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Human societies depend crucially on social norms that specify the range 
of permissible actions for a given situation. Social norms range from the 
mundane (e.g., dress codes, table etiquette) to the profound (e.g., collec-
tive action, bilateral exchange, law obedience). They are considered a 
hallmark of human civilization because no other known species regulates 
social interactions to the same degrees by norms (1–3). The potential of 
norms to guide collective behavior can break down if norm violations 
are not sanctioned, because humans tend to follow prevailing norms 
conditional on observing others’ compliance (4). All known human soci-
eties have therefore enforced norm compliance by threatening norm 
violators with punishment, both officially via legal codes and institu-
tions, and informally in the context of private sanctions through peers (5, 
6). The importance of credible sanctioning threats for maintaining norm 
compliance is well established by ethnographic evidence (1, 2), evolu-
tionary theory (1, 3), and laboratory experiments (5, 6). 

It has been proposed that the human brain may have developed neu-
ral processes that support norm enforcement by generating appropriate 
behavioral responses to social punishment threats (7–10). However, 
neuroscience studies on social norms have mostly focused on the neural 
basis of punishing others (11–14), whereas evidence for neural circuitry 
underlying sanction-induced compliance with norms is scarce. In mature 
adults, a brain network involving an area in the right lateral prefrontal 
cortex (rLPFC) is activated during norm-compliant behavior triggered 
by social punishment threats (10). However, it is not possible to con-
clude from correlative fMRI findings that norm compliance depends 
causally on neural activity in the rLPFC (15). Establishing such a causal 
dependence is crucial for our understanding of how social norm compli-
ance develops in the context of brain maturation (16) and how it is 
pathologically altered and therapeutically amenable in the context of 
brain disorders (9). 

We employed transcranial direct current stimulation (tDCS) (17) to 
examine whether social norm compliance depends causally on neural 
processing in the previously-identified rLPFC region (10). Participants 
engaged via computer terminals in anonymous social interactions that 
had real financial consequences. In every round, participants (“player 
A”) received an amount of money units (MUs) and decided how much 

of it to transfer to a randomly assigned 
anonymous opponent (“player B”). In 
baseline rounds, this transfer was im-
plemented, whereas in punishment 
rounds, player B could respond to the 
transfer by reducing player A’s MUs 
[Fig. 1, fig. S1, and supplementary 
materials (SM) (18)]. In Western cul-
tures, a fairness norm (19–21) pre-
scribes to split the “cake” of MUs 
equally between both players. This 
conflicts with player A’s self-interest 
motive to keep as many MUs as possi-
ble. In baseline rounds, player A thus 
typically transfers only around 10% - 
25% of the MUs. In contrast, when a 
sanctioning threat is present, player A 
largely obeys the fairness norm and 
transfers around 40% - 50% of the MUs 
(10, 20). The transfer difference be-
tween punishment and baseline rounds 
thus indexes sanction-induced norm 
compliance, i.e., the degree to which 
the sanction threat induces player A to 
change her transfer from the level of 
voluntary norm-compliance as meas-
ured in baseline rounds. 

Individual differences in sanction-induced norm compliance corre-
late with fMRI-measured activity in the rLPFC (10). Based on this find-
ing and the rLPFC’s general role in the control of behavior (22, 23), it 
has been proposed that the rLPFC may weigh fair versus selfish respons-
es specifically when punishment threats are present (8, 10). To provide 
causal evidence for this hypothesis, we first identified the specific 
rLPFC region described in (10) using MR-scans of 63 female partici-
pants; we then experimentally altered neural excitability in this brain 
area during behavioral performance in a double-blind, placebo-
controlled tDCS design (SM and  fig. S2). tDCS can both increase or 
decrease neural excitability in the stimulated region, depending on the 
polarity of the current flow (17). We thus randomly sorted participants 
into three stimulation groups where neural excitability in the rLPFC was 
enhanced with anodal tDCS, reduced with cathodal tDCS, or left unal-
tered by sham/placebo tDCS as control for possible non-neural effects of 
stimulation (see SM). Such non-neural effects did not differ between the 
groups (see SM) and therefore could not account for performance in the 
norm-compliance paradigm. 

Participants were sensitive to the punishment threat and transferred 
more money in punishment than in baseline rounds (mean transfer dif-
ference 29.44 MUs; P < 0.001, GLS regression). However, in line with 
our hypothesis, the two active brain stimulation conditions changed 
sanction-induced norm compliance in opposite ways relative to the sham 
condition (Fig. 2A and table S2). Anodal tDCS increased the transfer 
difference by 33.5% (GLS regression, P < 0.001) whereas cathodal 
tDCS decreased the transfer difference by 22.7% (P < 0.001). 
Do these effects reflect changes in altruistic behavior, with increased 
(decreased) monetary transfers regardless of punishment threats? This 
interpretation is refuted by the data on voluntary norm-compliance in 
baseline rounds (Fig. 2B and table S3). Voluntary transfers were actually 
decreased (GLS regression, P < 0.001) during anodal tDCS and in-
creased (P < 0.01) during cathodal tDCS, relative to the sham condition. 
This not only confirms that tDCS affected subjects’ response to the pun-
ishment threat but that these tDCS effects on sanction-induced compli-
ance were actually stronger than the opposite effects on voluntary 
compliance: If tDCS had not affected sanction-induced compliance then 
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overall transfers in punishment rounds – which are based on voluntary 
plus sanction-induced compliance – should also be lower after anodal 
and higher after cathodal stimulation. However, overall transfers in pun-
ishment rounds were in fact higher (GLS regression, P < 0.05) during 
anodal tDCS and lower (P < 0.001) during cathodal tDCS than in the 
sham condition (fig. S3). 

Which task-related psychological mechanisms may have contributed 
to the tDCS effect? To respond appropriately, participants need to know 
the fairness norm and form appropriate beliefs about player B’s reac-
tions. We measured (i) the participants’ perceived fairness, (ii) the anger 
they expected the opponent to feel, and (iii) the punishment they ex-
pected at different transfer levels (Fig. 3). All participants were clearly 
aware of the fairness norm and rated higher transfers as significantly 
fairer (ANOVA, F(2,60) = 84.88, P < 0.001), less likely to cause anger 
in the opponent (F(2,60)=218.96, P < 0.001), and leading to lower pun-
ishment (F(2,60) = 82.69, P < 0.001). Importantly, the type of brain 
stimulation did not affect participants’ beliefs, neither on average (all 
F(2,60) < 0.94, all P > 0.39) nor in their change across different transfer 
levels (all F(2,60) < 0.55, all P > 0.74). 

Our findings do not yet show that the stimulated rLPFC region im-
plements specifically social aspects of behavioral control. In particular, 
behavior in punishment rounds requires risk taking and trading off high-
er transfers with a lower risk of sanction. We therefore repeated the ex-
periment in a sample of 59 new female volunteers who took the identical 
decisions as before, but now played against a computer pre-programmed 
to respond in the same way as a human opponent in punishment rounds 
(see SM). In this “non-social context”, participants were also sensitive to 
punishment threats (fig. S4A) but the effects of tDCS on sanction-
induced transfers were significantly weaker than during interactions with 
human opponents (Fig. 4A and table S3). This held for both increases in 
sanction-induced transfers due to anodal tDCS (GLS regression, P = 
0.009) and decreases due to cathodal tDCS (P = 0.001, GLS regression). 
In baseline rounds of the non-social context – where no social norm 
prescribes sharing MUs with the computer – participants hardly trans-
ferred any MUs (fig. S4B). Such (possibly erroneous) voluntary transfers 
to the computer were therefore also less affected by tDCS than norm-
related voluntary transfers to human opponents (Fig. 4B; GLS regres-
sion, P < 0.05 for anodal tDCS and P < 0.001 for cathodal tDCS). 

Social punishment is thought to have played an important role for 
the evolution of human social behavior and cooperation (1–3). Our re-
sults show that the influence of punishment threats on human social 
norm compliance depends causally on neural activity in the rLPFC. This 
suggests a neural mechanism involving the rLPFC that aligns behavior 
with social norms when punishment is possible. The more pronounced 
involvement of this mechanism for genuinely social punishments con-
curs with suggestions that during human brain evolution, the steep in-
crease in the complexity of social interactions may have shaped specific 
neural processes for social behavior (8, 24). That tDCS affected sanc-
tion-induced and voluntary norm compliance in opposite ways suggests 
that these two forms of norm compliance involve distinct neural circuits; 
in particular, the rLPFC seems to play a fundamentally different role in 
voluntary and sanction-based norm compliance. 

Our finding that rLPFC stimulation did not affect awareness of the 
fairness norm and expected sanctions suggests that the rLPFC process 
necessary for norm-compliant behavior is dissociated from neural mech-
anisms enabling humans to anticipate sanctions for norm violations and 
to distinguish “right” from “wrong.” The rLPFC mechanism necessary 
for norm-compliance is probably not restricted to neural activity within 
this brain area, given that prefrontal cortex is involved in many aspects 
of behavioral control (23) and that brain stimulation can affect areas 
interconnected with the stimulation site (25). The anatomical connectivi-
ty (26) and context-dependent functions of prefrontal cortex (27) make it 
more likely that the stimulated rLPFC area integrates and coordinates 

activity in a network of brain regions triggered by the need for consider-
ing social punishments during action control (8). 

Brain stimulation studies in humans have so far mostly shown unidi-
rectional, maladaptive effects on decision making, rendering participants 
more impulsive (28), selfish (29), or cognitively biased (30). Such inter-
ventions may therefore be of limited practical use in applied settings. 
Our finding that changes in the neural excitability of rLPFC can enhance 
voluntary and sanction-induced social norm compliance may be of rele-
vance because non-compliance with social norms constitutes a major 
problem in psychiatric (31) and neurological (31, 32) disorders, during 
abnormal development in adolescence (33), and in adults in the form of 
criminal activity (9). However, the opposite influence of brain stimula-
tion on voluntary and sanction-induced norm compliance also suggests 
that increasing one type of norm compliance with brain stimulation may 
come at the cost of decreasing the other type. 
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Fig. 2. rLPFC stimulation changes sanction-induced and 
voluntary norm compliance. (A) Sanction-induced norm-
compliance: Average (+/− s.e.m.) transfer difference for 
punishment rounds minus baseline rounds. Higher values 
indicate that the punishment threat led to a larger adjustment 
of transfers toward the fairness norm of an equal split. (B) 
Voluntary norm compliance: Average (+/− s.e.m.) transfers 
for baseline rounds. All values determined with regression in 
eq. 1 (SM) ; *P < 0.05. 

Fig. 1. Economic game used to measure social norm compliance. In each 
round, both players receive 25 money units (MUs). Player A is given an 
additional 100 MUs that she can share with player B by sending a transfer X (in 
multiples of 10 MUs). All experimental MUs are exchanged into real money at 
the end of the experiment. Two types of rounds are presented in random order. 
(A) Baseline round: Transfer X is implemented as proposed, measuring player 
A’s voluntary norm compliance. (B) Punishment round: Player B can either 
accept X (blue font) or invest Y MUs from her initial endowment to punish 
player A (red font). Y can be any integer between 0 and 25, reducing A’s payoff 
by 5*Y MUs. Player A is aware of this possible sanction; any increase in 
transfers for punishment relative to baseline rounds therefore measures 
sanction-induced norm compliance. 
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Fig. 3. rLPFC stimulation does not affect participants’ beliefs about the 
fairness of different transfers and about player B’s anticipated anger and 
expected punishment. (A) Average rating of perceived fairness for different 
transfer levels (scale from 1/”very unfair” to 4/”very fair”). (B) Average rating of 
anticipated anger felt by player B for different transfer levels (scale from 1/”not angry 
at all” to 4/”very angry”). (C) Average expected payoff reduction resulting from B’s 
punishment. Error bars represent s.e.m. 

Fig. 4. rLPFC stimulation effects are stronger during 
social interactions. (A) tDCS effects on sanction-induced 
norm compliance during interactions with a human (Social 
Context) or a computer opponent (Non-social Context). Bars 
depict average changes in transfer difference for anodal and 
cathodal tDCS relative to the sham condition. (B) tDCS-
related changes of voluntary transfers in baseline rounds. 
Bars represent average changes for anodal and cathodal 
tDCS relative to the sham condition. All values determined 
with regression in eq. 2 (SM); *P < 0.05. 
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