FishTail

A Decision Support Mapper for Conserving Stream Fish Habitats of the NE CSC Region

Craig Paukert1,3, Dana M. Infante2, Jana Stewart3, Wesley M. Daniel2,3, Nick Sievert1, Jodi Whittier1, Kyle Herreman2, Yin-Phan Tsang2
Approach

1. Assemble data
2. Common spatial framework
3. Stakeholder-driven species
4. Account for natural variation

5. Score stream reaches based on fish response to:

- Land use
- Fragmentation
- Water quality
- Climate change
Stakeholder selected priority fish species for assesses the current and future risk of degradation to fish habitat

Final species count (105 total)

- N=63
 - Reaches 4,147
- N=75
 - Reaches 4,811
- N=76
 - Reaches 8,821
- N=85
 - Reaches 4,627
Cumulative land use

- Local catchment
- Network catchment
- Local 90m buffer
- Network 90m buffer
FISHTAIL: A decision support mapper

Fragmentation

Risk of habitat degradation due to stream network fragmentation:
- 1 - Very high
- 2 - High
- 3 - Moderate
- 4 - Low
- 5 - Very low

States boundaries are also marked on the map.
Water Quality Impairment (303d)

Cannot compare across states

- Differences between states are not necessarily due to differences in water quality. May differ due to:
 - Sampling
 - Standards
 - Designated Uses
 - Listing Approaches
Climate Change
Where are the best local catchments with lowest risk of degradation, that **will not** change class with future climate scenarios?

- Land use
- Fragmentation
- Water quality
- Climate change

Wisconsin and Michigan

Opportunities for conservation of current and future quality fish habitat

Catchments = 555
• Where are the best local catchments that **will** change class with future climate scenarios? Do they connect with quality habitat that **will not** change in the future?

- Land use
- Fragmentation
- Water quality
- Climate change

Future loss of quality fish habitat may be off-set by connectivity with habitat that **will not** change.

Wisconsin and Michigan

Catchments
- Will not change (**blue**) = 555
- Will change (**orange**) = 4,111
FishTail Mapper

https://ccviewer.wim.usgs.gov/Fishtail/
Data Gaps

1. Fine scale data!
2. Stream temperature models
3. Hydrology
4. Mechanisms
Stakeholder Involvement

1. Webinars (4) to identify priority species, feedback on results, review of mapper
2. Challenge: active engagement with a broad geographic audience/project

Stakeholder Use

1. Data public in last week
2. WI DNR: Identify possible Brook Trout reserves; review trout stocking plan
3. ETPBR LCC- expand project to entire MS River basin; better nutrient/WQ layers using SPARROW
Acknowledgments

- Funding provided from Northeast Climate Science Center
- Mary Ratnaswamy (USGS Director, NE CSC)
- Michelle Staudinger (Science Coordinator, NE CSC)
- Jason Robinson (University of Illinois) for use of climate variables
- Arthur Cooper (MSU/ Michigan DNR) for use of his dam metrics
- Big thanks to webinar survey respondents

All our data providers:
- USGS Aquatic GAP program and National Fish Habitat Partnership
- Joe Rogers (Rushing Rivers Institute), Kevin Wehrly (Michigan Department Natural Resources), Angela Grier (Indiana Department of Natural Resources), Matt Combes (Missouri Department of Conservation), Gust Annis (Missouri Resource Assessment Partnership), Mike Hardin (Kentucky Department for Fish and Wildlife), Rodney Pierce (Kentucky Department for Environmental Protection), Jeff DeShon (U.S. Environmental Protection Agency), Bob Miltner (U.S. Environmental Protection Agency), Jim McKenna (U.S. Geological Survey), Todd Richards (Massachusetts Division of Fish and Wildlife), Arlene Olivero (The Nature Conservancy), Corinne Smith (The Nature Conservancy), Mark Hudy (U.S. Department Agriculture, Forest Service), Dan Polhemus (US Fish and Wildlife Service), Ellen Dickey (Delaware Department of Natural Resources), Ann Holtrop (Illinois Department of Natural resources), Tom Wilton (Iowa Department of Natural Resources), John Brumely (Kentucky Division of Water), Mary Gallagher (Maine Department of Environment Protection), Ross Williams (Maryland Department of Natural Resources), John Sandberg (Minnesota Pollution Control Agency), John Magee (New Hampshire Fish and Game Department), Lisa Barno (New Jersey Division of Fish and Wildlife), Steve Hurst (New York State Department of Environmental Conservation), Dennis Mishne (Ohio Environmental Protection Agency), Rich Langdon (Vermont Fish and Wildlife Department), Russell Burman (Pennsylvania Fish and Boat Commission), Brant E. Fisher (Indiana Department Natural Resources), Stacey Sobat (Indian Department Environmental Management), and Mike Slattery (U.S. Geological Survey).
Upper Midwest River (MRI CGCM 2 3 2a)

Present

Future

Class E
Walleye
Logperch
Northern Pike

Class C
Channel Catfish
Common Carp
Emerald Shiner

E → C
Applications*

Which protected areas in Vermont may be best suited for ensuring the long term persistence of native fish communities?

* These types of queries can be conducted by downloading the geodatabase from sciencebase
Upper Midwest

Risk of stream class change due to future climate change:
- Very high
- High
- Moderate
- Low
- Very low
Application*

Which areas in Vermont may be best suited for ensuring the long term persistence of native fish communities?

Land use:

1. Identify locations with “low” and “very low” risk of habitat degradation in the local catchment due to land use.

* These types of queries can be conducted by downloading the geodatabase from sciencebase
Fragmentation

2. Identify locations with “low” and “very low” risk of habitat degradation due to fragmentation.
Water Quality

3. Eliminate any locations with known water quality impairments.
Climate

4. Select all streams with “Low” or “Very Low” risk of change in class due to predicted changes in climate.
Refugia

Catchments in light blue are those catchments which met the previous requirements and are likely well suited to allow for the long term persistence of the fish community.