scientific evidence on this ‘Tiny World’ of neuronal
Bayesianism because of its central importance to decision theory and because it
reasserts the centrality of the rational actor model in an era that is dominated by
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popular critiques of this model and its rejection by large numbers of behavioural
scientists, who tend to offer nothing in its place except perhaps ad hoceries that work
for particular cases but are incapable of generalisation (Gintis 2009a, ch. 12).

Bayesian models of cognitive inference are increasingly prominent is several areas of
cognitive psychology, including animal and human learning (Courville et al., 2006;
Tenenbaum et al., 2006; Steyvers et al., 2003; Griffiths and Tenenbaum, 2008), visual
perception and motor control (Yuille and Kersten, 2006; Kording and Wolpert, 2006),
semantic memory and language processing (Steyvers et al., 2006; Chater and Manning,
2006; Xu and Tenenbaum, in press) and social cognition (Baker et al., 2007). For a
recent overview of Bayesian models of cognition, see Griffiths et al. (2008). These
models are especially satisfying because they bridge the gap between traditional
cognitive models that stress symbolic representations and their equally traditional
adversaries that stress statistical testing. Bayesian models are symbolic in that they are
predicated upon a repertoire of pre-existing models that can be tested, as well as
statistical techniques that carry out the testing and provide the feedback through which
the underlying models can be chosen and modified.

While Binmore may well be correct that Bayesian information processing models may
not solve the ancient problem of induction (Hume 1975[1777]), they may solve the
problem of how humans acquire complex understandings of the world given severely
underdetermining data. For instance, the spectrum of light waves received in the eye
depends both on the colour spectrum of the object being observed and the way the
object is illuminated. Therefore inferring the object’s colour is severely underdeter-
mined, yet we manage to consider most objects to have constant colour even as the
background illumination changes. Brainard and Freeman (1997) show that a Bayesian
models solves this problem fairly well, given reasonable subjective priors as to the
object’s colour and the effects of the illuminating spectra on the object’s surface.

Several students of developmental learning have stressed that children’s learning is
similar to scientific hypothesis testing (Carey, 1985; Gopnik and Meltzoff, 1997) but
without offering specific suggestions as to the calculation mechanisms involved. Recent
studies suggest that these mechanisms include causal Bayesian networks (Glymour,
2001; Gopnik and Schultz, 2007; Gopnik and Tenenbaum, 2007). One schema, known
as constraint-based learning, uses observed patterns of independence and dependence
among a set of observational variables experienced under different conditions to work
backwards in determining the set of causal structures compatible with the set of
observations (Pearl, 2000; Spirtes et al., 2001). Eight-month-old babies can calculate
elementary conditional independence relations well enough to make accurate
predictions (Sobel and Kirkham, 2007). Two-year-olds can combine conditional inde-
pendence and hands-on information to isolate causes of an effect and four-year-olds
can design purposive interventions to gain relevant information (Glymour et al., 2001;
Schultz and Gopnik, 2004). ‘By age four’, observe Gopnik and Tenenbaum (2007),
‘children appear able to combine prior knowledge about hypotheses and new evidence
in a Bayesian fashion’ (p. 284). Moreover, neuroscientists have begun studying how
Bayesian updating is implemented in neural circuitry (Knill and Pouget, 2004).

For instance, suppose an individual wishes to evaluate an hypothesis h about the
natural world given observed data x and under the constraints of a background
repertoire T. The value of h may be measured by the Bayesian formula
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Pðh j x;T Þ ¼ Pðx j h;T ÞPðh jT ÞP
h02T Pðx j h0;T ÞPðh0 jT Þ : ð7Þ

Here, P(x | h,T ) is the likelihood of the observed data x, given h and the background
theory T, and P(h | T ) gives the likelihood of h in the agent’s repertoire T. The con-
stitution of T is an area of active research. In language acquisition, it will include
predispositions to recognise certain forms as grammatical and not others. In other cases,
T might include different models of folk-physics, folk-biology, or natural theology.

11. Conclusion

In this book, Ken Binmore is like the trail guide who is constantly pointing out
curiosities of the forest that one would miss when walking alone but urges us to move
on before we have fully appreciated them. To get the full benefit of the book, one must
return to the trail on one’s own and inspect each curiosity in depth at a leisurely pace. I
have spent the most of a summer following up a half dozen of Binmore’s suggestions,
the subjects discussed in this review being the result. I close by reiterating several
points:

• We must have a substantive definition of ‘rational’ going beyond the Savage
axioms, without which it is meaningless to talk about rational but not Bayesian
decisions. I suggest that a rational decision is one that assesses the implications
of alternative choices as accurately as possible given the evidence available and
the cost of obtaining new evidence, and choose a course of action that is best fit
to achieve the decision-maker’s goals.

• There is a wide range of Small Worlds in which the Bayesian rational actor
provides a good description of decision-making.

• There is a range of Tiny Worlds in which decision-making is controlled by
mostly unconscious neural activity but is well described by Bayesian models
working on a pre-given repertoire of potential models of the world.

• There is a range of Middle Worlds in which subjectively zero probability events
occur with strictly positive probability and cause macro-level belief revision.

• In Large Worlds, where the Savage Axioms fail, rational decision-makers
assess the experience of other rational actors and choose a course of action
accordingly.

Herbert Gintis

Santa Fe Institute and Central European University
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