Anomalous Stokes-anti-Stokes ratio in MoTe, atomic layers Thomas Goldstein¹, Shao-Yu Chen¹, Jiayue Tong¹, Di Xiao², Ashwin Ramasubramaniam³ and Jun Yan¹ ¹Department of Physics ³Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst ²Department of Physics, Carnegie Mellon University #### 1. Motivation ## 2. Sample Preparation # 4a. Experimental Results I #### 3a. Raman Characterization # 4b. Experimental Results II ### 3b. Phonon symmetry | # of
Layer
s | Sym.
Grp. | σ _h / i
Sym. | S | В | IC | ос | IMC | ОМС | |--------------------|------------------------------|----------------------------|-------------------------|--------------------|-------------------------|--------------------|-------------------------|--------------------| | 1 | D _{3h} | + | - | - | - | 1 A' ₁ | 1 E' | - | | | | - | - | - | 1 E" | - | - | 1 A'' ₂ | | 2 | D _{3d} | + | 1 E _g | 1 A _{1g} | 1 E _g | 1 A _{1g} | 1 E _g | 1 A _{1g} | | | | - | - | - | 1 E _u | 1 A _{2u} | 1 E _u | 1 A _{2u} | | 3 | D _{3h} | + | 1 E' | 1 A' ₁ | 1 E' | 2 A' ₁ | 2 E' | 1 A' ₁ | | | | - | 1 E'' | 1 A'' ₂ | 2 E'' | 1 A'' ₂ | 1 E'' | 2 A'' ₂ | | 4 | D _{3d} | + | 2 E _g | 2 A _{1g} | 2 E _g | 2 A _{1g} | 2 E _g | 2 A _{1g} | | | | - | 1 E _u | 1 A _{2u} | 2 E _u | 2 A _{2u} | 1 E _u | 2 A _{2u} | | 5 | D _{3h} | + | 2 E' | 2 A' ₁ | 2 E' | 3 A' ₁ | 3 E' | 2 A' ₁ | | | | - | 2 E'' | 2 A'' ₂ | 3 E'' | 2 A'' ₂ | 2 E'' | 3 A'' ₂ | | bulk | D ⁴ _{6h} | + | 1 E _{2g} | 1 B _{2g} | 1 E _{1g} | 1 A _{1g} | 1 E _{2g} | 1 B _{2g} | | | | - | - | - | 1 E _{2u} | 1 B _{1u} | 1 E _{1u} | 1 A _{2u} | 5. Conclusions - MoTe₂ atomic flakes are exfoliated from CVT grown crystals. - Monolayers are readily distinguishable with OM, AFM and SEM. - Raman scattering reveal all six types of zone center optical phonons. - Intensity of the anti-Stokes breathing mode is tunable by laser exciton energy, and can be larger than the Stokes peak. - The anomalous Stokes—anti-Stokes ratio can be explained by the resonance profile of the C exciton. - The large anti-Stokes peak, more intense than the Stokes peak, creates a laser cooling channel in the transition metal dichalcogenide crystals. This work is supported by the University of Massachusetts Amherst, the National Science Foundation Center for Hierarchical Manufacturing (CMMI-1025020) and in part by the Armstrong Fund for Science. D.X. acknowledges support from Office of Emerging Frontiers in Research and Innovation (EFRI-1433496). A.R. acknowledges computing support from the Massachusetts Green High Performance Computing Center.