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Model

This work is on the Edwards Anderson (EA) spin glass
which is an Ising system with random ferromagnetic and anti-
ferromagnetic bonds.

H =
∑
〈i,j〉

Ji,jsisj,

〈i, j〉 ⇒ sum over nearest neighbors
Ji,j = gaussian random variable

A theoretically important quantity in spin glasses is the overlap
between two independent spin configurations with the same set
of bonds. The overlap is defined as
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N
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s1
is
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i ,

where sji is the i’th spin of configuration j. When the overlap
is sampled at a temperature, it results in a distribution, PJ(q),
which is unique for each set of bonds. When averaged over bond
configurations, we get

P (q) = [PJ(q)]D ,
where [...]D denotes an average over bond configurations. In
fact, q is the order parameter, and P (q) helps to describe the
glass transition.

Characteristics and Open Problems

Due to their random bond structure, spin glasses have no long-
range magnetic correlations, and at high temperatures they be-
have as paramagnets. At low temperatures a more complex "spin
glass" phase appears. This phase is characterized by a rough free
energy landscape which has several local minima.

Problems:
•After the glass transition, dynamics become stuck and the
system becomes numerically difficult

•Finding the ground state of a disorder configuration is an
NP-hard optimization problem

•The thermodynamic limit is not understood analytically
•Computationally limited to systems of size N ∼ 103

⇒ still not understood numerically

Population Annealing

Population annealing is an algorithm designed to efficiently sample the
equilibrium statistics of a spin glass at low temperatures for a single set
of bonds. The algorithm’s aim is to simulate a population of configura-
tions which is slowly cooled and is always kept in thermal equilibrium.

Protocol:
1 Initialize R independent configurations at inverse temperature β = 0
2 Thermalize with Markov Chain Monte Carlo (MCMC)
3 Decrease temperature (the population is out of equilibrium with
respect to new temperature)

4 Resample the configurations according to their Boltzmann weight
(now they’re in equilibrium, but some are degenerate/correlated)

5 De-correlate and thermalize with MCMC

Graphically:
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Advantages:
•Large population is able to probe large area of configuration space
•System is always in thermal equilibrium
•Allows sampling of estimators over large range of β values
•Easy to calculate q, P (q), and free energy
•Multiple simulations can be easily combined
•Systematic and statistical errors are easily estimated

Results

Because an entire population is simulated in parallel, population
annealing is particularly well suited to measuring the q overlap
distribution. Below we show results for the 3D Edwards Ander-
son spin glass with N = 63 spins.

The behavior of the distribution of overlaps is particularly im-
portant in determining the behavior in the thermodynamic limit.

Our work is ongoing and includes further optimizing popula-
tion annealing, conducting large scale simulations, and applying
population annealing to other frustrated systems.
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