Located on the 3rd and 6th floors in the Conte Polymer Research Building and in the basement of the Lederle Graduate Research Tower the NMR facility houses 5 state-of-the-art instruments to study structure, dynamics and interactions of small molecules and biological macromolecules such as proteins, nucleic acids, lipids, and their complexes.

The facility accepts samples and will perform requested analysis. We offer training to users who want to conduct their experiments independently. We charge a fee for a service for both internal and external researchers, academic or industry based. Following an initial consultation, training and setting up of experiments is arranged through the director.

ACCESS
To request access, training, or additional information please contact Weiguo Hu at weiguoh@polysci.umass.edu for solid state and small organic molecule samples. For biomolecular NMR assistance contact Jasna Fejzo at jfejzo@umass.edu.

Our rates are competitive and tiered based on needs and usage. Visit our website at umass.edu/ials/nmr for current listing.

TRAINING
Training for new users consists of:
- lab safety training,
- operation of the instrument and associated software,
- use of data analysis software,
- exporting or presenting data,
- clean up and shutdown of the instrumentation.

Once the training is complete, researchers may schedule their experiments through the director of Nuclear Magnetic Resonance (Weiguo Hu or Jasna Fejzo) or online through FOM (Facilities Online Manager) at fom.umass.edu/fom.
Testing interactions between the ligand and Arg residues on the partner protein.

Probing Specific Interactions Between Ligands and Macromolecules

NMR could be used as a conformational assay to distinguish between ligands that induce conformational change (functional antagonists) and those that do not (agonists – inactive inhibitors).

APPLICATIONS OF NMR

Solid State NMR
- Chemical structure of polymers and inorganic molecules
- Polymer morphology and molecular dynamics
- Membrane peptides and proteins

Liquid State, High-Resolution NMR
- Microstructure of polymers
- Constitution, conformation and dynamics of small molecules
- Biomolecular NMR
 - Characterization of dynamics and mobility, enzyme kinetics, protein folding
 - Ligand binding and molecular interactions in solution
- Metabolomics – Study of metabolites & metabolic pathways in cells, tissues and body fluids

RESEARCH CAPABILITIES

Probing Specific Interactions Between Ligands and Macromolecules

NMR Can Determine Binding Mode of Ligands in Solution

Binding or Bending – NMR Conformational Assay

Identifying Signaling-Related Dynamics by NMR

Polymer Microstructure, Morphology, and Diffusion

We Offer Early Drug Discovery Project Support:

NMR in Drug Discovery
- Fragment based screening (FBS)
 - Primary screening of mixtures and mixture deconvolution
 - FBS Follow up
- Hit validation (from HTS; from literature) & binding specificity determination
- Ligand binding mode determination:
 - NMR constraints determination
 - NMR guided molecular modeling
- Epitope mapping of biological drugs
- Assistance in biochemical & biophysical assay design

SPECTROMETERS
- Bruker Avance III 400 MHz, 500 MHz, 600 MHz (high-resolution), 600 MHz (solid-state and diffusion)
- Agilent 700 MHz

PROBES AND ACCESSORIES
- Cryoprobes (600 MHz and 700 MHz)
- Prodigy® Cryoprobes (400 MHz and 500 MHz)
- 1.9mm solid-state probe with 1H, 19F, 13C and 15N
- 4mm CP/MAS HX solid-state probe, capable of detecting 1H and 15N – 31P
- 4mm CP/MAS E-Free solid-state probe, specialized for salty biological samples
- Diff30 probe, ideal for diffusion of polymers/ensembles
- Autosamplers enable high throughput NMR experiments

TESTIMONIAL

"The NMR Facility has been instrumental in not only analyzing the structures of our polymers, but also in investigating their self-assembly, stimulus-induced changes in morphology and dynamics, as well as studying intermolecular interactions."

– Prof. S. Thayumanavan, Chemistry