Practice problems for applied math qualifying exam

1. Consider the predator-prey model given by

$$
\begin{aligned}
x^{\prime} & =x(\alpha-\beta y) \\
y^{\prime} & =y(-\gamma+\delta x),
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta$ are all positive.
(a) Show that this model has two equilibria, a saddle and a center. Find the stable and unstable manifold of the saddle.
(b) Find the expression of $d y / d x$. Show that there exists a function $V(x, y)$ that is invariant, i.e., $V(x(t), y(t)) \equiv$ constant .
(c) From (b) we can conclude that every orbit is periodic. Find the average y-population over the period. T, of an orbit by using

$$
\int_{0}^{T} \mathrm{~d} t \frac{x^{\prime}(t)}{x(t)}=\int_{0}^{T} \mathrm{~d} t(\alpha-\beta y(t))
$$

2. Let

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =-x+y\left(1-x^{2}-2 y^{2}\right) .
\end{aligned}
$$

Show that this system admits a limit cycle.
3. Consider the linear initial value problem $x^{\prime}=A(t) x, x(0)=x_{0}$ for $x \in \mathbb{R}^{n}$. If the matrixvalued function A is continuous on \mathbb{R}, show that $|x(t)|$ it exists for all time $t \in \mathbb{R}$.
4. Give one example of ODE $x^{\prime}=f(x), x(0)=x_{0}$ with a continuous vector field $f(x)$ that admits at least two solutions.
5. (a) Give the definition for an equilibrium x^{*} to be asymptotically stable.
(b) Give one example such that there is a neighborhood N of x^{*}, and every point in N approaches x^{*} as $t \rightarrow \infty$, but x^{*} is not asymptotically stable.
6. (a) Give the definition of ω-limit set.
(b) Show that an ω-limit set must be invariant.
(c) Consider system

$$
\begin{aligned}
x^{\prime} & =x\left(1-\left(x^{2}+y^{2}\right)\right)-y \\
y^{\prime} & =y\left(1-\left(x^{2}+y^{2}\right)\right)+x .
\end{aligned}
$$

Let $(x, y)=(0.2018,0.2019)$. Find the ω-limit set and α-limit set of $\phi_{(x, y)}(t)$.
7. Consider initial value problem

$$
\begin{aligned}
& u^{\prime \prime}+u+\epsilon u^{3}=0 \\
& u(0)=1, \quad u^{\prime}(0)=0
\end{aligned}
$$

for $\epsilon \ll 1$.
(a) The regular perturbation expands $u(t)$ as

$$
u(t)=u_{0}(t)+\epsilon u_{1}(t)+\epsilon^{2} u_{2}(t)+\cdots
$$

Find $u_{0}(t)$ and $u_{1}(t)$. (Hint: $\left.\cos ^{3}(t)=\frac{3}{4} \cos (t)+\frac{1}{4} \cos (3 t)\right)$
(b) Let $u(\tau)=u_{0}(\tau)+\epsilon u_{1}(\tau)+\epsilon^{2} u_{2}(\tau)+\cdots$ with $\tau=\omega t$, where

$$
\omega=1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots
$$

If $\omega_{1}=3 / 8$, use regular perturbations to find $u_{0}(\tau)$ and $u_{1}(\tau)$.
(c) Is the approximation $u_{0}(\tau)+\epsilon u_{1}(\tau)$ better than $u_{0}(t)+\epsilon u_{1}(t)$? Why?
8. Use singular perturbation method to find an approximation of the boundary value problem

$$
\begin{aligned}
& \epsilon y^{\prime \prime}+y^{\prime}=2 x, \quad x \in[0,1] \\
& y(0)=1, \quad y(1)=1
\end{aligned}
$$

for $0<\epsilon \ll 1$.
9. Let X_{n} be a simple symmetric random walk on \mathbb{Z} with $X_{0}=0$ that steps left or right each with probability 0.5 . Let $w(m, N)=\mathbb{P}\left[X_{N}=m\right]$.
(a) Calculate $w(m, N)$.
(b) What is the expectation and variance of X_{N} ?
(c) Use Stirling's formula $n!\approx \sqrt{2 \pi n} n^{n} e^{-n}$ to give the approximation

$$
w(m, N) \approx\left(\frac{2}{\pi N}\right)^{1 / 2} e^{-m^{2} / 2 N}
$$

(d) Let

$$
\hat{w}(x, t)=w\left(\frac{x}{\Delta x}, \frac{t}{\Delta t}\right) .
$$

Show that

$$
\hat{w}(x, t+\Delta t)=\frac{1}{2}(\hat{w}(x-\Delta x, t)+\hat{w}(x+\Delta x, t)) .
$$

(e) Fix t, let $N \rightarrow \infty$. Assume \hat{w} is twice differentiable and let $u=\hat{w} /(2 \Delta x)$. Find the relation between Δx and Δt such that $u(x, t)$ is approximated by

$$
u_{t}=15 u_{x x}
$$

as $N \rightarrow \infty$.
10. Suppose we wish to determine the imprint radius d of an elastic ball hitting a surface. After consideration, d should depend on the ball's radius r, velocity v, mass m, as well as the modulus of elasticity E (in units of kilograms/(meter seconds ${ }^{2}$)) and the Poisson ratio γ (a dimensionless quantity). Find a dimensionless relationship and determine the number of independent parameters present in the problem.
11. Determine the equilibria for the following system along with the stability

$$
\begin{aligned}
& \dot{x}=\left(x-y^{2}\right) e^{y} \\
& \dot{y}=x+3 y-4
\end{aligned}
$$

12. Determine the stability of the origin for the following system

$$
\begin{aligned}
& \dot{x}=2 x^{2} \sin (y) \cos (y)+4 y^{3} \cos (x) \\
& \dot{y}=-2\left(1+\sin ^{2}(y)\right)+y^{4} \sin (x)-y
\end{aligned}
$$

13. Consider the dynamical system

$$
\frac{d x}{d t}=\left(x-\frac{1}{\sqrt{3}}\right)\left(r-x+x^{3}\right)
$$

where $r \in \mathbb{R}$ is a parameter.
(a) Find and plot the equilibrium solution(s) against the parameter r (use solid lines for stable curves and dashed lines for unstable curves).
(b) Find and classify the bifurcation points.
14. Compute the monodromy matrix for the system $x^{\prime}(t)=A(t) x(t)$, where $A(t)$ is 2π-periodic and defined by

$$
A(t)= \begin{cases}{\left[\begin{array}{cc}
-1 & 100 \sin (t) \\
0 & -1
\end{array}\right]} & t \in[0, \pi) \\
{\left[\begin{array}{cc}
-1 & 0 \\
100 \sin (t) & -1
\end{array}\right]} & t \in[\pi, 2 \pi)\end{cases}
$$

