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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
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exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).
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exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(
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Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =
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vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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The archetypical example is a Kagome lattice, where one
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In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
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hard core bosons is infinitely compressible. The reason is
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ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form
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and Ĝ = Gk =
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vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).
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exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).
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state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]
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metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS
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transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑
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where the summation runs over all sites of the lattice.
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tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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a honeycomb lattice. CF and BEC are composite fermion and
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ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
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a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
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c†rcr+aj
e
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r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
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= (br)
2 = 0,

{
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}

= 1 (where
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a honeycomb lattice. CF and BEC are composite fermion and
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ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The min-
imal energy contour – the moat M, is shown in light gray
(blue).

form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(
0 Ĝ
Ĝ† 0

)
, (2)

where the matrix structure is in A/B sublattice space
and t1 and t2 are nearest and next-nearest hopping, cor-
respondingly. For the case of honeycomb lattice, Fig. 2,
Ĝ = Gk =

∑
j=1,2,3 e

ik·ej with the three lattice vectors
ej connecting a site of sublattice A with three nearest
neighbors of sublattice B. The Hamiltonians of the form
(2) are not limited, though, to the honeycomb lattice.
A generic oblique lattice with three distinct nearest and
three distinct next-nearest hopping integrals is described
by Eq. (2), if two conditions are imposed on six hopping
constants [8] (variety of other lattices give rise to Hamil-
tonians of the form (2)).
The two energy bands of the Hamiltonian (2) are given

by E(∓)
k = ∓|t1||Gk| + t2|Gk|2. The lowest energy band

E(−)
k exhibits a degenerate minimum along the contour

M – the moat, in the reciprocal space given by |Gk| =
|t1|/2t2. For the honeycomb lattice this condition[9] is
satisfied for t2 > |t1|/6, Fig. 1. A similar dispersion
relation appears in the context of particles with isotropic
Rashba spin-orbit coupling [10–16].
The issue of Bose condensation for particles with such

a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E −EM)−1/2,
divergence of the single particle DOS near the bottom
of the band. Such behavior of DOS highlights similar-
ities with one-dimensional systems, where the ground-
state of strongly repulsive bosons is given by the Tonks-
Girardeau gas of free fermions [17–21]. Here we show
that the effective fermion picture describes the ground-
state of hardcore bosons on 2D moat lattices as well. The
key observation[14] is that the chemical potential of free
fermions with the dispersion relation of Fig. 1 scales as

e1e3

t 2

a2

t1
a1 3a

e2
0 0

0

4πν

FIG. 2. (Color online) The unit cell of honeycomb lattice
with lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites
belong to the sublattice A (B). Total Chern-Simons flux is a
combination of (i) πν fluxes through each of the triangles; (ii)
phases exp (−iπν) attached to sides of the full regular triangle
and exp (iπν) attached to the sides of the empty regular trian-
gle. This arrangement of phases corresponds to the Haldane
modulation of phases with staggered φH = −Φ/6 = −2πν/3
(see main text).

µF ∝ ν2 at small enough filling factors ν. This is ener-
getically favorable in comparison with BEC in one of the
states along the moat M. Indeed, BEC chemical poten-
tial scales as µB ∝ ν. To build a fermionic state of Bose
particles one uses Chern-Simons flux attachments famil-
iar in the context of FQHE[22–26]. In the mean-field
approximation this leads to fermions subject to a uni-
form magnetic flux 4πν per unit cell superimposed with a
particular staggered Haldane[27] flux arrangement. Due
to the Pauli principle, the fermions automatically incor-
porate hard-core condition and thus may be considered
as non-interacting. The resulting ground state is U(1)
symmetric state of composite fermions (CF) occupying
the lowest Landau level (or rather the lowest branch of
Hofstadter butterfly). The corresponding phase diagram
is schematically depicted in Fig. 3 and we shall proceed
now to quantify these ideas.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(
b†r
)2

= (br)
2 = 0,

{
b†r, br

}
= 1 (where

{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej+t2
∑

r,j

b†rbr+aj+H.c.−µ
∑

r

[
nr −

1

2

]
,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.

Motivated by the observation that for divergent DOS
the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[22–26]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r′]nr′ , (4)

H = t1 Sr
+

r, j
∑ Sr+e j

− + t2 Sr
+

r, j
∑ Sr+a j

− +H.c.− h Sr
z

r
∑
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-

t2 / t1 >1/ 6

Frustration is essential! 
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state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).

tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the

0

2

1

4

1

6

1

2

1

5

1

Spin Liquid 

CF 

12
tt

BEC BEC 0l

1l

2l

FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites belong
to the sublattice A (B). Chern-Simons flux through each of
the triangles is πν corresponding to the Haldane modulation
of phases with staggered φH = Φ/12 = πν/3 (see main text).
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the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions νl.

Hamiltonian takes the form:

H = t1
∑

r,j

b†rbr+ej
+t2

∑

r,j

b†rbr+aj
+H.c.−µ

∑

r

[

nr −
1

2

]

,

(3)
where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑

r,j

c†rcr+ej
e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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MIT researchers discover a new kind of magnetism

Experiments demonstrate ‘quantum spin liquid,’ which could have applications in new

computer memory storage.

MIT physicists grew this pure crystal of

herbertsmithite in their laboratory. This

sample, which took 10 months to grow,

is 7 mm long (just over a quarter-inch)

and weighs 0.2 grams.

Image: Tianheng Han

Following up on earlier theoretical predictions, MIT researchers have now demonstrated

experimentally the existence of a fundamentally new kind of magnetic behavior, adding to the

two previously known states of magnetism.

Ferromagnetism — the simple magnetism of a bar magnet or compass needle — has been

known for centuries. In a second type of magnetism, antiferromagnetism, the magnetic fields

of the ions within a metal or alloy cancel each other out. In both cases, the materials become

magnetic only when cooled below a certain critical temperature. The prediction and discovery

of antiferromagnetism — the basis for the read heads in today’s computer hard disks — won

Nobel Prizes in physics for Louis Neel in 1970 and for MIT professor emeritus Clifford Shull

in 1994.

“We’re showing that there is a third fundamental state for magnetism,” says MIT professor of

physics Young Lee. The experimental work showing the existence of this new state, called a

quantum spin liquid (QSL), is reported this week in the journal Nature, with Lee as the senior

author and Tianheng Han, who earned his PhD in physics at MIT earlier this year, as lead

author.

David L. Chandler, MIT News Office 
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Fractionalized excitations in the spin-liquid state of a
kagome-lattice antiferromagnet
Tian-Heng Han1, Joel S. Helton2, Shaoyan Chu3, Daniel G. Nocera4, Jose A. Rodriguez-Rivera2,5, Collin Broholm2,6 & Young S. Lee1

The experimental realization of quantum spin liquids is a long-
sought goal in physics, as they represent new states of matter. Quan-
tum spin liquids cannot be described by the broken symmetries
associated with conventional ground states. In fact, the interacting
magnetic moments in these systems do not order, but are highly
entangled with one another over long ranges1. Spin liquids have a
prominent role in theories describing high-transition-temperature
superconductors2,3, and the topological properties of these states
may have applications in quantum information4. A key feature of
spin liquids is that they support exotic spin excitations carrying
fractional quantum numbers. However, detailed measurements of
these ‘fractionalized excitations’ have been lacking. Here we report
neutron scattering measurements on single-crystal samples of the
spin-1/2 kagome-lattice antiferromagnet ZnCu3(OD)6Cl2 (also called
herbertsmithite), which provide striking evidence for this characte-
ristic feature of spin liquids. At low temperatures, we find that the
spin excitations form a continuum, in contrast to the conventional
spin waves expected in ordered antiferromagnets. The observation of
such a continuum is noteworthy because, so far, this signature of
fractional spin excitations has been observed only in one-dimensional
systems. The results also serve as a hallmark of the quantum spin-
liquid state in herbertsmithite.

In a spin liquid, the atomic magnetic moments are strongly corre-
lated but do not order or freeze even in the limit as the temperature, T,
goes to zero. Although many types of quantum spin-liquid states exist
in theory, a feature that is expected to be common to all is the presence
of deconfined spinons as an elementary excitation from the ground
state1. Spinons are spin-half (S 5 1/2) quantum excitations into which
conventional spin-wave excitations with S 5 1 fractionalize. In one
dimension, this phenomenon is well established for the S 5 1/2
Heisenberg antiferromagnetic chain, where spinons may be thought
of as magnetic domain boundaries that disrupt Néel order and are free
to propagate away from each other. In the one-dimensional compound
KCuF3, a continuum of spinon excitations has been well characterized
using neutron scattering5. In two dimensions, the nature of the spinon
excitations is less clear. First, the existence of two-dimensional magnets
with a quantum spin-liquid ground state is still a matter of great debate.
Second, the various spin-liquid states which are proposed in theory
give rise to a variety of spinon excitation spectra, which may be either
gapped or gapless.

The S 5 1/2 kagome-lattice Heisenberg antiferromagnet has long
been recognized as a promising system in which to search for quantum
spin-liquid states, because the kagome network of corner-sharing tri-
angles frustrates long-range magnetic order6–8. We have devised syn-
thetic methods to produce herbertsmithite (ZnCu3(OH)6Cl2) in which
the S 5 1/2 Cu21 moments are arranged on a structurally perfect
kagome lattice9 and nonmagnetic Zn21 ions separate the lattice planes.
A depiction of the crystal structure is shown in Supplementary Fig. 1.
Whereas herbertsmithite typically contains a small percentage of excess

Cu21 ions (,5% of the total) substituting for Zn21 ions in the inter-
layer sites, the kagome planes contain only Cu21 ions10. Measurements
on powder samples11–13 indicate strong antiferromagnetic super-
exchange (J < 17 meV, where J is the exchange coupling that appears
in the nearest-neighbour Heisenberg Hamiltonian) and the absence
of long-range magnetic order or spin freezing down to tempera-
tures of T 5 0.05 K. The bulk magnetic properties reveal a small
Dzyaloshinskii–Moriya interaction and an easy-axis exchange
anisotropy14,15, both of order J/10. Despite these small imperfections,
the nearest-neighbour Heisenberg model on a kagome lattice is still an
excellent approximation of the spin Hamiltonian for herbertsmithite.
This is especially important, because recent calculations on record
lattice sizes indicate that the ground state of this model is in fact a
quantum spin liquid16. Thus, experiments to probe the spin correla-
tions in herbertsmithite are all the more urgent.

To this end, we recently succeeded in developing a technique for the
growth of large, high-quality single crystals of herbertsmithite17, and
small pieces have been used in studies involving local probes18,19,
anomalous X-ray diffraction10, susceptibility15 and Raman scattering20.
In this Letter, we report inelastic neutron scattering measurements on
a large, deuterated, single-crystal sample of herbertsmithite. The neu-
tron scattering cross-section is directly proportional to the dynamic
structure factor Stot(Q, v) (where Q and v stand for the momentum
and energy transferred to the sample, respectively), which includes
both the nuclear and magnetic signals. The magnetic part, Smag(Q, v),
is the Fourier transform (in time and space) of the spin–spin correlation
function and can be obtained by subtracting the nuclear scattering as
described in the Supplementary Information. After calibration with
respect to a vanadium standard, the measured structure factors are
expressed in absolute units.

Contour plots of Stot(Q, v) are shown in Fig. 1a–c for T 5 1.6 K and
three different energy transfers Bv (B denotes Planck’s constant
divided by 2p). Figure 1a shows data for Bv 5 6 meV. Surprisingly,
the scattered intensity is exceedingly diffuse, spanning a large fraction
of the hexagonal Brillouin zone. A similar pattern of diffuse scatter-
ing is observed for Bv 5 2 meV (Fig. 1b). The diffuse nature of the
scattering at a temperature that is two orders of magnitude below the
exchange energy scale, J, is in strong contrast to observations in non-
frustrated quantum magnets. The S 5 1/2 square-lattice antiferromag-
net La2CuO4 develops substantial antiferromagnetic correlations for
T , J/2 (ref. 21), temperatures at which the low-energy scattering is
strongly peaked near the (p,p) point in reciprocal space. In herbert-
smithite, the scattered intensity is not strongly peaked at any spe-
cific point, and this remains true for all energies measured from
Bv 5 0.25 to 11 meV. This behaviour is also markedly different
from that observed in the larger, S 5 5/2 kagome antiferromagnet
KFe3(OH)6(SO4)2 which becomes magnetically ordered at low tem-
peratures and has magnetic peaks at q 5 0 wavevectors above the
ordering temperature22.
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of Technology, Cambridge, Massachusetts 02139, USA. 5Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA. 6Institute for Quantum Matter and
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magnetic moments in these systems do not order, but are highly
entangled with one another over long ranges1. Spin liquids have a
prominent role in theories describing high-transition-temperature
superconductors2,3, and the topological properties of these states
may have applications in quantum information4. A key feature of
spin liquids is that they support exotic spin excitations carrying
fractional quantum numbers. However, detailed measurements of
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neutron scattering measurements on single-crystal samples of the
spin-1/2 kagome-lattice antiferromagnet ZnCu3(OD)6Cl2 (also called
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spin excitations form a continuum, in contrast to the conventional
spin waves expected in ordered antiferromagnets. The observation of
such a continuum is noteworthy because, so far, this signature of
fractional spin excitations has been observed only in one-dimensional
systems. The results also serve as a hallmark of the quantum spin-
liquid state in herbertsmithite.

In a spin liquid, the atomic magnetic moments are strongly corre-
lated but do not order or freeze even in the limit as the temperature, T,
goes to zero. Although many types of quantum spin-liquid states exist
in theory, a feature that is expected to be common to all is the presence
of deconfined spinons as an elementary excitation from the ground
state1. Spinons are spin-half (S 5 1/2) quantum excitations into which
conventional spin-wave excitations with S 5 1 fractionalize. In one
dimension, this phenomenon is well established for the S 5 1/2
Heisenberg antiferromagnetic chain, where spinons may be thought
of as magnetic domain boundaries that disrupt Néel order and are free
to propagate away from each other. In the one-dimensional compound
KCuF3, a continuum of spinon excitations has been well characterized
using neutron scattering5. In two dimensions, the nature of the spinon
excitations is less clear. First, the existence of two-dimensional magnets
with a quantum spin-liquid ground state is still a matter of great debate.
Second, the various spin-liquid states which are proposed in theory
give rise to a variety of spinon excitation spectra, which may be either
gapped or gapless.

The S 5 1/2 kagome-lattice Heisenberg antiferromagnet has long
been recognized as a promising system in which to search for quantum
spin-liquid states, because the kagome network of corner-sharing tri-
angles frustrates long-range magnetic order6–8. We have devised syn-
thetic methods to produce herbertsmithite (ZnCu3(OH)6Cl2) in which
the S 5 1/2 Cu21 moments are arranged on a structurally perfect
kagome lattice9 and nonmagnetic Zn21 ions separate the lattice planes.
A depiction of the crystal structure is shown in Supplementary Fig. 1.
Whereas herbertsmithite typically contains a small percentage of excess

Cu21 ions (,5% of the total) substituting for Zn21 ions in the inter-
layer sites, the kagome planes contain only Cu21 ions10. Measurements
on powder samples11–13 indicate strong antiferromagnetic super-
exchange (J < 17 meV, where J is the exchange coupling that appears
in the nearest-neighbour Heisenberg Hamiltonian) and the absence
of long-range magnetic order or spin freezing down to tempera-
tures of T 5 0.05 K. The bulk magnetic properties reveal a small
Dzyaloshinskii–Moriya interaction and an easy-axis exchange
anisotropy14,15, both of order J/10. Despite these small imperfections,
the nearest-neighbour Heisenberg model on a kagome lattice is still an
excellent approximation of the spin Hamiltonian for herbertsmithite.
This is especially important, because recent calculations on record
lattice sizes indicate that the ground state of this model is in fact a
quantum spin liquid16. Thus, experiments to probe the spin correla-
tions in herbertsmithite are all the more urgent.

To this end, we recently succeeded in developing a technique for the
growth of large, high-quality single crystals of herbertsmithite17, and
small pieces have been used in studies involving local probes18,19,
anomalous X-ray diffraction10, susceptibility15 and Raman scattering20.
In this Letter, we report inelastic neutron scattering measurements on
a large, deuterated, single-crystal sample of herbertsmithite. The neu-
tron scattering cross-section is directly proportional to the dynamic
structure factor Stot(Q, v) (where Q and v stand for the momentum
and energy transferred to the sample, respectively), which includes
both the nuclear and magnetic signals. The magnetic part, Smag(Q, v),
is the Fourier transform (in time and space) of the spin–spin correlation
function and can be obtained by subtracting the nuclear scattering as
described in the Supplementary Information. After calibration with
respect to a vanadium standard, the measured structure factors are
expressed in absolute units.

Contour plots of Stot(Q, v) are shown in Fig. 1a–c for T 5 1.6 K and
three different energy transfers Bv (B denotes Planck’s constant
divided by 2p). Figure 1a shows data for Bv 5 6 meV. Surprisingly,
the scattered intensity is exceedingly diffuse, spanning a large fraction
of the hexagonal Brillouin zone. A similar pattern of diffuse scatter-
ing is observed for Bv 5 2 meV (Fig. 1b). The diffuse nature of the
scattering at a temperature that is two orders of magnitude below the
exchange energy scale, J, is in strong contrast to observations in non-
frustrated quantum magnets. The S 5 1/2 square-lattice antiferromag-
net La2CuO4 develops substantial antiferromagnetic correlations for
T , J/2 (ref. 21), temperatures at which the low-energy scattering is
strongly peaked near the (p,p) point in reciprocal space. In herbert-
smithite, the scattered intensity is not strongly peaked at any spe-
cific point, and this remains true for all energies measured from
Bv 5 0.25 to 11 meV. This behaviour is also markedly different
from that observed in the larger, S 5 5/2 kagome antiferromagnet
KFe3(OH)6(SO4)2 which becomes magnetically ordered at low tem-
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Further evidence of the continuum nature of the scattering is shown
in Fig. 4a, where Stot(Q, v) is plotted along the K–C–K direction in the
(1, 0, 0) Brillouin zone. For 2 # Bv # 7 meV, the scattered intensity is
nearly constant along this direction. The data also show another point
of contrast to the nearest-neighbour singlet calculation, which predicts
slightly larger intensities near the K points, which is not seen in the
measurements. Instead, at low energy transfers, Bv , 2 meV, the
intensity has a broad maximum at the C point, as shown in Fig. 4b
for Bv 5 0.75 meV. Interestingly, available theoretical calculations for
Smag(Q, v) based on spinon excitations6,27 are reasonably consistent
with the measured intensity pattern, except for discrepancies near the
K points.

A central question for classification of the ground state of herbert-
smithite is whether a spin gap exists. One surprising aspect of our data
is that the spin excitations seem to be gapless over a wide range of Q
positions, at least down to Bv 5 0.25 meV. This observation is difficult
to reconcile with the ground-state properties of valence-bond crystals28

or gapped spin liquids (such as a short-range resonating valence-bond
state). Even most theories for gapless spin liquids predict only a small
set of reciprocal lattice points for which the excitations are truly
gapless29,30. One possible caveat to our finding is that the small per-
centage of weakly interacting impurities in the interlayer sites may hide
the intrinsic spin gap of the kagome spins. However, it is likely that the
impurities affect only the excitations below 1 meV, where the upturn in
intensity is seen with decreasing energy transfer. Thus, the hexagonal
ring pattern of the structure factor for 1.5 # Bv # 11 meV is undoub-
tedly intrinsic to the kagome layers. And, consequently, this sets a
conservative upper bound for the intrinsic spin gap of ,J/10, if a
gap exists. Again, this applies to every Q position at which the low-
energy magnetic signal is seen. It may also be necessary for the theo-
retical calculations based on the Heisenberg model on the kagome
lattice to be modified to match more closely the spin Hamiltonian of
herbertsmithite.

The observed spinon continuum is the strongest evidence yet that
the ground state of the S 5 1/2 kagome antiferromagnet herbert-
smithite is a quantum spin liquid. The measured spin correlations
are short ranged; however, no spin gap is observed. An intriguing

aspect of quantum spin liquids is that whereas the spin correlations
may be short ranged, the quantum coherence is long ranged. These
neutron results serve as a strong foundation for detailed tests of theo-
retical proposals for spin liquid states on the kagome lattice.

METHODS SUMMARY
Single-crystal samples of ZnCu3(OD)6Cl2 were grown hydrothermally in tube
furnaces under a temperature gradient17. Fifteen of the largest crystals were co-
aligned on an aluminium sample holder, yielding a total mass of 1.2 g. The overall
mosaic (the full-width at half-maximum of the angular distribution of crystallites
that comprise the sample) was determined by neutron diffraction to be ,2u. An
identical aluminium sample holder was prepared for the purpose of background
subtraction. Inelastic neutron scattering experiments were performed using the
multi-axis crystal spectrometer at the NIST Center for Neutron Research. The
incident neutron energy was selected using a doubly focused pyrolytic graphite
monochromator. The final analysed neutron energy was fixed to be either Ef 5 5.1
or 3.0 meV, for energy resolutions of 0.21 meV (half-width at half-maximum) and
0.08 meV, respectively. The sample was mounted in the (H, K, 0) scattering plane,
and a pumped helium cryostat with a base temperature of T 5 1.6 K was used to
control the temperature of the sample.
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Further evidence of the continuum nature of the scattering is shown
in Fig. 4a, where Stot(Q, v) is plotted along the K–C–K direction in the
(1, 0, 0) Brillouin zone. For 2 # Bv # 7 meV, the scattered intensity is
nearly constant along this direction. The data also show another point
of contrast to the nearest-neighbour singlet calculation, which predicts
slightly larger intensities near the K points, which is not seen in the
measurements. Instead, at low energy transfers, Bv , 2 meV, the
intensity has a broad maximum at the C point, as shown in Fig. 4b
for Bv 5 0.75 meV. Interestingly, available theoretical calculations for
Smag(Q, v) based on spinon excitations6,27 are reasonably consistent
with the measured intensity pattern, except for discrepancies near the
K points.

A central question for classification of the ground state of herbert-
smithite is whether a spin gap exists. One surprising aspect of our data
is that the spin excitations seem to be gapless over a wide range of Q
positions, at least down to Bv 5 0.25 meV. This observation is difficult
to reconcile with the ground-state properties of valence-bond crystals28

or gapped spin liquids (such as a short-range resonating valence-bond
state). Even most theories for gapless spin liquids predict only a small
set of reciprocal lattice points for which the excitations are truly
gapless29,30. One possible caveat to our finding is that the small per-
centage of weakly interacting impurities in the interlayer sites may hide
the intrinsic spin gap of the kagome spins. However, it is likely that the
impurities affect only the excitations below 1 meV, where the upturn in
intensity is seen with decreasing energy transfer. Thus, the hexagonal
ring pattern of the structure factor for 1.5 # Bv # 11 meV is undoub-
tedly intrinsic to the kagome layers. And, consequently, this sets a
conservative upper bound for the intrinsic spin gap of ,J/10, if a
gap exists. Again, this applies to every Q position at which the low-
energy magnetic signal is seen. It may also be necessary for the theo-
retical calculations based on the Heisenberg model on the kagome
lattice to be modified to match more closely the spin Hamiltonian of
herbertsmithite.

The observed spinon continuum is the strongest evidence yet that
the ground state of the S 5 1/2 kagome antiferromagnet herbert-
smithite is a quantum spin liquid. The measured spin correlations
are short ranged; however, no spin gap is observed. An intriguing

aspect of quantum spin liquids is that whereas the spin correlations
may be short ranged, the quantum coherence is long ranged. These
neutron results serve as a strong foundation for detailed tests of theo-
retical proposals for spin liquid states on the kagome lattice.

METHODS SUMMARY
Single-crystal samples of ZnCu3(OD)6Cl2 were grown hydrothermally in tube
furnaces under a temperature gradient17. Fifteen of the largest crystals were co-
aligned on an aluminium sample holder, yielding a total mass of 1.2 g. The overall
mosaic (the full-width at half-maximum of the angular distribution of crystallites
that comprise the sample) was determined by neutron diffraction to be ,2u. An
identical aluminium sample holder was prepared for the purpose of background
subtraction. Inelastic neutron scattering experiments were performed using the
multi-axis crystal spectrometer at the NIST Center for Neutron Research. The
incident neutron energy was selected using a doubly focused pyrolytic graphite
monochromator. The final analysed neutron energy was fixed to be either Ef 5 5.1
or 3.0 meV, for energy resolutions of 0.21 meV (half-width at half-maximum) and
0.08 meV, respectively. The sample was mounted in the (H, K, 0) scattering plane,
and a pumped helium cryostat with a base temperature of T 5 1.6 K was used to
control the temperature of the sample.
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-

5

tion. For small filling fractions it closely follows the semi-
classical lowest Landau levels (8), exhibiting the minima
at the fractionally quantized filling fractions νl, Eq. (1).
Due to Maxwell phase separation rule, this leads to a
macroscopic chemical potential of the staircase shape
with the jumps at the fractionally quantized filling frac-
tions (1), see Fig. 5. The flat regions of the staircase
imply phase separation into domains with fillings νl and
νl+1.
There is direct mapping between the considered hard-

core boson system Eq. (3) and XY lattice spin model.
Indeed, one may express bosonic creation and annihila-

tion operators b(†)r in terms of on-site spin 1/2 operators

b(†)r → σ∓
r and (2nr − 1) → σz

r , where nr = b+r br is the
on-site density operator. Then the Hamiltonian Eq. (3)
acquires the form

H = t1
∑

r,j

σ+
r σ

−
r+ej

+ t2
∑

r,j

σ+
r σ

−
r+aj

+H.c.− h
∑

r

σz
r .

The z-magnetic field plays the role of the chemical poten-
tial µ = 2h, which is related to the average magnetiza-
tion m = ν − 1/2 through the equation of state µ(ν). In
this way, BEC state with broken U(1) symmetry trans-
lates into magnetically ordered state[33, 34], while U(1)
symmetric CF state is interpreted as spin-liquid[35–38].
Comparison of CF groundstate energy, Eq. (10), with
the energy of the magnetically ordered state of the clas-
sical spin model[39, 40] shows that at ν = 1/2 (i.e. no
magnetic field) the former wins for 1/5 < t2/t1 < 1/2.
This suggests the spin liquid ground state, Fig. 3, of the
corresponding XY spin model, corroborating with recent
simulations[42–45].
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
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There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-

However, let us look at fermions in a moat:  
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Let us try to gain some intuition from spinless 1D model: 

Can Bosons be Fermions? 
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Chern-Simons transformation: 

spin fermion 

=  

Boson Composite Fermion 
+ flux 

Bosons = Fermions + CS 
“magneric field” B→ν
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FIG. 2: (Color online) Distribution of plaquette phases in the
unit cell of the honeycomb lattice.

and is given by 'r,r0 = arg[r0 � r]nr0 � arg[r � r0]nr.
Note that (5) is an exact fermonic representation of the
original Hamiltonian (3).

In the following our strategy is to remove fermionic
string operators by introducing CS gauge field and thus
representing the Hamiltonian as a free fermion system
coupled to the CS gauge field. This is an exact trans-
formation of the Hamiltonian, and, in analogy with the
continuum case [27], we write

S =
X

r

c†r (i@t �Ar) cr +
1

2⇡

X

r

ArBr (6)

� t1
X

r,j

c†rcr+eje
iAr,r+ej � t2

X

r,j

c†rcr+aje
iAr,r+aj +H.c.,

where time summation is implied. Here, in the CS action
SCS = 1

2⇡

P
r ArBr, the CS magnetic field is given by

Br = @ ⇥ Ar. Specific form of the lattice action SCS ,
corresponding to the Hamiltonian (5) at half-filling, will
be determined below.

Further progress is possible if one takes into account
quantum fluctuations of fermions in Eq. (6). This is
straightforward to do as the action is quadratic in fermion
operators. Then fermionic free energy, W (Ar,Br), along
with the CS term define the e↵ective theory, Seff =
W (Ar,Br) +

1
2⇡

P
r ArBr. Minimization of Seff with

respect to gauge fields yields the equations of motion,
@ArSeff = 0, @BrSeff = 0. The solution of these equa-
tions determines the expectation values of CS fields and
provides the exact description of the ground state of the
system.

Up to this point we did not involve any approximations
and treated fermion fluctuations exactly. To process fur-
ther, we will look for spatially homogeneous solutions of
equations of motions on sublatices A and B. Namely, for
such solutions, that the fields {ArA ,BrA} and {ArB ,BrB}
are independent of rA and rB respectively.

In order to simplify the presentation, we would like to
identify a short cut. Notice that the density operators

nr in exponents of (5) enter linearly. This means that we
can separate their symmetric and antisymmetric combi-
nations between neighboring sites A and B, introducing
independent gauge fields (ArA ±ArB )/2 and (BrA ±BrB ).
The symmetric with respect to A $ B inversion contri-
butions will form CS action on hexagon faces of the lat-
tice and, easy to see, will be gauged out at half filling? ,
since the corresponding magnetic field threading the unit
cell yields a trivial flux of 2⇡. This means that we have
zero total flux through the unit cell and can gauge out the
phases Ar,r+ej in NN hopping exponents of Eq. (6). The
antisymmetric contributions will form the CS action on
a triangular lattice with staggered flux, � ⌘ (BrA �BrB ).
The flux threading the large regular triangle with a site
in it, depicted in Fig. (2), is given by � =

P
j Ar,r+aj .

Introducing A0 = (ArA � ArB )/2, we can simplify the
equations of motion to

@A0W +
1

2⇡
� = 0, @�W +

1

2⇡
A0 = 0. (7)

Remarkably, in new notations, the A0 dependent part
of the action (6) now acquires the simple form S̃[A0] =
A0
P

[rA,rB ]

⇥
1
2⇡�� (nrA � nrB )

⇤
, where the summation

is performed over NN dimer pairs [rA, rB ]. Finally, we
notice that the equation of motion @S/@A0 = 0 yields
a self-consistency condition � = 2⇡hnrA � nrB i is the
asymmetry parameter between sublattices A and B. Im-
portantly, such a flux pinning the triangle in Fig. (2)
gives rise to the phase modulation, �0 = �/3 within the
unit cell introduced by Haldane in Ref. 22 in connection
with parity anomaly in a honeycomb lattice. We also
note that the field A0 plays the role of the inversion sym-
metry breaking mass term leading to the familiar form of
the Hamiltonian22 Hf = c†↵H

f
↵�c� , ↵,� = A,B, where

Hf
↵� = t1|

X

i

eipei |�1 + 2t2 cos�0

X

j

cos
�
paj

�
I

+

0

@A0 � 2t2 sin�0

X

j

sin(paj)

1

A�3. (8)

Here I is the identity matrix. Integration over fermonic
degrees of freedom here is straightforward. The described
procedure defines the mean-field solution, where quan-
tum fluctuations of fermions are taken into account. The
spectrum of the Hamiltonian (8) is gapped now, and con-
sist of 2 bands:

EA0,�0,p = t2 cos�0

 
|
X

i

eipei |2 � 3

!

±
s

m2
0 + t21|

X

i

eipei |2, (9)

where m0 = A0 � 2t2 sin�0
P

j sin(paj) is the gap of the
spectrum. At half filling, only the lowest band is filled.
Energy of such a state is given by the e↵ective potential

18 

S± equiv← →## b±

sublattices with hSzA − SzBi taking values in between 0.27
and 0.28.
Here, we study the model by reformulating it as a CS

fermionic field theory on a lattice. We found that, in the
intermediate frustration regime, the AF Ising order of ZHW
is stabilized by the appearance of staggered CS fluxes
within the unit cell. The zero-average modulated fluxes,
induced by the lattice CS field, are exactly the same as
postulated in a celebrated Haldane model [22]. Solution of
self-consistent mean-field equations puts the model into its
topologically nontrivial sector with Chern numberC ¼ "1.
This allows us to identify the z-modulated state of ZHW
with the CSL state, which supports gapless spinon exci-
tations along the edges. It would be extremely interesting
to see if DMRG studies can check this prediction.
Moreover, we predict a relation between the AF Ising
order parameter ϕ ¼ ð2π=3ÞhSzA − SzBi and chirality
χ ¼ hSA · ðSB × SA0Þi ∝ sinϕ, reflected in the insets of
Fig. 2, which may also be directly checked in simulations.
To quantify the aforementioned ideas, we start with the

Hamiltonian of the frustrated spin-1=2 XY model on a
honeycomb lattice with nearest and next-to-nearest neigh-
bor interaction terms

H ¼ J1
X

r;j

Sþr S−rþej þ J2
X

r;j

Sþr S−rþaj þ H:c: ð1Þ

Here, the spin-1=2 operators are related to Pauli matrices as
S"r ≡ σþr and Szr ≡ σzr=2. Vectors ej and aj; j ¼ 1; 2; 3,
shown in Fig. 1, are connecting nearest and next-to-nearest
neighbor cites of the honeycomb lattice.
The XY model (1) is equivalent to the model of hard-core

bosons, as one may rewrite the spin 1=2 operators S"r in
terms of bosonic creation and annihilation operators. When
J2=J1 > 1=6, the corresponding single particle dispersion
relation undergoes dramatic changes: it becomes infinitely
degenerate and exhibits an energy minimum along a closed
line in the reciprocal space surrounding the Γ point [17]—
the moat. The single particle density of states diverges near

the moat bottom as ðE − EcÞ−1=2, highlighting similarities
with 1D systems, where the ground state of hard-core
bosons is given by the Tonks-Girardeau gas of free
fermions. This observation supports the idea that spineless
fermion representation might be an effective description of
2D boson systems in a moat, as was suggested in
Refs. [17,18]. The advantage of spineless fermions is that
they automatically satisfy the hard-core condition and, thus,
do not suffer from a repulsive interaction energy.
We proceed with the lattice version of the CS trans-

formation (its continuum analog was employed in, e.g.,
Refs. [19–21,25,26])

Sð"Þ
r ¼ cð"Þ

r e"i
P

r0≠r arg½r−r
0'nr0 ; ð2Þ

where the summation runs over all sites of the lattice. Since
the bosonic operators on different sites commute, the newly
defined operators cr and c†r obey fermionic commutation
relations. Also, notice that the number operator is given
by nr ¼ c†rcr ¼ Szr þ 1=2.
Substitution of transformation Eq. (2) into the

Hamiltonian (1) yields

H ¼ J1
X

r;j

c†rcrþeje
iAr;rþej þ J2

X

r;j

c†rcrþaje
iAr;rþaj þ H:c:

where Ar1;r2 ¼
P

r½argðr1 − rÞ − argðr2 − rÞ'nr with sum-
mation running over all lattice sites. Because of the
(spinless) fermionic nature of the operators, the hard core
condition is automatically satisfied. One can remove
exponential string operators by introducing a CS magnetic
field, Br ¼ Arþe1;rþe2 þArþe2;rþe3 þArþe3;rþe1 ¼ 2πnr,
which is the lattice analog of Br ¼ curlA (see Fig. 1).
To this end, one introduces the δ function,
2πδ½Br=ð2πÞ − nr' ¼

R Q
r½dA0

r ' exp fiA0
r ½Br=ð2πÞ − nr'g.

The corresponding functional integration with respect to
the CS vector potentialAr1;r2 is also implied. The Lagrange
multiplier A0

r plays the role of the zero component of the
vector potential.
These notations enable one to represent the model as a

fermion system coupled to the fluctuating CS gauge field.
In analogy with the continuum case [21], we write

S ¼
Z

dt
!X

r

c̄rði∂t − A0
rÞcr þ

1

2π

X

r

A0
rBr

− J1
X

r;j

c̄rcrþeje
iAr;rþej − J2

X

r;j

c̄rcrþaje
iAr;rþaj þH:c:

"
:

ð3Þ

Here, the fermions are Gaussian and one may integrate
them out obtaining the fermionic free energy functional,
W½A0

r ;Br'. Along with the CS term, the latter defines the

FIG. 1 (color online). Unit cell of honeycomb lattice with NN
J1 and next NN J2 couplings. The CS fluxes associated with
spontaneously broken time-reversal symmetry are shown.
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One obtains non-interacting fermions  
on the lattice in an effective magnetic  
field (constant + staggered a-la Haldane).  

lattice filling fraction  

2

Mathematically the moat bands appear, when the lat-
tice Hamiltonian acquires a polynomial structure of the
form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

 
0 Ĝ

Ĝ† 0

!
, (2)

where the matrix structure is in A/B sublattice space
and t1 and t2 are nearest and next-nearest hopping, cor-
respondingly. For the case of honeycomb lattice, Fig. 2,
Ĝ = Gk =

P
j=1,2,3 e

ik·ej with the three lattice vectors
ej connecting a site of sublattice A with three nearest
neighbors of sublattice B. The Hamiltonians of the form
(2) are not limited, though, to the honeycomb lattice.
A generic oblique lattice with three distinct nearest and
three distinct next-nearest hopping integrals is described
by Eq. (2), if two conditions are imposed on six hop-
ping constants [11] (variety of other lattices give rise to
Hamiltonians of the form (2)).

The two energy bands of the Hamiltonian (2) are given

by E
(⌥)
k = ⌥|t1||Gk| + t2|Gk|2. The lowest energy band

E
(�)
k exhibits a degenerate minimum along the contour

M – the moat, in the reciprocal space given by |Gk| =
|t1|/2t2. For the honeycomb lattice this condition[12] is
satisfied for t2 > |t1|/6, Fig. 1. A similar dispersion
relation appears in the context of particles with isotropic
Rashba spin-orbit coupling [13–19].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E �EM)�1/2,
divergence of the single particle DOS near the bottom
of the band. Such behavior of DOS highlights similar-
ities with one-dimensional systems, where the ground
state of strongly repulsive bosons is given by the Tonks-
Girardeau gas of free fermions [20–24]. Here we show
that the e↵ective fermion picture describes the ground
state of hardcore bosons on 2D moat lattices as well. An
important observation[17] is that the chemical potential
of fermions with the dispersion relation of Fig. 1 scales as
µF / ⌫2 at small enough filling factors ⌫ ⌧ 1 (this is a
consequence of the divergent DOS). On the other hand,
for BEC in one of the states along the moat M, the
chemical potential scales as µB / ⌫, due to on-site repul-
sion (notice that the latter does not a↵ect the fermionic
energy, because of the Pauli exclusion). One thus con-
cludes that a small enough filling ⌫ the fermionic state is
energetically favorable over BEC.

To build a fermionic state of Bose particles one may
use Chern-Simons flux attachments familiar in the con-
text of FQHE[25–29]. This leads to composite fermions
(CF) subject to a dynamic magnetic field produced by
the attached flux tubes. Following FQHE ideas, one may
treat the latter in the mean-field approximation by sub-
stituting on-site density operators by their expectation
values. In the context of FQHE this leads to a uniform

t 2

a2

a1 3a

e2 t1

e1e3

0 0

0

4πν

FIG. 2. (Color online) The unit cell of honeycomb lattice
with lattice vectors ai and ei, i = 1, 2, 3. Full (empty) cites
belong to the sublattice A (B). Total Chern-Simons flux is a
combination of (i) ⇡⌫ fluxes through each of the triangles; (ii)
phases exp (�i⇡⌫) attached to sides of the full regular triangle
and exp (i⇡⌫) attached to the sides of the empty regular trian-
gle. This arrangement of phases corresponds to the Haldane
modulation of phases with staggered �H = ��/6 = �2⇡⌫/3
(see main text).

magnetic filed, which partially compensates for the ex-
ternal one. The lattice version of this procedure is some-
what more subtle, however. Since the particles (and thus
the fluxes, attached to them) are confined to stay on the
lattice sites, a uniform lattice filling ⌫ does not translate
into a uniform magnetic field. As we explain below, it
rather leads to a uniform magnetic flux 4⇡⌫ per unit cell
superimposed with a staggered Haldane[30] flux arrange-
ment. At small filling factors, ⌫ ⌧ 1, the corresponding
Hofstadter spectrum consists of quantized Landau lev-
els, separated by cyclotron gaps. The latter protects the
ground state from divergent fluctuation correction, ren-
dering (local) stability of the mean-field ansatz.
To quantify these ideas we start from the Hamilto-

nian, written in terms of bosonic creation and annihila-
tion operators b†r, br, which commute at di↵erent cites,
[b±r , br0 ] = 0, r 6= r0, and fulfill the hard-core condi-

tion
�
b†r
�2

= (br)
2 = 0. For, e.g., honeycomb lattice

the Hamiltonian takes the form:

H = t1
X

r,j

b†rbr+ej + t2
X

r,j

b†rbr+aj +H.c. (3)

where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ⌫ through an equation of state.
Motivated by the observation that the fermionic chem-

ical potential is lower than that of BEC, we proceed with
the Chern-Simons transformation[25–29]. To this end we
write the bosonic operators as

b(†)r = c(†)r e±i
P

r0 6=r arg[r�r̃]nr̃ , (4)

t1

t2

ü  CF state is gaped in the bulk, but 
supports gapless edge mode, realizing 
interacting  topological insulator 
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tion. For small filling fractions it closely follows the semi-
classical lowest Landau levels (8), exhibiting the minima
at the fractionally quantized filling fractions νl, Eq. (1).
Due to Maxwell phase separation rule, this leads to a
macroscopic chemical potential of the staircase shape
with the jumps at the fractionally quantized filling frac-
tions (1), see Fig. 5. The flat regions of the staircase
imply phase separation into domains with fillings νl and
νl+1.
There is direct mapping between the considered hard-

core boson system Eq. (3) and XY lattice spin model.
Indeed, one may express bosonic creation and annihila-

tion operators b(†)r in terms of on-site spin 1/2 operators

b(†)r → σ∓
r and (2nr − 1) → σz

r , where nr = b+r br is the
on-site density operator. Then the Hamiltonian Eq. (3)
acquires the form

H = t1
∑

r,j

σ+
r σ

−
r+ej

+ t2
∑

r,j

σ+
r σ

−
r+aj

+H.c.− h
∑

r

σz
r .

The z-magnetic field plays the role of the chemical poten-
tial µ = 2h, which is related to the average magnetiza-
tion m = ν − 1/2 through the equation of state µ(ν). In
this way, BEC state with broken U(1) symmetry trans-
lates into magnetically ordered state[33, 34], while U(1)
symmetric CF state is interpreted as spin-liquid[35–38].
Comparison of CF groundstate energy, Eq. (10), with
the energy of the magnetically ordered state of the clas-
sical spin model[39, 40] shows that at ν = 1/2 (i.e. no
magnetic field) the former wins for 1/5 < t2/t1 < 1/2.
This suggests the spin liquid ground state, Fig. 3, of the
corresponding XY spin model, corroborating with recent
simulations[42–45].
We are grateful to O. Starykh and V. Galitski for useful
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a closed loop L on a lattice acquires a phase factor
∏

<r′r′′>∈L ei
∑

r φr,r′r′′nr =
∏

r
ei

∑
<r′r′′>∈L φr,r′r′′nr . To

analyze the consequences of these factors we adopt the
mean-field approximation proven to be effective in the
context of the fractional quantum Hall effect [36, 38],
nr ≈ ⟨nr⟩ ≡ ν. The phase factor takes the form
eiϕLν =

∏

r
eiϕrν , where ϕr =

∑

<r′r′′>∈L φr,r′r′′ is the
total angle obtained by scanning the loop L from the
point r. It is clear that ϕr = 0 if r is outside of the
loop and ϕr = 2π if r is inside. If the reference point
r is exactly on the loop/polygon, ϕr is the angle of the
polygon corresponding to vertex r. Therefore for a poly-
gon L with s vertexes enclosing m lattice sites, the phase
factor is ϕL = (s − 2)π + 2πm. This formula has a sim-
ple meaning: for any triangle (big or small) the flux is
ϕ△ = π.
The unit cell of the honeycomb lattice consists of four

triangles, Fig. 2, resulting in the average flux Φ = 4πν
per unit cell. It is clear however that this flux is dis-
tributed non uniformly: the half of the unit cell which
contains site of sublattice B carries 3πν, while the other
half πν. There is thus a modulation ±πν between the
two halves of the unit cell. It is convenient to divide
this modulation between the three small triangles, each
carrying additional flux φH = πν/3 = Φ/12. Therefore
the mean-field treatment of the Chern-Simons phase re-
sults in non-interacting fermions subject to a constant
magnetic field Φ = 4πν superimposed with the staggered
Haldane phase[41] φH = Φ/12. Below we analyze conse-
quences of this mapping.
We first notice that the flux attachment described

above preserves the special form of the Hamiltonian (1)
Ĥ = t1T̂ + t2T̂ 2, where T̂ is the operator acting in
the space (cAr , c

B
r ) and Ĝ =

∑

j e
iej ·(k+Ar), where Ar

is the vector potential of the average magnetic field with
Φ = 4πν flux per unit cell. Notice that in the pres-
ence of the vector potential operators Ĝ and Ĝ† do not
commute. Employing Baker-Campbell-Hausdorff[43] for-
mula, one finds ĜĜ† =

∑

j e
iaj ·(k+Ar)+iηjφH+H.c. where

−η1 = η2 = η3 = 1 and φH = Φ/12. This is exactly the
next-nearest neighbor hopping over sublattice A in pres-
ence of the constant magnetic field and Haldane modula-
tion φH . Similarly Ĝ†Ĝ =

∑

j e
iaj ·(k+Ar)−iηjφH +H.c. is

the hopping along sublattice B in the same setup. There-
fore the Haldane modulation, naturally appearing from
the mean-field treatment of the Chern-Simons field, is
necessary to preserve the form (1) of the Hamiltonian (a
constant magnetic field without the modulation does not
admit representation (1)).
This observation greatly simplifies finding the spec-

trum by reducing the problem to diagonalization of the
operator T̂ . We first analyze it in the semiclassical ap-
proximation, applicable if the minimal energy contour C
encloses relatively small fraction of the Brillouin zone.
To this end we notice that the spectrum of the opera-
tor Ĝ = Gk+A in Eq. (1) can be found using Onsager’s

2
t

E

FIG. 4. Hofstadter energy spectrum vs. filling fraction ν ∈

[0, 1/2], for t2 = t1/4, i.e. C is around the Γ point. Notice
that the bottom of the Hofstadter spectrum is flat, which is
a consequence of the fact that all Landau levels, (8), exhibit
minima at the same energy E = −t21/4t2.

relation[44] for Bohr-Sommerfeld quantization of quasi-
classical cyclotron orbits in a magnetic field. Denote by
Gl(Φ), l = 1, 2, . . ., the eigenvalues of Gk+A. Semiclassi-
cally Gl(Φ) can be found by: (i) considering the constant
energy contours |Gk| = G of the bare operator in the re-
ciprocal k space, and (ii) identifying Gl(Φ) with energy
of contours Cl having a normalized reciprocal area A(Cl)
given by:

A(Cl) =
(

l +
1

2
−

γ

2π

)

Φ

2π
, (6)

where Φ is a magnetic flux through a unit cell of the
lattice, and γ is the Berry phase[45, 46]. Finally, the
spectrum of the Hamiltonian (1), which describes the lat-
tice subject to the constant magnetic flux Φ and Haldane
modulation φH = Φ/12, is found in terms of Gl(Φ) as

El(Φ) = −t1Gl(Φ) + t2
[

Gl(Φ)
]2

. (7)

Landau levels (7) are non-monotonic functions of flux,
see inset in Fig. 5. They all (apart from l = 0 if γ = π)
reach the minimum at G = t1/2t2, i.e. exactly at the
band minimum, where the corresponding cyclotron orbit
coincides with the minimal energy contour C. Recalling
that Φ = 4πν, one obtains the set of the filling factors
νl, Eq. (2), where the Landau levels reach the minimum.
Since the Chern-Simons transformation (4) attaches ex-
actly one flux quantum per particle, fermions cr fully
fill the lowest Landau level (LLL) at any lattice filling
ν. Therefore in the mean-filed approximation the many-
body groundstate energy follows LLL.
As two examples we consider the cases where C is

close to the Γ point, i.e. t2 ! t1/6, and C is close
to K and K ′, i.e. t2 ≫ t1/2. In the first case, ex-
panding near k = 0, we find |Gk|2 ≈ 9(1 − k2/2)

Moat   
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0 4/1

FIG. 5. (Color online) Bottom part of Fig. 4. Thick (red) line
represents the ground state energy per particle obtained nu-
merically from the Hofstadter energy spectrum, Eq. (10). Ar-
rows show fractionally quantized filling fractions (2). Dashed
line is the microscopic chemical potential exhibiting jumps at
the fractionally quantized filling fractions. Inset: Semiclassi-
cal Landau levels (8) as functions of the filling fraction ν.

(where 1/k is measured in units of lattice spacing), re-
sulting in the constant energy contours with the normal-
ized area A(Cl) =

(

3
√
3/4π

)

(1 − G2
l /9). Taking into

account quantization Eq. (6) with γ = 0, we obtain

Gl = ±
√

9− 2
√
3Φ(l + 1/2) and

EΓ
l (Φ) = −t1

√

9− 2
√
3Φ(l + 1/2)+t2(9−2

√
3Φ(l+1/2)).

(8)
This semiclassical spectrum is shown in the inset in
Fig. 5. In the second case, expanding around K point
we find Gk ≈ 3|k|/2 and γ = π[41], leading to

EK
l (Φ) = −t1

√√
3Φl + t2

√
3Φl . (9)

To go beyond the semiclassical approximation we con-
sider the Hofstadter problem on the lattice, including
Haldane modulation. For a rational flux Φ = 4πp/q (p
and q are positive integers) diagonalization of the opera-
tor T̂ reduces to Harper equation, which can be analyzed
numerically. For such fluxes the spectrum splits onto
q non-overlapping subbands, labeled by m = 1, 2, . . . q.
The corresponding spectrum Em,k(Φ), Fig. 4, acquires
the form of the Hofstadter butterfly[47]. Notice the flat-
ness of the lower edge of the spectrum, which reflects
the divergent DOS at this energy. Figure 5 amplifies the
lowest part of the Hofstadter spectrum. Landau levels,
closely following Eq. (8), are visible at small filling frac-
tions.
The mean-field Chern-Simons treatment maps the

Hamiltonian (3) onto the system of non-interacting
fermions in the Hofstadter spectrum. Since fermions

have filling factor ν = p/q, the many-body groundstate
is given by occupying p (out of q) lowest subbands. The
ground state energy per particle is given by

EGS(ν) =
q

Np

p
∑

m=1

N/q
∑

k

Em,k(4πp/q) , (10)

where N is number of lattice sites. In Fig. 5 we show
groundstate energy calculated this way vs. filling frac-
tion. For small filling fractions it closely follows the semi-
classical lowest Landau levels (8), exhibiting the minima
at the fractionally quantized filling fractions νl, Eq. (2).
This leads to a macroscopic chemical potential, exhibit-
ing staircase shape with the jumps at the fractionally
quantized filling fractions (2), see Fig. 5. The flat regions
of the staircase imply phase separation into domains with
fillings νl and νl+1.
There is direct mapping between the considered hard-

core boson system Eq. (3) and XY lattice spin model.
Indeed, one may express bosonic creation and annihila-

tion operators b(†)r in terms of on-site spin 1/2 operators

b(†)r → σ∓
r and (2nr − 1) → σz

r , where nr = b+r br is the
on-site density operator. Then the Hamiltonian Eq. (3)
acquires the form

H = t1
∑

r,j

σ+
r σ

−
r+ej

+ t2
∑

r,j

σ+
r σ

−
r+aj

+H.c.− h
∑

r

σz
r .

(11)
The z-magnetic field plays the role of the chemical poten-
tial µ = 2h, which is related to the average magnetization
m = ν − 1/2 through the equation of state µ(ν). In this
way, BEC state with broken U(1) symmetry translates
into magnetically ordered state, while U(1) symmetric
CF state is interpreted as spin-liquid. Comparison of CF
groundstate energy, Eq. (10), with the energy of the mag-
netically ordered state of the classical spin model[48, 49]
shows that at ν = 1/2 (i.e. no magnetic field) the for-
mer wins for 1/5 < t2/t1 < 1/2. This suggests the spin
liquid ground state, Fig. 3, of the corresponding XY spin
model, corroborating with recent simulations[18, 50, 51].
We are grateful to O. Starykh and V. Galitski for useful

discussions. This work was supported by DOE contract
DE-FG02-08ER46482.
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tion. For small filling fractions it closely follows the semi-
classical lowest Landau levels (8), exhibiting the minima
at the fractionally quantized filling fractions νl, Eq. (1).
Due to Maxwell phase separation rule, this leads to a
macroscopic chemical potential of the staircase shape
with the jumps at the fractionally quantized filling frac-
tions (1), see Fig. 5. The flat regions of the staircase
imply phase separation into domains with fillings νl and
νl+1.
There is direct mapping between the considered hard-

core boson system Eq. (3) and XY lattice spin model.
Indeed, one may express bosonic creation and annihila-

tion operators b(†)r in terms of on-site spin 1/2 operators

b(†)r → σ∓
r and (2nr − 1) → σz

r , where nr = b+r br is the
on-site density operator. Then the Hamiltonian Eq. (3)
acquires the form

H = t1
∑

r,j

σ+
r σ

−
r+ej

+ t2
∑

r,j

σ+
r σ

−
r+aj

+H.c.− h
∑

r

σz
r .

The z-magnetic field plays the role of the chemical poten-
tial µ = 2h, which is related to the average magnetiza-
tion m = ν − 1/2 through the equation of state µ(ν). In
this way, BEC state with broken U(1) symmetry trans-
lates into magnetically ordered state[33, 34], while U(1)
symmetric CF state is interpreted as spin-liquid[35–38].
Comparison of CF groundstate energy, Eq. (10), with
the energy of the magnetically ordered state of the clas-
sical spin model[39, 40] shows that at ν = 1/2 (i.e. no
magnetic field) the former wins for 1/5 < t2/t1 < 1/2.
This suggests the spin liquid ground state, Fig. 3, of the
corresponding XY spin model, corroborating with recent
simulations[42–45].
We are grateful to O. Starykh and V. Galitski for useful

discussions. This work was supported by DOE contract
DE-FG02-08ER46482.
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Absence of Bose condensation in certain frustrated lattices
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band

a b 

c d 

FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].

The issue of Bose condensation for particles with such
a dispersion relation is a non-trivial one. On the non-
interacting level there is no transition at any finite tem-
perature. This is due to the square root, (E − EC)−1/2,
divergence of the single particle density of states (DOS)
near the bottom of the band. Such behavior of DOS high-
lights similarities with one-dimensional systems, where
the groundstate of strongly repulsive bosons is given by
the Tonks-Girardeau gas of free fermions [31–35]. Here
we show that the effective fermions picture describes the
groundstate of hardcore bosons on our 2D lattices as well.
The key observation [29] is that the chemical potential of
free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
energetically favorable in comparison with BEC in one
of the states along the contour C. The chemical poten-
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a
degenerate minimum along a closed contour in the reciprocal space. We suggest that the ground
state of the system is given by non-condensed state, which may be viewed as a state of fermions
subject to Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of
incompressible liquids. Their fixed densities are given by fractions of the reciprocal area enclosed
by the minimal energy contour.

There is a recent spike of interest in two dimensional
lattices with flat bands both in the context of spin liq-
uids [1–4] and cold atomic gases in optical lattices [5–9].
The archetypical example is a Kagome lattice, where one
of the bands (the lowest one for antiferromagnetic sign of
hopping integral) is completely non-dispersive[10, 11]. It
was shown[12] that below certain critical filling fraction
ν0 (e.g. ν0 = 1/9 for Kagome lattice) the groundstate of
hard core bosons is infinitely compressible. The reason is
in the exact degeneracy of non-interacting basis, allow-
ing to form a certain number of non-overlapping localized
states. Above the critical concentration the compressibil-
ity is finite, but U(1) symmetry remains unbroken signi-
fying the absence of Bose-Einstein condensation (BEC).
In the language of spin models, such a groundstate is
known as spin-liquid [13–22].
In this letter we show that BEC is absent in a very

different family of lattice models. Namely we focus on
2D lattices which lowest energy band exhibits degenerate
minima along a closed contour in the reciprocal space,
Fig. 1. The simplest realizations of this scenario are given
by lattices with two cites per unit cell. As an example
consider a honeycomb lattice with nearest t1 and next-
nearest t2 hopping, Fig. 2. The common feature of all
such lattices is the Hamiltonian of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(

0 Ĝ
Ĝ† 0

)

, (1)

where the matrix structure is in A/B sublattice space
and Ĝ = Gk =

∑

j=1,2,3 e
ik·ej with the three lattice

vectors ej connecting a site of sublattice A with three
nearest neighbors of sublattice B. Three unit vectors ej
form 120 ◦ angles with each other, Fig. 2. The Hamil-
tonians of the form (1) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three
distinct nearest and three distinct next-nearest hopping
integrals is described by Eq. (1), if two conditions are
imposed on six hopping constants [23] (variety of other
lattices give rise to Hamiltonians of the form (1)).
The two energy bands of the Hamiltonian (1) are given

by E(∓)
k

= ∓|t1||Gk| + t2|Gk|2. The lowest energy band
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), 0.9 (d). The mini-
mal energy contour C is shown in light gray (blue).

E(−)
k

exhibits a degenerate (flat) minimum along the con-
tour C in the reciprocal space given by |Gk| = |t1|/2t2.
For the honeycomb lattice this condition[24] is satisfied
for t2 > |t1|/6, Fig. 1. A similar dispersion relation ap-
pears in the context of particles with isotropic Rashba
spin-orbit coupling [25–30].
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free fermions with the dispersion relation of Fig. 1 scales
as µF ∝ ν2 at small enough filling factors ν. This is
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tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.

Hamiltonian may be written in terms of bosonic cre-
ation and annihilation operators b†r, br, with the hard-

core condition
(

b†r
)2

= (br)
2 = 0,

{

b†r, br
}

= 1 (where
{., .} denotes anti-commutator), while operators on dif-
ferent sites commute. For, e.g., honeycomb lattice the
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Hamiltonian takes the form:
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as

H = t1
∑
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e
i
∑

r′ φr′,r,r+ej
nr′ (5)

+ t2
∑

r,j

c†rcr+aj
e
i
∑

r′ φr′,r,r+aj
nr′ +H.c.

Notice that the hard-core condition is taken care of
by the Pauli principle and thus fermions may be con-
sidered as non-interacting. A fermion hopping along
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Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]
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where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
the fermionic operators the Hamiltonian (3) reads as
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tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]

νl =
AC

2l+ 1 + γ/π
, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of
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tial of the latter scales as µB ∝ ν. To build a fermionic
state of Bose particles one uses Chern-Simons flux attach-
ments familiar in the context of the fractional quantum
Hall effect[36–38]. In the mean-field approximation this
leads to fermions subject to a uniform magnetic flux 4πν
per unit cell superimposed with a particular staggered
Haldane[41] flux arrangement. Due to the Pauli prin-
ciple, the fermions automatically incorporate hard-core
condition and thus may be considered as non-interacting.
This is the peculiarity of the lattice model with on-site
interactions. In a continuum model with spin-orbit inter-
actions, particles with opposite spins still interact[28, 29].

Our main conclusions are as follows: the groundstate
energy of hard-core bosons is minimized for a set of frac-
tionally quantized filling fractions, determined by the area
AC (normalized to a total area of the first Brillouin zone)
enclosed by the band minima contour C in the reciprocal
plane[42]
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, l = 0, 1, . . . , (2)

where Berry phase is γ = 0, if C encircles the Γ point of
the Brillouin zone and γ = π, if C encircles K and K ′

points, Fig. 1. States with such filling factors are gapped
and incompressible. For density in between the fraction-
ally quantized fillings the system splits into domains with
filling factors νl and νl+1. Those states are U(1) sym-
metric states of composite fermions (CF) occupying the
lowest Landau level (or rather the lowest branch of Hof-
stadter butterfly). The corresponding phase diagram is
schematically depicted in Fig. 3.
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where the vectors ej and aj , j = 1, 2, 3 are shown in
Fig. 2. Chemical potential, µ, is related to the average
on-site occupation ν through an equation of state.
Motivated by the observation that for divergent DOS

the fermionic chemical potential is lower than that of
the Bose condensate, we proceed with the Chern-Simons
transformation[36–40]. To this end we write the bosonic
operators as

b(†)r = c(†)r e±i
∑

r′ ̸=r arg[r−r
′]nr′ , (4)

where the summation runs over all sites of the lattice.
Since the bosonic operators on different sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

∑
r′′ φr′′,r′,rnr′′ , where φr′′,r′,r is a scanning angle of

the link ⟨r′, r⟩ seen from the lattice site r′′. In terms of
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singularities. Thus, using the procedure discussed in the previous section one obtains
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Assuming that the contribution to the energy coming from H0(r) is much smaller than k20 (this

assumption however needs to be checked self-consistently) and expanding the square root in (16)

over H0(r)/2k0, one obtains
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At densities n
l

= k20/ [4⇡(l + 1/2)], when the mean-field yields zero energy measured from the

bottom of the moat, one can separate the mean-field result from the fluctuation corrections. With

the help of the identity
q

�

k�A(r)
�2|m, ri ⌘ k0|m, ri (which is the statement of the zero-energy

within the mean-field) and Eq. (12) the leading fluctuation correction is found to be
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Eq. (18) constitutes the main result of the Supplementary material. The validity of self-consistent

assumption allowing to neglect higher order terms in Eq. (17) is guaranteed when the scale ⇠
(n/k20) log

2 n is smaller than one. This implies that the fluctuation induced energy (18) is smaller

than ⇠ n/M , which is satisfied precisely in the low density limit when the composite fermion state

is more e�cient than a condensate.

If the number of particles is finite, the fluctuation e↵ects give raise to N -dependent finite-size

corrections to the energy. These corrections are vanishing in the thermodynamic limit N ! 1.

Our analysis shows that the latter however reaches slowly. There are corrections to the energy (18)

originating from hk2i
non�diag

that scale as ⇠ n/(MN). There is also possibility of logarithmical

corrections suggesting that in order to reach the thermodynamic limit numerically one has to take

exponentially large systems, N & exp{k20/n}.
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FIG. 4: (Color online) Dimensionless velocity distribution
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l

, where mv
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/k
0

, of an expanding gas of com-
posite fermions plotted vs dimensionless velocity v/v

l

at fixed
values of density n = n

l

, l = 0, 3, 5 and zero temperature. In-
set: Dimensionless velocity distribution of condensed bosons
with density n = n

0

. The temperatures are marked. At low
temperatures the distribution shows a sharp peak at zero ve-
locity, which is absent in the distribution of the composite
fermions.
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). This should be compared

with either the naive estimate for the condensate state
E ⇠ gn/M , or the result of Ref. [26] E ⇠ n4/3. In any
event, the composite fermion variational state (5), (8) is
seen to be advantageous at small enough density.[28]

An important experimentally relevant measure of the
composite fermion state of bosons discussed above is the
velocity distribution of an expanding gas, which can be
observed in the time of flight experiments[27]. The group
velocity of an expanding gas is defined by the derivative

of the kinetic energy as v = @k
(|k|�k0)

2

2M

= |k|�k0

M

k
|k| . Ex-

pectation value of this operator in the proposed state of
composite fermions (5), (8) is obtained numerically and
depicted in Fig. 4. The result demonstrates striking dif-
ference with the velocity distribution of condensed bosons
shown in the inset of Fig. 4. While at high tempera-
tures distribution functions of condensate and of com-
posite fermion state are similar, the qualitative di↵er-
ence at T ! 0 is caused by the fermionic nature of
the latter. If for condensed bosons the distribution is
sharply peaked at v = 0, indicating condensation into a
state with zero velocity, for composite fermions it is rem-
iniscent to the Fermi-Dirac distribution exhibiting weak,
plateau-like behavior at finite v at very low temperatures
and small densities. Importantly, at low temperatures,
there is no sharp peak at v = 0. The plateau vs peak
di↵erence can be regarded as the indication of the pro-
posed statistical transmutation. In the field-theoretical
language this di↵erence can be traced back to the pres-
ence of the e↵ective Chern-Simons magnetic field and

to the fact that e↵ectively fermions find themselves in a
state corresponding to the fully occupied lowest Landau
level.

To conclude, we note that the ability to control and
probe statistical transmutation in quantum many body
systems is one of the most fundamental challenges in
contemporary physics. In this letter we propose an ex-
perimental scheme to (i) engineer a resonantly driven
bosonic system exhibiting a moat-band and the phe-
nomenon of transmutation of statistics, and (ii) probe
our prediction for the velocity distribution in time of
flight experiments at low densities. The proposed state
for bosons in a moat band is energetically more e�cient
at low densities than any other known candidate for the
ground state. It realizes a Floquet topological phase of
bosons, joining the family of other topological structures
achieved in non-equilibrium including the Floquet topo-
logical insulators[29–31] and superfluids[32].
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FIG. 3. (Color online) Phase diagram of hard-core bosons on
a honeycomb lattice. CF and BEC are composite fermion and
Bose condensate states respectively. Also shown incompress-
ible states with fractionally quantized filling fractions ⌫l.

where the summation runs over all sites of the lattice.
Since the bosonic operators on di↵erent sites commute,
the newly defined operators cr and c†r obey fermionic
commutation relations. Also notice that the number op-
erator is given by nr = c†rcr. Upon transformation (4)
hopping terms of the Hamiltonian (3) acquire phase fac-
tors ei

P
r̃ �r̃,r,r0nr̃ , where �r̃,r,r0 is an angle at which the

link hr, r0i is seen from the lattice site r̃. In terms of the
fermionic operators the Hamiltonian (3) reads as

H = t1
X

r,j

c†rcr+eje
i
P

r̃ �r̃,r,r+ej
nr̃

+ t2
X

r,j

c†rcr+aje
i
P

r̃ �r̃,r,r+aj
nr̃ +H.c. (5)

Notice that the hard-core condition is taken care of by
the Pauli principle and thus fermions may be considered
as non-interacting. Using the expression for �r̃,r,r0 , one
can directly check that

P
r̃ �r̃,r,r+einr̃�

P
r̃ �r̃,r,r+ejnr̃ =P

r̃ �r̃,r,r+ei�ejnr̃, for any two vectors ei/j , i, j = 1, 2, 3
shown in Fig. 2. The right hand side of this equation
can be identified with the phase acquired by the next-
nearest-neighbor hopping term along al = ei � ej , while
the left hand side represents the phase of two consecutive
nearest-neighbor (NN) hops along vectors ei and �ej .
As a result, the Hamiltonian (5) retains the algebraic
structure of Eq. (2), where operator T̂ describes fermions
in NN graphene lattice subject to CS fluxes.

To analyze the consequences of these phase factors we
adopt the mean-field ansatz[25, 27], nr̃ ⇡ hnr̃i ⌘ ⌫. This
substitutes fluctuating CS phases with an external mag-
netic filed, carrying flux � = 4⇡⌫ per unit cell (two cites,
each with the occupation ⌫ and 2⇡ flux per particle).
While NN hoping operator T̂ is sensitive only to this total
flux, the next-NN operator T̂ 2 implies that the magnetic

2
t

E

FIG. 4. Hofstadter energy spectrum vs. filling fraction
⌫ 2 [0, 1/2], for t2 = t1/4, i.e. moat M is around the �
point. Notice that the bottom of the Hofstadter spectrum is
flat, which is a consequence of the fact that all Landau levels
exhibit minima at the same energy E = �t21/4t2.

filed exhibits Haldane modulation[30] within the unit cell.
Indeed the phase factor, corresponding to a link hrr0i
is 'rr0 =

P
r̃ 6=r,r0 �r̃,rr0⌫ + (arg[r � r0] � arg[r0 � r])⌫.

For a counterclockwise travel along any elemental (i.e.
not encircling any lattice points) triangle, the first term
here accumulates the net phase ⇡⌫. The second term
brings phase �⇡⌫ for small 120� triangles and phase
3⇡⌫ for large equilateral triangle, Fig. 2. As a result,
the entire flux � is concentrated into a half of the unit
cell – the large empty triangle. This corresponds to
Haldane modulation[30] with the staggering parameter
�H = ��/6, superimposed with the uniform flux �. No-
tice, that only such configuration of fluxes results in the
algebraic Hamiltonian (2), while, e.g., a constant mag-
netic field does not admit representation (2).
This algebraic structure (2) greatly simplifies spectral

problem by reducing it to diagonalization of the NN oper-
ator T̂ . As mentioned above, the latter is sensitive only to
the total flux �, but not to the staggered component �H .
At small filling factors (i.e. magnetic fields) its spectrum
may be analyzed in the semiclassical approximation[31].
Accordingly, the eigenvalues of T̂ , denoted as Gl(�),
where l = 0, 1, . . ., can be found by: (i) considering the
constant energy contours |Gk| = const = G of the bare
operator in the reciprocal k-space, and (ii) identifying
Gl(�) with energy G of contours having normalized re-
ciprocal area

Al =

✓
l +

1

2
� 

◆
�

2⇡
, (6)

where 2⇡ is the Berry phase[32, 33]. Finally, the spec-
trum of the Hamiltonian (2), which describes the lattice
subject to the uniform magnetic flux � and Haldane mod-
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, of an expanding gas of com-
posite fermions plotted vs dimensionless velocity v/v

l

at fixed
values of density n = n
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, l = 0, 3, 5 and zero temperature. In-
set: Dimensionless velocity distribution of condensed bosons
with density n = n

0

. The temperatures are marked. At low
temperatures the distribution shows a sharp peak at zero ve-
locity, which is absent in the distribution of the composite
fermions.
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n
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log2(n/n
0

). This should be compared

with either the naive estimate for the condensate state
E ⇠ gn/M , or the result of Ref. [26] E ⇠ n4/3. In any
event, the composite fermion variational state (5), (8) is
seen to be advantageous at small enough density.[28]

An important experimentally relevant measure of the
composite fermion state of bosons discussed above is the
velocity distribution of an expanding gas, which can be
observed in the time of flight experiments[27]. The group
velocity of an expanding gas is defined by the derivative

of the kinetic energy as v = @k
(|k|�k0)

2

2M

= |k|�k0

M

k
|k| . Ex-

pectation value of this operator in the proposed state of
composite fermions (5), (8) is obtained numerically and
depicted in Fig. 4. The result demonstrates striking dif-
ference with the velocity distribution of condensed bosons
shown in the inset of Fig. 4. While at high tempera-
tures distribution functions of condensate and of com-
posite fermion state are similar, the qualitative di↵er-
ence at T ! 0 is caused by the fermionic nature of
the latter. If for condensed bosons the distribution is
sharply peaked at v = 0, indicating condensation into a
state with zero velocity, for composite fermions it is rem-
iniscent to the Fermi-Dirac distribution exhibiting weak,
plateau-like behavior at finite v at very low temperatures
and small densities. Importantly, at low temperatures,
there is no sharp peak at v = 0. The plateau vs peak
di↵erence can be regarded as the indication of the pro-
posed statistical transmutation. In the field-theoretical
language this di↵erence can be traced back to the pres-
ence of the e↵ective Chern-Simons magnetic field and

to the fact that e↵ectively fermions find themselves in a
state corresponding to the fully occupied lowest Landau
level.

To conclude, we note that the ability to control and
probe statistical transmutation in quantum many body
systems is one of the most fundamental challenges in
contemporary physics. In this letter we propose an ex-
perimental scheme to (i) engineer a resonantly driven
bosonic system exhibiting a moat-band and the phe-
nomenon of transmutation of statistics, and (ii) probe
our prediction for the velocity distribution in time of
flight experiments at low densities. The proposed state
for bosons in a moat band is energetically more e�cient
at low densities than any other known candidate for the
ground state. It realizes a Floquet topological phase of
bosons, joining the family of other topological structures
achieved in non-equilibrium including the Floquet topo-
logical insulators[29–31] and superfluids[32].
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I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch,
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ipei |2, where t = t2/t1, and m0 =
A0 � 2 sin�H

P
j sin(paj) defines the gap of the system.

At half filling, only the lowest band is filled. Energy of
such a state is given by the e↵ective potential W (A0, ⌫̃0).
It now depends only on the constant A0 and modulated
CS field, ⌫0:

W (A0, ⌫̃0) =

Z

⌦

dp

V
EA0,⌫̃0,p, (7)

where integration is over Brillouin zone ⌦ and V = 8⇡2

3
is the volume. It is convenient to choose a rectangular
Brillouin zone with px = pa2 2 (�⇡,⇡) and py = pe2 2
(�2⇡/3, 2⇡/3). Substituting Eq. (7) into Eq. (5) one will
obtain a self consistency equation

⌫̃0 =
A0

2

Z

⌦

dp

V

1p
m2

0 + |
P

i e
ipei |2

, (8)

which coinsides with the gap equation due to the Peirels
mechanism: ⌫A = 1/2 + ⌫0 = 1

⇡

R
⌦

dp
V Im[G(E,p)11],

where G(E,p)11 = [E �Hf ]�1
11 is the component of the

Green function corresponding to site A. From the self
consistency we obtain that ⌫̃0 ⌘ ⌫0.

Numerical solution of the gap equation (8) is depicted
in Fig. 3 for various values of t. As we see the function
A0(⌫0) depends very weekly on t.

The ground state energy per particle, which contains
the Free energy of the Fermi sea plus the CS term:
Egr = W (A0, ⌫̃0)+2⌫̃0A0, is depicted in Fig. 4 versus ⌫0,
provided that the gap A0 depends on ⌫0 trough Eq. (8).
As we see , the minimum of the ground state energy is
located at ⌫0 = (hSz,Ai � hSz,Bi)/2 ⇡ 0.133.

Finally, as we see from Fig. 4, the numerical value
of the ground state energy is -0.311 in units of t1 at
t2/t1 = 0.3. This is lower from the corresponding exact
diagonalization result [10,11] for about 5%. We note how-
ever that the mean-field approach itself disregards fluc-
tuations of the Chern-Simons magnetic field, which will
lead to a slight increase of the energy. The 5% discrep-
ancy should be accounted by perturbation theory around
our mean-field solution.
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In Fig.5 we present the behavior of optimal ⌫0 versus
t. We see that the asymmetry ⌫0 disappears at t ⇡ 0.21.
Analysis of the spectrum in the vicinity of t ⇠ 0.35 shows
that the lowest band goes up at � point upon increasing
t and prevail energies of upper band at some other mo-
menta. This essential reorganization of spectrum indi-
cates the presence of a phase transition. Tis means that
finite ⌫0 ⇠ 0.133 exist only in a region 0.21 < t < 0.35,
in full agreement with DMRG and exact diagonalization
results, presented in a paper [10,11].
It is in order to make the following remark. We have

checked from data of Fig.3 and Fig.4 that the param-
eter t and spin-asymmetry ⌫0 at the ground state al-
ways fulfill the relation A0(⌫0) < 3

p
3t sin�0

H , which in-
dicates the phase13, where the Hall conductivity is ±1.
In other words the ground state is in topological phase
with Chern-number equal to one, indicating the existence
of massless edge excitations.
The e↵ective low-energy theory describing these edge

excitations is hence the chiral Luttinger liquid14 for the
fully filled Landau level. Equal-time fermionic density-
density correlation function hnlnl0i� hnli2 in this theory
is known. In the case when both densities correspond to
the same sublattice l, l0 2 A or B, of the boundary of the
sample, we have a power-law behavior hnlnl0i � hnli2 ⇠
(l�l0)�2 In our original spin variables this translates into

hSz
l S

z
l0i ⇠ ⌫20 +O

⇥
1/(l � l0)2

⇤
⇡ 0.018 +O

⇥
1/(l � l0)2

⇤
.(9)

Finally let us estimate the magnetic field h, at which

1
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results, presented in a paper [10,11].
It is in order to make the following remark. We have

checked from data of Fig.3 and Fig.4 that the param-
eter t and spin-asymmetry ⌫0 at the ground state al-
ways fulfill the relation A0(⌫0) < 3

p
3t sin�0

H , which in-
dicates the phase13, where the Hall conductivity is ±1.
In other words the ground state is in topological phase
with Chern-number equal to one, indicating the existence
of massless edge excitations.
The e↵ective low-energy theory describing these edge

excitations is hence the chiral Luttinger liquid14 for the
fully filled Landau level. Equal-time fermionic density-
density correlation function hnlnl0i� hnli2 in this theory
is known. In the case when both densities correspond to
the same sublattice l, l0 2 A or B, of the boundary of the
sample, we have a power-law behavior hnlnl0i � hnli2 ⇠
(l�l0)�2 In our original spin variables this translates into

hSz
l S

z
l0i ⇠ ⌫20 +O

⇥
1/(l � l0)2

⇤
⇡ 0.018 +O

⇥
1/(l � l0)2

⇤
.(9)

Finally let us estimate the magnetic field h, at which

exp l − l '
ξ
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