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1. Let P be a finite additive set function defined over algebra A, with P (Ω) = 1, P (A) ≥ 0, for any
A ∈ A. Show that the following four conditions are equivalent:
(1) P is σ-additive (i.e. P is a probability measure);
(2) P is continuous from below: i.e. for any A1, · · · , An, · · · ∈ A, s.t. An ⊆ An+1 and ∪∞i=1An ∈ A,

lim
n→∞

P (An) = P (
∞⋃
n=1

An) = P ( lim
n→∞

An)

(3) P is continuous from above: i.e. for any A1, · · · , An, · · · ∈ A, s.t. An ⊇ An+1 and ∩∞i=1An ∈ A,

lim
n→∞

P (An) = P (
∞⋂
n=1

An) = P ( lim
n→∞

An)

(4) P is continuous at the empty set ∅, i.e. for any A1, · · · , An ∈ A, An+1 ⊆ An and ∩∞n=1An = ∅,

lim
n→∞

P (A) = P ( lim
n→∞

An) = P (∅) = 0

2. Find two random variables X and Y such that E[XY ] = E[X] ·E[Y ] but X and Y are not indepen-
dent.

3. Suppose X, Y are two random variables with joint p.d.f f(x, y). Show that the density of U = X+Y
is given by the formula

FU(u) =

∫ ∞
−∞

f(u− v, v)dv .

Hint: Use the change of variable formula.

4. Consider the random variable X with density f(x) = 1
4
e−x + 3

2
e−2x. Write down an algorithm to

simulate the random variable X (it should use only random numbers).

5. Let X be a random variable and An be a sequence of sets in Ω. IF E[|X|] <∞ and P[An]→ 0, show
that

lim
n→

∫
An

X(ω)P(dω) = 0 .

6. In coin-tossing, let s be any sequence of H,T with length k. Denote

An = {ω : (ωn, · · · , ωn+k−1) = s}, 0 < P (H) < 1

Show that P (An, i.o.) = 1. (Hint: you need to construct a sequence of independent random variables
first.)

7. (a) Show that if Xn → X in probability then Xn → X in distribution.

(b) By giving a counterexample, show that Xn → X in distribution does not imply Xn → X in
probability.
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8. Assume that φ(t) is the characteristic function of a random variable. Prove that |φ(t)|2 is also the
characteristic function of a random variable. Let φ(t) be the characteristic function of a random
variable X. Assume that φ′(t) exists for all t in some neighborhood of 0.
(a) Assume that

lim
t→0

φ(t)− 1

t2
=

1

2
σ2 > −∞

Prove that E(X) = 0 and E(X2) = σ2. (Hint. Using the assumptions, determine the value of φ′(0)
and using L’Hopital’s Rule, prove that φ′′(0) exists and calculate its value.

9. Let Ω = N. Define Nn(E) = |E ∩ {0, 1, · · · , n}|. Let C be the collection of sets such that

C = {E ⊂ Ω | lim
n→∞

Nn(E)

n
exists } .

Show that C is not a σ-field. Give an example of E ∈ Ω that is not in C.

10. Let X and Y be two independent random variables. If E[X] <∞, show that for any Borel set B,∫
Y ∈B

X(ω)P(dω) = E[X]P[Y ∈ B] .

11. Let Xn be a sequence of random variables. If∑
n

P[|Xn| < n] <∞ ,

show that

lim sup
n→∞

|Xn|
n
≤ 1

almost surely.

12. Prove Slutsky’s theorem: If Xn → X in distribution, Yn → c in probability for some c ∈ R, then
Xn + Yn → X + c in probability.

13. Let X1, X2, · · · be i.i.d nonnegative random variables such that E[X1] = 1 and Var[X1] = 1. Let
Sn = X1 + · · ·+Xn. Show that 2(

√
Sn −

√
n)→ N(0, 1) in distribution.

14. Let Xn be a Poisson random variable with parameter n. Show that Xn−n√
n

converge in distribution to
a standard normal random variable.

15. Assume that Ti, i = 1, 2, · · · are IID random variables with such that E[Ti] < ∞ and 0 < Ti < ∞
with probability 1. Let Sn = T1 + · · ·+ Tn.

Nt =
∞∑
n=1

I{Sn≤t} . (1)

Show that, almost surely,

lim
t→∞

Nt

t
=

1

E[T1]
(2)
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16. Two individuals A and B require a hear transplant and and the remaining time they will live without
such a transplant is exponential distributed with mean µA and µB respectively. Individual A is first
on the list to receive a transplant and B is second, provided of course they are still alive when a
heart is available.

New hearts become available according to a Poisson process with rate λ. Compute

(a) The probability that A receives a new heart.

(b) The probability that B receives a new heart.

17. A process moves on the integers S = {1, · · · , N}. Starting with 1 the process moves to an integer
greater than its present position and with equal probability to any greater integer. The state N is
absorbing. Find the expected number of steps until reaching N .

18. Suppose P (x, y) is the transition matrix of an irreducible Markov chain on the state space S. A
function f : S → R is harmonic at x if

f(x) = Pf(x) ≡
∑
y

P (x, y)f(y) (3)

Show that if f is harmonic at every point x ∈ S then f is constant.

19. Suppose that Xt is Poisson process with rate λ and that each event can be characterized as type I
with probability p or type II with probability (1− p). Let XI

t and XII
t be the number of events of

type I and II respectively up to time t. Show that XI
t and XII

t are independent Poisson process
with rate λp and λ(1− p).

20. Let Zn be a sequence of independent geometric random variables, i.e. for k ≥ 0 P (Zn = k) = (1−p)kp.
Let Xn = max(X0, Z1, Z2, · · ·Zn) where X0 is a random variable independent of Zn, n ≥ 1. Show
that Zn is a Markov chain and compute its transition probabilities. Does the Markov chain has a
stationary distribution?

21. A cat C and a mouse M are moving everyday from room 1 to room 2 according to a Markov chain
with respective transition matrices

PC =

(
0.2 0.8
0.5 0.5

)
, PM =

(
0.6 0.4
0.1 0.9

)
(a) In the long run how often are the cat and the mouse in the same room.

(b) Today C is in room 1 while M is in room 2. Compute the expected time until they are in the
same room.

(c) Today C is in room 1 while M is in room 2. Compute the probability that they first meet in
room 1.

22. In a certain game that ends up in 1=Win, 2=Tie, 3=Loose, a certain team performance is modeled
by a Markov chain transition matrix

P =

 0.6 0.2 0.2
0.4 0.4 0.2
0.3 0.3 0.4

 .

For each win each player get $1000 and for each tie $200. In addition if there is two wins a row each
player player gets an additional $1000. In the long run how much does a player win per game.
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23. Consider the nearest neighbor random walk on Z with P (j, j + 1) = p and P (j, j − 1) = (1 − p).
Show that the random walk is recurrent if and only if p = 1

2
.

24. Consider the birth and death process Xt with birth rate λn = nλ+ α and death rate µn = mµ.

(a) Derive differential equation for the mean m(t) = E[Xt] and the variance v(t) = E[X2
t ]−m(t)2

and solve them.

(b) Determine for which value of λ, µ, and α the Markov chain Xt is is recurrent.

25. If a given individual is alive at some time t, its additional life length is is exponentially distributed
with parameter λ. Upon death an individual has k offsprings with probability k (assume for simplicity
p1 = 0). Assume all individuals acts independently of each other and of the history of the process.

(a) Let Xt denote the population at time t, compute the generator of the process and write down
a set of differential equations for pj(t) = P (Xt = j}.

(b) Consider the binary splitting case where either an individual dies without offspring or leaves
exactly two offsprings. Find the stationary distribution for Xt.

26. Let S be a countable state space and Zn, n = 1, 2, 3 · · · be a sequence of independent identically
distributed random variable taking value in some space E.

(a) Show that if f : S × E → S is a function and X0 is independent of all the Zn then

Xn = f(Xn−1, Zn) (4)

defines a Markov chain.

(b) Conversely show that any Markov chain on S can written in the form (4).
Hint: Take Zn to random numbers and think of simulation algorithms.
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