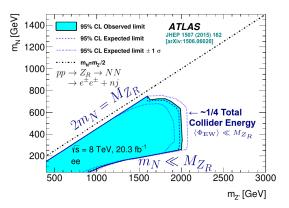
Left-Right Symmetry: At the Edges of Phase Space and Beyond 1

UMass - Amherst

Richard Ruiz

Institute for Particle Physics Phenomenology. University of Durham, UK



¹Based on several works: See slides for Refs. (*) = IPPP student. ⋅ ≥ ⋅ ⋅ ≥ ⋅ ⋅

An Emerging Picture of New Physics Physics

The LHC is operating amazingly! $\mathcal{L}\sim$ 40 fb $^{-1}$ at 13 TeV (3-4x $\mathcal{L}_{\mathrm{Tevatron}})$

Plotted: Excluded (m_N, M_{Z_R}) from $pp \to Z_R \to NN$ searches

While no confirmed BSM discoveries at colliders, it certainly still possible

ullet Remaining model space is hierarchical \Rightarrow extrema of phase space

Left-Right Symmetry...

When hierarchies are present, often a qualitatively different picture emerges. \Rightarrow **Quantitatively**, difficult problems become simpler to solve.

• E.g., Effective Field Theory, Hadronization, Classical Mechanics

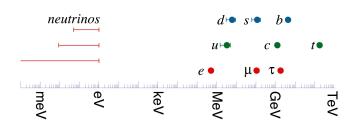
Question: Does collider pheno for neutrino mass models (Seesaws) qualitatively change for hierarchical regions of model parameter space?

Left-Right Symmetry...

When hierarchies are present, often a qualitatively different picture emerges. \Rightarrow **Quantitatively**, difficult problems become simpler to solve.

• E.g., Effective Field Theory, Hadronization, Classical Mechanics

Question: Does collider pheno for neutrino mass models (Seesaws) qualitatively change for hierarchical regions of model parameter space?


... At the Edges of Phase Space and Beyond:

- Left-Right Symmetric Model Primer
- ② LRSM at the Edges of Phase Space
- Second LRSM beyond the Edges of Phase Space
- Redux I: Edges
- Redux II: Beyond

Motivation for new physics from ν physics

Our Motivation

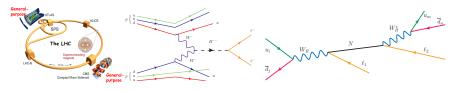
The SM, via the Higgs Mechanism, explains *how* elementary fermions obtain mass, i.e., the $m_f = y_f \langle \Phi \rangle$, **not** the values of m_f .

Spanning many orders of magnitudes, the relationship of fermion masses is still a mystery. Two observations:

- Neutrinos have mass (BSM physics!
 |
 |
- Neutrinos have unusually small mass (new physics?
 ?)

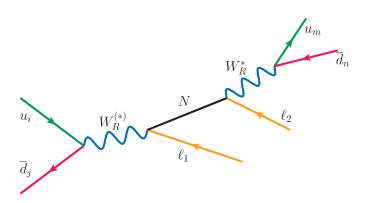
Collider Connection to Neutrino Mass Models (1/1)

Seesaw models predict new Seesaw particles of all shapes, spins, and color:


$$N$$
 (Type I), $T^{0,\pm}$ (Type III), Z_{B-L} , $H_R^{\pm,\pm\pm}$ (Type I+II), ...

Through gauge couplings and mixing, production in ee/ep/pp collisions

DY:
$$q\overline{q} \to \gamma^*/Z^* \to T^+T^-$$
 and $q\overline{q'} \to W_R^{\pm} \to N\ell^{\pm}$


VBF:
$$W^{\pm}W^{\pm} \rightarrow H^{\pm\pm}$$
 GF: $gg \rightarrow h^*/Z^* \rightarrow N\nu_{\ell}$

GF:
$$gg \rightarrow h^*/Z^* \rightarrow N\nu_{\ell}$$

Identification of Seesaw partners is then inferred by their decays to SM particles and the associated final-state kinematics

Left-Right Symmetry at Hadron Colliders

$$\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \underbrace{\mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}}_{After \ scalar} \Delta_R \ \ \text{acquires a vev} \ \ v_R \gg v_{SM} : \hookrightarrow \mathrm{U}(1)_Y$$

$$\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \underbrace{\mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}}_{\text{Q}}$$
 After scalar Δ_R acquires a vev $v_R \gg v_{SM}$: \hookrightarrow $\mathrm{U}(1)_Y$

Higgs field Φ then breaks down the EW group $\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y \to \mathrm{U}(1)_{\textit{EM}}$

$$\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \underbrace{\mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}}_{After \ scalar} \Delta_R \ \ \text{acquires a vev} \ \ v_R \gg v_{SM} : \hookrightarrow \mathrm{U}(1)_Y$$

Higgs field Φ then breaks down the EW group $\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y \to \mathrm{U}(1)_{\textit{EM}}$

With N_R , all SM fermions can be grouped in $\mathrm{SU}(2)_L$ and $\mathrm{SU}(2)_R$ doublets. Dirac masses generated in (mostly) usual way with Φ , i.e., $\Delta \mathcal{L} \ni \overline{Q}_L \Phi Q_R$

$$\mathrm{SU}(3)_c\otimes\mathrm{SU}(2)_L\otimes \underbrace{\mathrm{SU}(2)_R\otimes\mathrm{U}(1)_{B-L}}_{K}$$
 After scalar Δ_R acquires a vev $v_R\gg v_{SM}\colon\hookrightarrow\mathrm{U}(1)_Y$

Higgs field Φ then breaks down the EW group $\mathrm{SU}(2)_L\otimes\mathrm{U}(1)_Y\to\mathrm{U}(1)_{\textit{EM}}$

With N_R , all SM fermions can be grouped in $\mathrm{SU}(2)_L$ and $\mathrm{SU}(2)_R$ doublets. Dirac masses generated in (mostly) usual way with Φ , i.e., $\Delta \mathcal{L} \ni \overline{Q}_L \Phi Q_R$

Neutrinos obtain LH (RH) Majorana masses from triplet scalar Δ_L (Δ_R):

$$m_{ ext{light}}^{\nu} = \underbrace{y_L \langle \Delta_L \rangle}_{ ext{Type II}} - \underbrace{\left(y_D y_R^{-1} y_D^T\right) \langle \Phi \rangle^2 \langle \Delta_R \rangle^{-1}}_{ ext{Type II a la Type II}} \sim \mathcal{O}(0) + \text{symm.-breaking}$$

Major pheno: heavy N, W'/Z' ($\approx W_R/Z_R$), and $H_i^{\pm\pm},~H_j^{\pm},~H_k^0$

$$\mathcal{L} = -\frac{g}{\sqrt{2}} W_{R\mu}^{-} \sum_{q=u,d,...} [\overline{d_j} \ V_{ij}^{CKM'} \ \gamma^{\mu} P_R \underline{u_i}] + \text{H.c.}$$

In **chiral/gauge** basis, couplings to leptons is given by:

$$\mathcal{L} = -\frac{g}{\sqrt{2}} W_{R\mu}^{-} \sum_{a=1}^{3} \left[\bar{I}^{a} \gamma^{\mu} P_{R} \underbrace{N_{R}^{a}}_{Note: |N_{R}\rangle = X |v_{m}\rangle + Y |N_{m'}\rangle} \right] + \text{H.c.}$$

This is not a practical basis to use.

$$\mathcal{L} = -\frac{g}{\sqrt{2}} W_{R\mu}^{-} \sum_{q=u,d,...} [\overline{\mathbf{d}_{j}} \ V_{ij}^{CKM'} \ \gamma^{\mu} P_{R} \underline{\mathbf{u}_{i}}] + \text{H.c.}$$

In mass basis, coupling to leptons can be generically parametrized as²:

$$\mathcal{L} = -\frac{g}{\sqrt{2}} W_{R\mu}^{-} \sum_{\ell=e}^{\tau} \overline{\ell} \gamma^{\mu} P_{R} \underbrace{\left[\sum_{m=1}^{3} \underbrace{\chi_{\ell m}}_{\mathcal{O}(m_{\nu}/m_{N})} \nu_{m} + \sum_{m'=4}^{6} \underbrace{Y_{\ell m'} N_{m'}}_{\mathcal{O}(1)} \right]}_{\text{Note: } |N_{R}\rangle = X|\nu_{m}\rangle + Y|N_{m'}\rangle} + \text{H.c.}$$

²Atre, Han, Pascoli, Zhang [0901.3589]; Han, Lewis, RR_7 Si [1211.6447] 100

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \textbf{W}_{R\mu}^{-} \sum_{q=u,d,...} [\overline{\textbf{d}_{\textit{j}}} \ \textbf{V}_{\textit{ij}}^{\textit{CKM}'} \ \gamma^{\mu} \textbf{P}_{R} \underline{\textbf{u}_{\textit{i}}}] + \text{H.c.}$$

In mass basis, coupling to leptons can be generically parametrized as³:

$$\mathcal{L} \approx -\frac{g}{\sqrt{2}} W_{R\mu}^- \sum_{\ell=e}^{\tau} \sum_{m'=4}^6 \left[\overline{\underline{\ell}} \gamma^{\mu} P_R Y_{\ell m'} N_{m'} \right] + \mathrm{H.c.}$$

11 / 36

LRSM: Edges of Phase Space and Beyond - UMass

R. Ruiz - IPPP

³Atre, Han, Pascoli, Zhang [0901.3589]; Han, Lewis, RR, Si [1211.6447] ≥ → ≥ ∞ < ∞

$$\mathcal{L} = -\frac{g}{\sqrt{2}} W_{R\mu}^{-} \sum_{q=u,d,\dots} [\overline{d_{j}} \ V_{ij}^{CKM'} \ \gamma^{\mu} P_{R} \underline{u_{i}}] + \text{H.c.}$$

In mass basis, coupling to leptons can be generically parametrized as³:

$$\mathcal{L} \approx -\frac{g}{\sqrt{2}} W_{R\mu}^{-} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{6} \left[\overline{\ell} \gamma^{\mu} P_{R} Y_{\ell m'} N_{m'} \right] + \text{H.c.}$$

Benchmark: Simply consider only the lightest $N \equiv N_{m'=4}$ and that the N mass state is aligned with $\ell = e$ flavor state, i.e., $|Y_{eN}| = 1$.

LRSM: Edges of Phase Space and Beyond - UMass

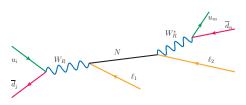
 $^{^3}$ Atre, Han, Pascoli, Zhang [0901.3589]; Han, Lewis, RR $_{\square}$ Si [1211.6447] $_{
m I}$ $_{
m I}$ $_{
m I}$ $_{
m I}$

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \textbf{W}_{R\mu}^{-} \sum_{q=u,d,...} [\overline{\textbf{d}_{\textit{j}}} \ \textbf{V}_{\textit{ij}}^{\textit{CKM}'} \ \gamma^{\mu} \textbf{P}_{R} \underline{\textbf{u}_{\textit{i}}}] + \text{H.c.}$$

In mass basis, coupling to leptons can be generically parametrized as 3:

$$\mathcal{L} \approx -\frac{g}{\sqrt{2}} \textbf{W}_{R\mu}^{-} \textstyle \sum_{\ell=e}^{\tau} \textstyle \sum_{m'=4}^{6} \left[\overline{\underline{\ell}} \gamma^{\mu} P_{R} \textbf{Y}_{\ell m'} \textbf{N}_{m'} \right] + \mathrm{H.c.}$$

Benchmark: Simply consider only the lightest $N \equiv N_{m'=4}$ and that the N mass state is aligned with $\ell = e$ flavor state, i.e., $|Y_{eN}| = 1$.


- $W_R o Ne$ decay rate is BR $\approx 10\%$ for $M_{W_R} \gg m_N$ (90% to quarks)
- $N o W_R^{*\pm} \ell^{\mp} o \ell^{\mp} q \overline{q'}/tb$ are dominant decay channels with BR $\approx 100\%$

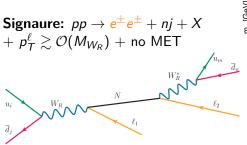
LRSM: Edges of Phase Space and Beyond - UMass

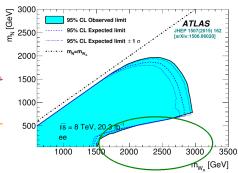
 $^{^3}$ Atre, Han, Pascoli, Zhang [0901.3589]; Han, Lewis, RR $_{\square}$ Si [1211.6447] $_{\blacksquare}$ $_{\blacksquare}$ $_{\circlearrowleft}$ $_{\circlearrowleft}$

Hallmark LRSM collider signature is the spectacular same-sign lepton pairs:

$$q\overline{q'}
ightarrow W_R^{\pm}
ightarrow N\ell_1^{\pm}
ightarrow \ell_1^{\pm} \ell_2^{\pm} q' \overline{q}$$

Proposed by Keung & Senjanovic ('83) and basis for most Seesaw searches

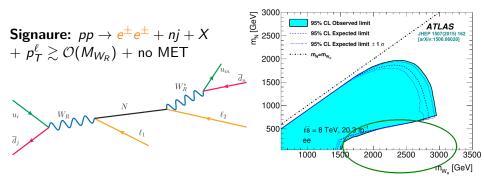

- W_R^{\pm} is heavy⁴. If kinematically accessible, s-channel $q\overline{q'} \rightarrow W_R^{\pm}$ production rate is largest at LHC
- L-violating process! \Rightarrow Majorana nature of ν [Black Box Theorem]
- ullet $W_R^* o {f q}' {f ar q}$ allows for full reconstruction of kinematics/properties
- High- p_T ℓ^{\pm} without light ν \Rightarrow no transverse mom. imbalance (MET)


 4 ATLAS [1506.06020; 1512.01530] and CMS [1407.06020; 15 \pm 2.01224] $_{\odot}$ $_{\odot}$

8 TeV LHC Exclusion with $\mathcal{L} \approx 20 \text{ fb}^{-1}$

LHC expts have performed remarkably!

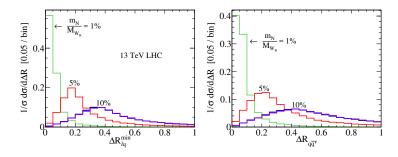
Plotted: excluded (m_{N_R}, M_{W_R}) from searches for resonant W_R , N



8 TeV LHC Exclusion with $\mathcal{L} \approx 20 \text{ fb}^{-1}$

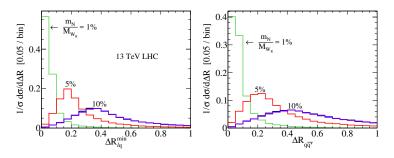
LHC expts have performed remarkably!

Plotted: excluded (m_{N_R}, M_{W_R}) from searches for resonant W_R , N



Similar sensitivity to searches for $pp o Z_R o NN o e^\pm e^\pm + nj + X$

 \Longrightarrow For both W_R and Z_R , loss of sensitivity when $m_N \ll M_V$

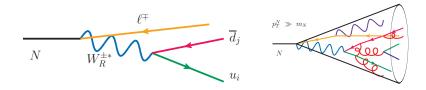

(Lets see what is going on.)

Failure of Electron ID in $pp o W_R o \ell^\pm N (o \ell^\pm q \overline{q'})$

For a
$$1 o 2$$
 process, $m_{ij}^2 = (p_i + p_j)^2 \approx 2E_iE_j(1 - \cos\theta_{ij}) \approx E_iE_j\theta_{ij}^2$

Failure of Electron ID in $pp o W_R o \ell^\pm N (o \ell^\pm q \overline{q'})$

For a
$$1 \to 2$$
 process, $m_{ij}^2 = (p_i + p_j)^2 \approx 2E_iE_j(1 - \cos\theta_{ij}) \approx E_iE_j\theta_{ij}^2$


$$\Rightarrow \Delta R_{ij} \sim \frac{m_N}{\sqrt{E_iE_j}} \sim \frac{4m_N}{M_{W_R}} \Rightarrow \text{For } \left(\frac{m_N}{M_{W_R}}\right) < 0.1, \Delta R_{\ell X}^{\min} = 0.4 \text{ iso. req. fails}$$

K&S process $pp \to \ell^{\pm}\ell^{\pm}jj + X$ contains two same-sign charged leptons - S/B power comes from high- p_T leptons without accompanying MET

Question: Is it necessary to identify the second lepton or jet multiplicity?

Neutrino Jets⁵ (n):

- (i) hadronically decaying, high- p_T heavy neutrinos;
 - (ii) a fat jet originating from a heavy neutrino

⁵A. Ferrari, et, al, PRD ('00); Mitra, RR, Scott*, Spannowsky, PRD ('16) [1607.03504]; Mattelaer, Mitra, RR [1610.08985]

Jet Structure and Substructure

Consider the Higgs decay $h o b\overline{b}$ with $p_h = p_j + p_k$ and $z = E_j/E_h$.

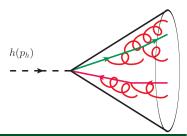
$$h(p_h) \qquad b(p_j) \quad m_h^2 = (p_j + p_k)^2 \approx z(1 - z)E_h^2 \theta_{jk}^2$$

$$- \rightarrow b(p_k) \qquad \rightarrow \Delta R_{jk} \sim \theta_{jk} = \frac{m_h}{\sqrt{z(1 - z)}E_h} = \frac{2m_h}{E_h}$$

In
$$1 \rightarrow 2$$
 decays we have $z = (1 - z) = 0.5 \implies \frac{1}{\sqrt{z(1-z)}} = 2$.

Decays of boosted objects are collimated: $\gamma = E/m > 2 \implies \Delta R_{jk} < 1$

Jet Structure and Substructure

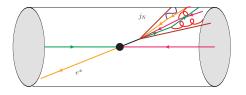

Consider the Higgs decay $h \to b\overline{b}$ with $p_h = p_j + p_k$ and $z = E_j/E_h$.

$$h(p_h) \qquad b(p_j) \quad m_h^2 = (p_j + p_k)^2 \approx z(1 - z)E_h^2 \theta_{jk}^2$$

$$- \rightarrow \overline{b}(p_k) \qquad \rightarrow \Delta R_{jk} \sim \theta_{jk} = \frac{m_h}{\sqrt{z(1 - z)}E_h} = \frac{2m_h}{E_h}$$

In
$$1 \rightarrow 2$$
 decays we have $z = (1 - z) = 0.5 \implies \frac{1}{\sqrt{z(1-z)}} = 2$.

Decays of boosted objects are collimated: $\gamma = E/m > 2 \implies \Delta R_{jk} < 1$

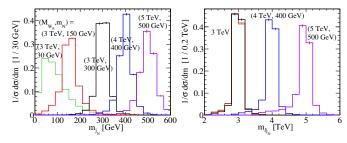


Collimated objects are difficult to resolve.

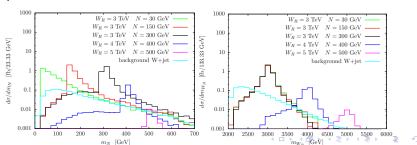
Solution: Instead of treating decay products as individual objects, consider them as a single object, a *Higgs jet*.

Neutrino Jets in LRSM

Change the scale of our problem: treat ℓ_2^{\pm} like any other poorly isolated parton bathed in QCD radiation and cluster via a sequential jet algorithm⁶

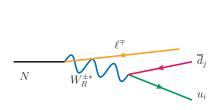

Changing scales *simplifies* the problem, a lot:

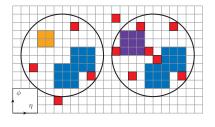
For $m_N \ll M_{W_R}$, one has a different collider topology:

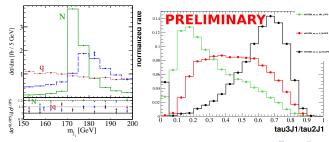

$$pp \rightarrow W_R \rightarrow e^{\pm} N \rightarrow e^{\pm} j_{\rm Fat} (+ \text{ no MET!})$$

 $^{^6}$ Sequential jet algorithm \approx definition of collimated, clusters of partons that is meaningful at all orders of perturbation theory, i.e., Infrared Collinear (IRC)-safe \approx 990

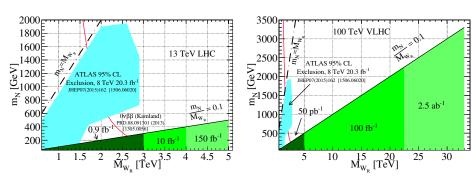
At parton-level + smearing, expected invariant mass peaks are visible:




QCD corrections do not change this; oddly, exhibits "ideal" jet behavior With parton shower + P.U. + detector simulation, structures are retained:


Neutrino jets inherently contain less QCD radiation than top jets

• Prongs within a jet are more likely to be resolved



Retain resonant structure and substructure more ideally than top jets:

Discovery Potential at the Edge of Phase Space

For $m_N/M_{W_R} \le 0.1$, the region where ATLAS/CMS searches breakdown, neutrino jet searches recovers lost sensitivity

Signature: $pp o \ell^\pm + j_{\mathrm{Fat}} + X$ [no MET, $ho_T^{\ell,j} \gtrsim 1$ TeV, $M_{\ell j}$ Cut]

- 13 TeV: $M_{W_R} \approx$ 3 (4) [5] TeV discovery after 10 (100) [2000] fb $^{-1}$
- 100 TeV: $M_{W_R} \approx 15$ (30) TeV discovery after 100 fb $^{-1}$ (10 ab $^{-1}$)

Left-Right Symmetry Beyond the Edge of Phase Space:

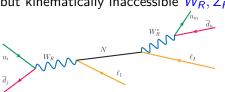
Left-Right Symmetry Beyond the Edge of Phase Space:

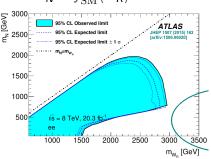
A pathological but plausible scenario.

Limits on neutral flavor changing transitions require 7 Δ_R sector to be $\langle \Delta_R \rangle \gtrsim \mathcal{O}(10) \text{ TeV}$

What if LR gauge and Yukawa couplings have similar values as in the SM?

• What if $M_{W_R} \sim g_L \langle \Delta_R \rangle \sim 6.5$ TeV and $m_N \sim y_{\rm SM}^{\tau} \langle \Delta_R \rangle \sim 100$ GeV?

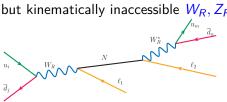

⁷Bertonlini, et al [1403.7112, + others]; Zhang, et al. [0704.1662; + others]

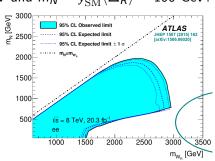

Limits on neutral flavor changing transitions require 7 Δ_R sector to be $\langle\Delta_R\rangle\gtrsim\mathcal{O}(10)$ TeV

What if LR gauge and Yukawa couplings have similar values as in the SM?

• What if $M_{W_R} \sim g_L \langle \Delta_R \rangle \sim$ 6.5 TeV and $m_N \sim y_{\rm SM}^{ au} \langle \Delta_R \rangle \sim$ 100 GeV?

Data may be suggesting EW-scale N but kinematically inaccessible N


⁷Bertonlini, et al [1403.7112, + others]; Zhang, et al. [0704.1662; + others]


Limits on neutral flavor changing transitions require 7 Δ_R sector to be $\langle \Delta_R \rangle \gtrsim \mathcal{O}(10) \text{ TeV}$

What if LR gauge and Yukawa couplings have similar values as in the SM?

• What if $M_{W_R} \sim g_L \langle \Delta_R \rangle \sim 6.5$ TeV and $m_N \sim y_{\rm SM}^{\tau} \langle \Delta_R \rangle \sim 100$ GeV?

Data may be suggesting EW-scale N but kinematically inaccessible W_R , Z_R

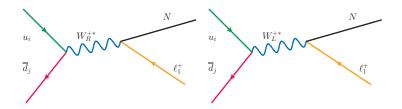
Searches follow Keung & Senjanovic ('83), and assume resonant W_R , N

- Zero sensitivity to $M_{W_R} > 6 7$ TeV due to finite data set
- Naive Question: is an on-shell W_R necessary for discovery of N?

⁷Bertonlini, et al [1403.7112, + others]; Zhang, et al. [0704.1662; + others]

Of course $pp \to W_R^* \to N\ell + X$ can occur via an off-shell mediator.

• Simply LR analog of Fermi contact interaction $\mathcal{L} = G_F[\overline{\mathcal{N}}\gamma^{\mu}\mathcal{P}][\overline{\nu}\gamma_{\mu}\ell]$


Interestingly, in the limit that $M_{W_R}\gg \sqrt{\hat{s}}$ but $m_N\lesssim \mathcal{O}(1)$ TeV, $pp\to N\ell+X$ production in the LRSM and "Type I" are indistinguishable⁸

⁸Han, Lewis, **RR**, Si, PRD ('12) [1211.6447]; **RR**, EPJC ('17) [1703.04669]

Of course $pp \to W_R^* \to N\ell + X$ can occur via an off-shell mediator.

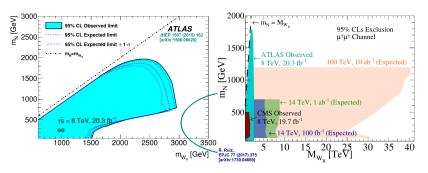
• Simply LR analog of Fermi contact interaction $\mathcal{L} = G_{F}[\overline{\mathcal{N}}\gamma^{\mu}\mathcal{P}][\overline{\nu}\gamma_{\mu}\ell]$

Interestingly, in the limit that $M_{W_R}\gg \sqrt{\hat{s}}$ but $m_N\lesssim \mathcal{O}(1)$ TeV, $pp\to N\ell+X$ production in the LRSM and "Type I" are indistinguishable⁸

- Occurs near threshold $\sqrt{\hat{s}} \sim m_N$ and same ℓ_1^\pm polarization
- Differentiation requires polar and azimuthal polarization measurements of the full $pp \rightarrow \ell^{\pm}\ell^{\pm} + nj + X$ final state

⁸Han, Lewis, **RR**, Si, PRD ('12) [1211.6447]; **RR**, EPJC ('17) [1703.04669]

L Violation from Beyond the Edges of Phase Space⁹

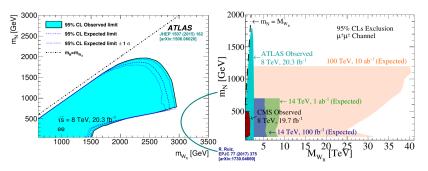

"Type I" searches and projected sensitivities for can be reinterpreted in the context of LRSM in the limit that $M_{W_R} \sim \sqrt{s} \gg \sqrt{\hat{s}}$

• Signature: $pp \to \ell^{\pm}\ell^{\pm} + nj + X + p_T^{\ell} \gtrsim \mathcal{O}(m_N) + \text{no MET}$

L Violation from Beyond the Edges of Phase Space⁹

"Type I" searches and projected sensitivities for can be reinterpreted in the context of LRSM in the limit that $M_{W_P}\sim \sqrt{s}\gg \sqrt{\hat{s}}$

• Signature: $pp \to \ell^{\pm}\ell^{\pm} + nj + X + p_T^{\ell} \gtrsim \mathcal{O}(m_N) + \text{no MET}$



⁹**RR**, EPJC ('17) [1703.04669]

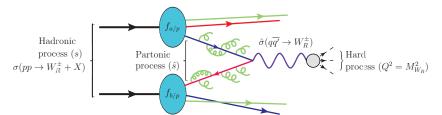
L Violation from Beyond the Edges of Phase Space⁹

"Type I" searches and projected sensitivities for can be reinterpreted in the context of LRSM in the limit that $M_{W_R} \sim \sqrt{s} \gg \sqrt{\hat{s}}$

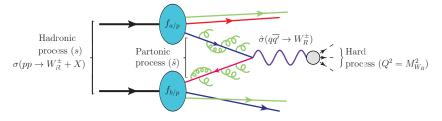
• Signature: $pp \to \ell^{\pm}\ell^{\pm} + nj + X + p_T^{\ell} \gtrsim \mathcal{O}(m_N) + \text{no MET}$

At 14 (100) TeV with $\mathcal{L}=1$ (10) ab $^{-1}$, $M_{W_R}\lesssim 9$ (40) TeV can be probed

 Caveat: Numbers can be improved with (a) dedicated analysis (not reinterpretation) and (b) knowledge of 100 TeV detector definition

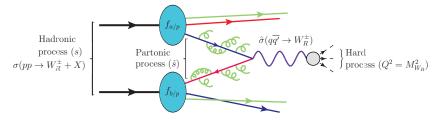

⁹RR, EPJC ('17) [1703.04669]

Redux I: Back to Edges of the LHC Phase Space


Redux I: Back to Edges of the LHC Phase Space

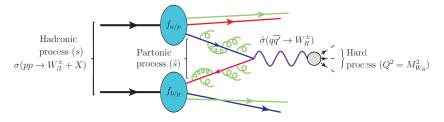
Can you see $M_{W_R} \gtrsim 5$ TeV?

Recall: W_R production is analogous to $W_{\rm SM}$, except $M_{W_R}\gtrsim 3-5$ TeV



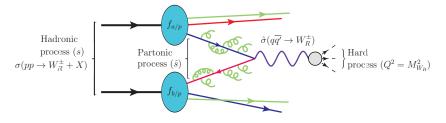
Recall: W_R production is analogous to $W_{\rm SM}$, except $M_{W_R}\gtrsim 3-5$ TeV

Away from phase space boundaries,


Recall: W_R production is analogous to $W_{\rm SM}$, except $M_{W_R} \gtrsim 3-5$ TeV

Away from phase space boundaries, QCD corrections are 20-30%.

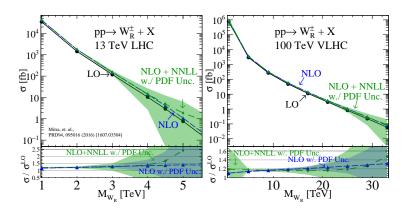
26 / 36


Recall: W_R production is analogous to $W_{\rm SM}$, except $M_{W_R} \gtrsim 3-5$ TeV

Away from phase space boundaries, QCD corrections are 20-30%. However, **near** boundaries, where $E_g \ll E_q$,

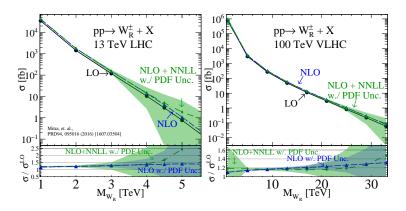
$$\sigma(pp \to W_R + g) \sim \int d^{4-2\varepsilon} PS_2 \sim \lambda^{\frac{1-2\varepsilon}{2}} \left(1, \frac{Q^2 = M_{W_R}^2}{\hat{s}}, \frac{k_g^2 = 0}{\hat{s}} \right)$$
$$= \left(1 - \frac{M_{W_R}^2}{\hat{s}} \right)^{1-2\varepsilon} \sim 2\varepsilon \log \left(1 - \frac{M_{W_R}^2}{\hat{s}} \right)$$

Recall: W_R production is analogous to $W_{\rm SM}$, except $M_{W_R} \gtrsim 3-5$ TeV

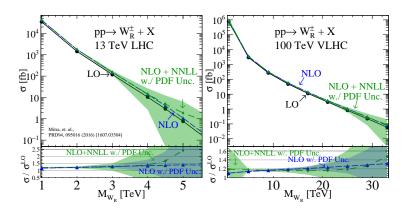


Away from phase space boundaries, QCD corrections are 20-30%. However, **near** boundaries, where $E_g \ll E_q$,

$$\sigma(pp \to W_R + g) \sim \int d^{4-2\varepsilon} PS_2 \sim \lambda^{\frac{1-2\varepsilon}{2}} \left(1, \frac{Q^2 = M_{W_R}^2}{\hat{s}}, \frac{k_g^2 = 0}{\hat{s}} \right)$$
$$= \left(1 - \frac{M_{W_R}^2}{\hat{s}} \right)^{1-2\varepsilon} \sim 2\varepsilon \log \left(1 - \frac{M_{W_R}^2}{\hat{s}} \right)$$

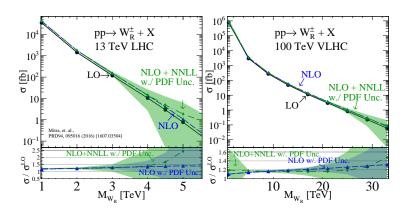

As $M_{W_R}^2 \to s$, logs diverge since $M_{W_R}^2 \to \hat{s} < s$ forces g to be soft. In this limit, **soft factorization** & **exponentiation** possible! \Rightarrow All-orders (re)summation of $\alpha_s \log(1 - M^2/\hat{s})$

26 / 36



At 13 TeV, corrections to production rate >+100% for $M_{W_R}\gtrsim$ 4.5 TeV

R. Ruiz - IPPP

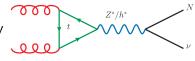


At 13 TeV, corrections to production rate > +100% for $M_{W_R} \gtrsim$ 4.5 TeV • $\sigma^{LO}(M_{W_R}=5~{\rm TeV}) \sim 0.7~{\rm fb} \implies \sigma \times ~(1~{\rm ab}^{-1})=700$ events

At 13 TeV, corrections to production rate >+100% for $M_{W_R}\gtrsim$ 4.5 TeV

- $\sigma^{LO}(M_{W_R}=5~{
 m TeV})\sim 0.7~{
 m fb} \implies \sigma imes (1~{
 m ab}^{-1})=700~{
 m events}$
- $\sigma^{\textit{NLO}+\textit{NNLL}} \sim 1.7 \text{ fb}$ $\implies \sigma \times \text{ (1 ab}^{-1}\text{)} = 1.7 \text{k events}$

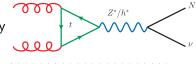
At 13 TeV, corrections to production rate >+100% for $M_{W_R}\gtrsim$ 4.5 TeV

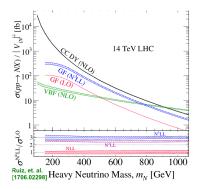

- $\sigma^{LO}(M_{W_R}=5~{\rm TeV})\sim 0.7~{\rm fb} \implies \sigma\times~(1~{\rm ab}^{-1})=700~{\rm events}$
- $\sigma^{\textit{NLO}+\textit{NNLL}} \sim 1.7 \text{ fb}$ $\implies \sigma \times \text{ (1 ab}^{-1}\text{)} = 1.7 \text{k events}$

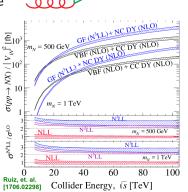
Assuming BR $\times \varepsilon \times A = 2\% \implies N \approx 34 \text{ events } (\sim 6\sigma \text{ } vs \sim 4\sigma)$ 10 Mitra, RR, Scott*, Spannowsky, PRD ('16) [1607.03504]

Q: Are high-mass W_R , Z_R unique in this respect?

Heavy N at the Edge of Partonic Phase Space¹¹

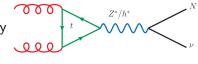

For $gg \to N\nu$, large loops and radiation near "partonic threshold" drives $Q^2 \to \hat{s}$ dynamically \Rightarrow large increase $(2-3\times)$ in production rate

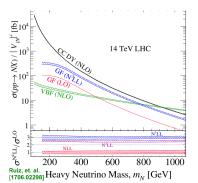


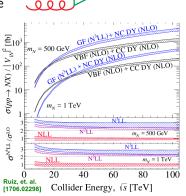

¹¹Dicus, et al ('85, '91); **TUM** [1408.0983]; **IPPP** [1602.06957; 1706.02298]

Heavy N at the Edge of Partonic Phase Space¹¹

For $gg \to N\nu$, large loops and radiation near "partonic threshold" drives $Q^2 \to \hat{s}$ dynamically \Rightarrow large increase $(2-3\times)$ in production rate






¹¹Dicus, et al ('85, '91); **TUM** [1408.0983]; **IPPP** [1602.06957 1706.02298]

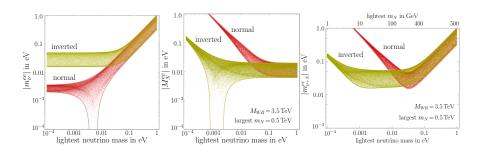
Heavy N at the Edge of Partonic Phase Space¹¹

For $gg \to N\nu$, large loops and radiation near "partonic threshold" drives $Q^2 \to \hat{s}$ dynamically \Rightarrow large increase $(2-3\times)$ in production rate

- \bullet At LHC, $\sigma^{\rm GF} \sim \sigma^{\rm DY} \gg \sigma^{\rm VBF} \implies \ \mathcal{O}(1)$ improvement in sensitivity
- For any (proposed) future pp collider, $\sigma(N\nu) > \sigma(N\ell)!$

¹¹Dicus, et al ('85, '91); **TUM** [1408.0983]; **IPPP** [1602.06957; 1706.02298]

Redux II: Beyond


Redux II: Beyond

An outlook of Left-Right Symmetry beyond LHC Run II

Complementarity to Low Energy Expts

LRSM extremely far reaching in its impact:

- Eg. flavor-changing neutral transitions via Higgs mediation 12
- Counterexample of naive picture of neutrinoless double beta decay¹³

(L) Canonical description, (C) RH currents, (R) LH+RH currents

¹³E.g., Tello, Nemevsek, Nesti, Senjanovic, Vissani [1011.3522]

¹²Chakrabortty, et al [1204.0736]; Bertolini, et al [1403.7112]; Maiezza et al [1407.3678]

• Immediate:

Immediate:

- Discovery at Run II or elsewhere?
- ▶ **Need**: pheno analyses for "PS boundary" LRSM parameter space
- ▶ **Need**: "What is the dominant production mode for a sub-TeV N_R ?"
- Standardization of pheno tools: adoption of robust, public software

State-of-Art Event Generators

NLO+PS automated in MadGraph5aMC@NLO, Herwig, Sherpa

• All one needs NLO-accurate FeynRules input model file

Explosion past two years: [feynrules.irmp.ucl.ac.be/wiki/NLOModels]

Most neutrino mass models available (just "import" and cite!)

Description	Contact	Reference	FeynRules model files	UFO libraries	Validation material
Dark matter simplified models (more details)	K. Mawatari	□ arXiv:1508.00564 , □ arXiv: 1508.05327 , □ arXiv: 1509.05785	-	DMsimp_UFO.2.zip	
Effective LR symmetric model (more details)	R. Ruiz	G+arXiv:1610.08985	effLRSM.fr	EffLRSM UFO As of 2	7 March,
GM (more details)	A. Peterson	⇔arXiv:1512.01243	-	GM_NLO UFO	الماسم المسامية
Heavy Neutrino (more details)	R. Ruiz	⇔arXiv:1602.06957	heavyN.fr	HeavyN NLO UFO Update	d regularly
Higgs characterisation (more details)	K. Mawatari	□ arXiv:1311.1829 , □ arXiv:1407.5089 , □ arXiv: 1504.00611	-	HC_NLO_X0_UFO.zip	-
Inclusive sgluon pair production	B. Fuks	G+arXiv:1412.5589	sgluons.fr	sgluons_ufo.tgz	sgluons_validation.pdf; sgluons_validation_root.tgz
Spin-2 (more details)	C. Degrande	⇔ http://arxiv.org/abs/1605.09359	dm_s_spin2.fr	SMspin2 NLO UFO	-
Stop pair -> t tbar + missing energy	B. Fuks	0>arXiv:1412.5589	stop_ttmet.fr	stop_ttmet_ufo.tgz	stop_ttmet_validation.pdf; stop_ttmet_validation_root.tgz
SUSY-QCD	B. Fuks	⇔arXiv:1510.00391	-	susyqcd_ufo.tgz	All figures available from the arxiv
Two-Higgs-Doublet Model (more details)	C. Degrande	G+arXiv:1406.3030	-	2HDM_NLO	-
Top FCNC Model (more details)	C. Zhang	G> arXiv: 1412.5594	TopEFTFCNC.fr	TopFCNC UFO	-
Vector like quarks	B. Fuks	@arXiv:1610.04622	VLQ_v3.fr	UFO in the 5FNS, UFO in the 4FNS, event generation scripts	All figures available from the arxiv
W'/Z' model (more details)	R. Ruiz, B. Fuks	G+arXiv:1701.05263	vPrimeNLO.fr	vPrimeNLO UFO	-

Modern general purpose MC packages are *very* sophisticated "With great power there must also come - great responsibility"- S. Lee ('62)

Immediate:

- Discovery at Run II or elsewhere?
- ▶ **Need**: pheno analyses for "PS boundary" LRSM parameter space
- ▶ **Need**: "What is the dominant production mode for a sub-TeV N_R ?"
- ► Standardization of pheno tools¹⁴: adoption of robust, public software

Near-term:

¹⁴RR, Neutrino Platform Kickoff Mtg [CERN, 27-31 March]

¹⁵K. Fuji, Linear Collider '17 Mtg [CERN, 7-9 June] ←□→←②→←②→←②→←②→←②→

Immediate:

- Discovery at Run II or elsewhere?
- ▶ Need: pheno analyses for "PS boundary" LRSM parameter space
- ▶ **Need**: "What is the dominant production mode for a sub-TeV N_R ?"
- ► Standardization of pheno tools¹⁴: adoption of robust, public software

Near-term:

- ▶ Discovery at Run III? $\mathcal{O}(300)$ fb⁻¹ at \sqrt{s} =13-14 TeV
- ▶ ILC-250/380: Expected update¹⁵ Sept '17 at JPS + summer '18
- European Strategy for Particle Physics '19-'20
- Chinese Five-Year Plan '20-'25

Long-term:

¹⁴RR, Neutrino Platform Kickoff Mtg [CERN, 27-31 March]

¹⁵K. Fuji, Linear Collider '17 Mtg [CERN, 7-9 June] ←□→←②→←②→←②→←②→ □→

Immediate:

- Discovery at Run II or elsewhere?
- ▶ **Need**: pheno analyses for "PS boundary" LRSM parameter space
- **Need**: "What is the dominant production mode for a sub-TeV N_R ?"
- ▶ Standardization of pheno tools¹⁴: adoption of robust, public software

Near-term:

- ▶ Discovery at Run III? $\mathcal{O}(300)$ fb⁻¹ at $\sqrt{s} = 13-14$ TeV
- ▶ ILC-250/380: Expected update¹⁵ Sept '17 at JPS + summer '18
- European Strategy for Particle Physics '19-'20
- Chinese Five-Year Plan '20-'25
- Long-term: $\mathcal{L} = 3 5$ ab⁻¹ of LHC + 50 ab⁻¹ of Belle 2 data
 - Discovery?

Long-long-term:

¹⁴RR, Neutrino Platform Kickoff Mtg [CERN, 27-31 March]

¹⁵K. Fuji, Linear Collider '17 Mtg [CERN, 7-9 June] 4 D > 4 D > 4 E > 4 E > 9 Q P

Immediate:

- Discovery at Run II or elsewhere?
- ▶ **Need**: pheno analyses for "PS boundary" LRSM parameter space
- ▶ **Need**: "What is the dominant production mode for a sub-TeV N_R ?"
- ► Standardization of pheno tools¹⁴: adoption of robust, public software

Near-term:

- ▶ Discovery at Run III? $\mathcal{O}(300)$ fb⁻¹ at \sqrt{s} =13-14 TeV
- ▶ ILC-250/380: Expected update¹⁵ Sept '17 at JPS + summer '18
- ► European Strategy for Particle Physics '19-'20
- ► Chinese Five-Year Plan '20-'25
- Long-term: $\mathcal{L} = 3 5 \text{ ab}^{-1}$ of LHC $+ 50 \text{ ab}^{-1}$ of Belle 2 data
 - Discovery?
- Long-long-term:Outcome of near-term choices. Many discoveries?

¹⁴**RR**, Neutrino Platform Kickoff Mtg [CERN, 27-31 March]

¹⁵K. Fuji, Linear Collider '17 Mtg [CERN, 7-9 June]

The origin of tiny neutrino masses is still a puzzle and may manifest at collider experiments via the production of LRSM partners, e.g., W_R^{\pm} , N.

¹⁶Meizza, et al [1503.06834]; Gluza, et al [1604.01388]; **IPPP** [many] → ⟨३→⟩ ⟨३⟩ ∨००

The origin of tiny neutrino masses is still a puzzle and may manifest at collider experiments via the production of LRSM partners, e.g., W_R^{\pm} , N.

After several years, LHC data has falsified "Day 1" parameter space

- Not thrilled, but fact of life and nature
- "Day 1" pheno literature not designed for "edges of phase space"

R. Ruiz - IPPP

The origin of tiny neutrino masses is still a puzzle and may manifest at collider experiments via the production of LRSM partners, e.g., W_R^{\pm} , N.

After several years, LHC data has falsified "Day 1" parameter space

- Not thrilled, but fact of life and nature
- "Day 1" pheno literature not designed for "edges of phase space"

Over the past decade, a revolution in tools, formalisms, and understanding

- Seesaw pheno is being systematically rewritten¹⁶
- Collider sensitivity "at the edges" is pretty good
 - Complimentary to lower energy observables

The origin of tiny neutrino masses is still a puzzle and may manifest at collider experiments via the production of LRSM partners, e.g., W_R^{\pm} , N.

After several years, LHC data has falsified "Day 1" parameter space

- Not thrilled, but fact of life and nature
- "Day 1" pheno literature not designed for "edges of phase space"

Over the past decade, a revolution in tools, formalisms, and understanding

- Seesaw pheno is being systematically rewritten¹⁶
- Collider sensitivity "at the edges" is pretty good
 - Complimentary to lower energy observables

Remember: "The LHC is planned to run over the next 20 years, with several stops scheduled for upgrades and maintenance work." [press.cern]

- ullet High-Luminosity LHC and Belle II goals: 1-5 ab $^{-1}$ and 50 ab $^{-1}$
- Premature to claim "nightmare scenario" (SM Higgs + nothing else)

Thank you.