Assessment of Innovative Ground Modification Techniques Phase A
Technical Report Document Page

SPRI.11.01.15A

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
Assessment of Innovative Ground Modification Techniques Phase A

5. Report Date
September 2004

6. Performing Organization Code

7. Author(s)
Dr. Heather J. Miller

UMTC-05-01

9. Performing Organization Name and Address
University of Massachusetts Dartmouth
285 Old Westport Road
North Dartmouth, MA 02724-2300

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
Executive Office of Transportation
Ten Park Plaza, Room 4150
Boston, MA 02116

13. Type of Report and Period Covered
Final Report
09/27/01 to 09/30/04

15. Supplementary Notes
Prepared in cooperation with the Massachusetts Highway Department and the Federal Highway Administration.

16. Abstract
As our society continues to expand, land that is suitable for construction in its natural state becomes increasingly scarce, and we are forced to place many of our projects on sites that would have formerly been considered “unsuitable.” Highway structures located on soils with poor support conditions are often placed on deep foundations to transfer the loads to more competent bearing materials. Recently, however, advances in ground modification techniques have produced alternatives which, in many cases, are much more cost-effective. Reinforcement of foundation soils with geosynthetics and in situ densification of unsuitable soils represent two innovative approaches for cost-effective ground modification. Phase A of this research contract dealt with the former technology. Phase B involved research related to an in situ densification project.

Under phase A, the subject of this report, a full-scale field study was conducted to compare the load-settlement behavior of two abutments placed on shallow foundations: one placed on granular soil reinforced with several layers of geogrid, and the other placed on unreinforced soil. On this project, it is likely that the contractor minimized the elastic settlement of the granular fill beneath the abutments as a result of the diligent construction procedures followed during placement and compaction of the granular fill. Because minimal settlements were observed, it was not possible to make definitive conclusions regarding the use of geogrid layers to limit settlements.

17. Key Word

18. Distribution Statement

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
69

22. Price
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized