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3a. Raman Characterization

4a. Experimental Results I

 MoTe2 atomic flakes are exfoliated from CVT grown crystals.
 Monolayers are readily distinguishable with OM, AFM and SEM. 
 Raman scattering reveal all six types of zone center optical phonons.
 Intensity of the anti-Stokes breathing mode is tunable by laser exciton 

energy, and can be larger than the Stokes peak.
 The anomalous Stokes–anti-Stokes ratio can be explained by the 

resonance profile of the C exciton.
 The large anti-Stokes peak, more intense than the Stokes peak, creates a 

laser cooling channel in the transition metal dichalcogenide crystals.

Diverse excitons in TMDC

Six prototypical zone-center lattice vibrations
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4b. Experimental Results II

C exciton resonance effect
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S B IC OC IMC OMC

1 D3h
+ - - - 1 A’1 1 E’ -
- - - 1 E’’ - - 1 A’’2

2 D3d
+ 1 Eg 1 A1g 1 Eg 1 A1g 1 Eg 1 A1g

- - - 1 Eu 1 A2u 1 Eu 1 A2u

3 D3h
+ 1 E’ 1 A’1 1 E’ 2 A’1 2 E’ 1 A’1

- 1 E’’ 1 A’’2 2 E’’ 1 A’’2 1 E’’ 2 A’’2

4 D3d
+ 2 Eg 2 A1g 2 Eg 2 A1g 2 Eg 2 A1g

- 1 Eu 1 A2u 2 Eu 2 A2u 1 Eu 2 A2u

5 D3h
+ 2 E’ 2 A’1 2 E’ 3 A’1 3 E’ 2 A’1

- 2 E’’ 2 A’’2 3 E’’ 2 A’’2 2 E’’ 3 A’’2

bulk D4
6h

+ 1 E2g 1 B2g 1 E1g 1 A1g 1 E2g 1 B2g

- - - 1 E2u 1 B1u 1 E1u 1 A2u

3b. Phonon symmetry

Odd layers have mirror reflection symmetry σh. 
Even layers and bulk have inversion symmetry i. 
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