Practice Problems for the Probability Qualifying Exam

Department of Mathematics and Statistics, Umass Amherst,

July 23, 2018

- 1. Let P be a finite additive set function defined over algebra \mathcal{A} , with $P(\Omega) = 1$, $P(A) \geq 0$, for any $A \in \mathcal{A}$. Show that the following four conditions are equivalent:
 - (1) P is σ -additive (i.e. P is a probability measure);
 - (2) P is continuous from below: i.e. for any $A_1, \dots, A_n, \dots \in \mathcal{A}$, s.t. $A_n \subseteq A_{n+1}$ and $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$,

$$\lim_{n \to \infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n) = P(\lim_{n \to \infty} A_n)$$

(3) P is continuous from above: i.e. for any $A_1, \dots, A_n, \dots \in \mathcal{A}$, s.t. $A_n \supseteq A_{n+1}$ and $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$,

$$\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\lim_{n \to \infty} A_n)$$

(4) P is continuous at the empty set \emptyset , i.e. for any $A_1, \dots, A_n \in \mathcal{A}$, $A_{n+1} \subseteq A_n$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$,

$$\lim_{n \to \infty} P(A) = P(\lim_{n \to \infty} A_n) = P(\emptyset) = 0$$

- 2. Find two random variables X and Y such that $E[XY] = E[X] \cdot E[Y]$ but X and Y are not independent.
- 3. Suppose X, Y are two random variables with joint p.d.f f(x, y). Show that the density of U = X + Y is given by the formula

$$F_U(u) = \int_{-\infty}^{\infty} f(u - v, v) dv.$$

Hint: Use the change of variable formula.

- 4. Consider the random variable X with density $f(x) = \frac{1}{4}e^{-x} + \frac{3}{2}e^{-2x}$. Write down an algorithm to simulate the random variable X (it should use only random numbers).
- 5. Let X be a random variable and A_n be a sequence of sets in Ω . IF $\mathbb{E}[|X|] < \infty$ and $\mathbb{P}[A_n] \to 0$, show that

$$\lim_{n \to \infty} \int_{A_n} X(\omega) \mathbb{P}(\mathrm{d}\omega) = 0.$$

6. In coin-tossing, let s be any sequence of H,T with length k. Denote

$$A_n = \{ \omega : (\omega_n, \dots, \omega_{n+k-1}) = s \}, \quad 0 < P(H) < 1 \}$$

Show that $P(A_n, i.o.) = 1$. (Hint: you need to construct a sequence of independent random variables first.)

- 7. (a) Show that if $X_n \to X$ in probability then $X_n \to X$ in distribution.
 - (b) By giving a counterexample, show that $X_n \to X$ in distribution does not imply $X_n \to X$ in probability.

- 8. Assume that $\phi(t)$ is the characteristic function of a random variable. Prove that $|\phi(t)|^2$ is also the characteristic function of a random variable. Let $\phi(t)$ be the characteristic function of a random variable X. Assume that $\phi'(t)$ exists for all t in some neighborhood of 0.
 - (a) Assume that

$$\lim_{t \to 0} \frac{\phi(t) - 1}{t^2} = \frac{1}{2}\sigma^2 > -\infty$$

Prove that E(X) = 0 and $E(X^2) = \sigma^2$. (Hint. Using the assumptions, determine the value of $\phi'(0)$ and using L'Hopital's Rule, prove that $\phi''(0)$ exists and calculate its value.

9. Let $\Omega = \mathbb{N}$. Define $N_n(E) = |E \cap \{0, 1, \dots, n\}|$. Let \mathcal{C} be the collection of sets such that

$$C = \{ E \subset \Omega \mid \lim_{n \to \infty} \frac{N_n(E)}{n} \text{ exists } \}.$$

Show that \mathcal{C} is not a σ -field. Give an example of $E \in \Omega$ that is not in \mathcal{C} .

10. Let X and Y be two independent random variables. If $\mathbb{E}[X] < \infty$, show that for any Borel set B,

$$\int_{Y \in B} X(\omega) \mathbb{P}(\mathrm{d}\omega) = \mathbb{E}[X] \mathbb{P}[Y \in B].$$

11. Let X_n be a sequence of random variables. If

$$\sum_{n} \mathbb{P}[|X_n| < n] < \infty,$$

show that

$$\limsup_{n \to \infty} \frac{|X_n|}{n} \le 1$$

almost surely.

- 12. Prove Slutsky's theorem: If $X_n \to X$ in distribution, $Y_n \to c$ in probability for some $c \in \mathbb{R}$, then $X_n + Y_n \to X + c$ in probability.
- 13. Let X_1, X_2, \cdots be i.i.d nonnegative random variables such that $\mathbb{E}[X_1] = 1$ and $\operatorname{Var}[X_1] = 1$. Let $S_n = X_1 + \cdots + X_n$. Show that $2(\sqrt{S_n} \sqrt{n}) \to N(0, 1)$ in distribution.
- 14. Let X_n be a Poisson random variable with parameter n. Show that $\frac{X_n-n}{\sqrt{n}}$ converge in distribution to a standard normal random variable.
- 15. Assume that T_i , $i=1,2,\cdots$ are IID random variables with such that $E[T_i]<\infty$ and $0< T_i<\infty$ with probability 1. Let $S_n=T_1+\cdots+T_n$.

$$N_t = \sum_{n=1}^{\infty} I_{\{S_n \le t\}} \,. \tag{1}$$

Show that, almost surely,

$$\lim_{t \to \infty} \frac{N_t}{t} = \frac{1}{E[T_1]} \tag{2}$$

16. Two individuals A and B require a hear transplant and and the remaining time they will live without such a transplant is exponential distributed with mean μ_A and μ_B respectively. Individual A is first on the list to receive a transplant and B is second, provided of course they are still alive when a heart is available.

New hearts become available according to a Poisson process with rate λ . Compute

- (a) The probability that A receives a new heart.
- (b) The probability that B receives a new heart.
- 17. A process moves on the integers $S = \{1, \dots, N\}$. Starting with 1 the process moves to an integer greater than its present position and with equal probability to any greater integer. The state N is absorbing. Find the expected number of steps until reaching N.
- 18. Suppose P(x,y) is the transition matrix of an irreducible Markov chain on the state space S. A function $f: S \to \mathbf{R}$ is harmonic at x if

$$f(x) = Pf(x) \equiv \sum_{y} P(x, y)f(y)$$
(3)

Show that if f is harmonic at every point $x \in S$ then f is constant.

- 19. Suppose that X_t is Poisson process with rate λ and that each event can be characterized as type I with probability p or type II with probability p. Let X_t^I and X_t^{II} be the number of events of type I and II respectively up to time t. Show that X_t^I and X_t^{II} are independent Poisson process with rate λp and $\lambda(1-p)$.
- 20. Let Z_n be a sequence of independent geometric random variables, i.e. for $k \ge 0$ $P(Z_n = k) = (1-p)^k p$. Let $X_n = max(X_0, Z_1, Z_2, \dots Z_n)$ where X_0 is a random variable independent of Z_n , $n \ge 1$. Show that Z_n is a Markov chain and compute its transition probabilities. Does the Markov chain has a stationary distribution?
- 21. A cat C and a mouse M are moving everyday from room 1 to room 2 according to a Markov chain with respective transition matrices

$$P_C = \begin{pmatrix} 0.2 & 0.8 \\ 0.5 & 0.5 \end{pmatrix}, \quad P_M = \begin{pmatrix} 0.6 & 0.4 \\ 0.1 & 0.9 \end{pmatrix}$$

- (a) In the long run how often are the cat and the mouse in the same room.
- (b) Today C is in room 1 while M is in room 2. Compute the expected time until they are in the same room.
- (c) Today C is in room 1 while M is in room 2. Compute the probability that they first meet in room 1.
- 22. In a certain game that ends up in 1=Win, 2=Tie, 3=Loose, a certain team performance is modeled by a Markov chain transition matrix

$$P = \left(\begin{array}{ccc} 0.6 & 0.2 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right) .$$

For each win each player get \$1000 and for each tie \$200. In addition if there is two wins a row each player gets an additional \$1000. In the long run how much does a player win per game.

- 23. Consider the nearest neighbor random walk on **Z** with P(j, j + 1) = p and P(j, j 1) = (1 p). Show that the random walk is recurrent if and only if $p = \frac{1}{2}$.
- 24. Consider the birth and death process X_t with birth rate $\lambda_n = n\lambda + \alpha$ and death rate $\mu_n = m\mu$.
 - (a) Derive differential equation for the mean $m(t) = E[X_t]$ and the variance $v(t) = E[X_t^2] m(t)^2$ and solve them.
 - (b) Determine for which value of λ , μ , and α the Markov chain X_t is is recurrent.
- 25. If a given individual is alive at some time t, its additional life length is exponentially distributed with parameter λ . Upon death an individual has k offsprings with probability k (assume for simplicity $p_1 = 0$). Assume all individuals acts independently of each other and of the history of the process.
 - (a) Let X_t denote the population at time t, compute the generator of the process and write down a set of differential equations for $p_j(t) = P(X_t = j)$.
 - (b) Consider the binary splitting case where either an individual dies without offspring or leaves exactly two offsprings. Find the stationary distribution for X_t .
- 26. Let S be a countable state space and Z_n , $n = 1, 2, 3 \cdots$ be a sequence of independent identically distributed random variable taking value in some space E.
 - (a) Show that if $f: S \times E \to S$ is a function and X_0 is independent of all the Z_n then

$$X_n = f(X_{n-1}, Z_n) \tag{4}$$

defines a Markov chain.

(b) Conversely show that any Markov chain on S can written in the form (4). Hint: Take Z_n to random numbers and think of simulation algorithms.