
DEPARTMENT OF ECONOMICS 
 
 
 

Working Paper 
 
 

 
 
 

 
 
 
 

UNIVERSITY OF MASSACHUSETTS 
AMHERST 

 

 
When Can We Determine the 

Direction of Omitted Variable Bias 
of OLS Estimators? 

 
Deepankar Basu 

 
 

Working Paper 2018-16 



When Can We Determine the Direction of Omitted

Variable Bias of OLS Estimators?

Deepankar Basu⇤

November 1, 2018

Abstract

Omitted variable bias (OVB) of OLS estimators is a serious and ubiquitous problem

in social science research. Often researchers use the direction of the bias in substantive

arguments or to motivate estimation methods to deal with the bias. This paper o↵ers a

geometric interpretation of OVB that highlights the di�culty in ascertaining its sign in

any realistic setting and cautions against the use of direction-of-bias arguments. This

analysis has implications for comparison of OLS and IV estimators too.
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1 Introduction

It is common for researchers in the social sciences to be confronted with situations where

unobservability of variables or unavailability of data force them to omit such variables from

regression models. Omitting relevant variables from the econometric model leads to asymp-

totic omitted variable bias (OVB) in the ordinary least squares (OLS) estimators of pa-

rameters appearing in the population regression function. This is a serious and ubiquitous

problem and has been discussed widely in the applied econometrics literature.

In discussing the problem of OVB, and of strategies to deal with it, researchers have

frequently relied on arguments about the direction of the bias. Let us look at some examples

of the use of direction-of-bias arguments in papers published over the last few decades.1

• “One of the longest-running debates in empirical labor economics regards bias in OLS

estimates of the economic return to schooling. The overriding concern pertains to

individual-specific productivity components not reflected in the usual human-capital

measures, as these ability components may be positively correlated with both wages

and schooling. If the return to schooling is estimated with no account taken of the

role of ability, the estimate is generally expected to be biased upward. (Blackburn and

Neumark, 1995, pp. 217, emphasis added).

• “Equation (7) generalizes the conventional analysis of ability bias in the relationship

between schooling and earnings. Suppose that there is no heterogeneity in the marginal

benefits of schooling (i.e., bi = b̄) and that log earnings are linear in schooling (i.e.

k1 = 0). Then (7) implies that

plim bols � b̄ = �0

1This list of examples is purely for the purpose of illustration and does not pretend to completeness.
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which is the standard expression for the asymptotic bias in the estimated return to

schooling that arises by applying the omitted variables formula to an earnings model

with a constant schooling coe�cient b̄. According to the model presented here, this

bias arises through the correlation between the ability component ai and the marginal

cost of schooling ri. If marginal costs are lower for people who would tend to earn

more at any level of schooling, then �ra < 0, implying that �0 > 0.” (Card, 2001, pp.

1134).

• “Ordinary least-squares (OLS) estimates of the proportionate increase in wages due

to an extra year of education in the United States (the Mincerian rate of return) are

believed to be reasonably consistent. It appears that upward bias due to omitted

variables is roughly o↵set by attenuation bias due to errors in the measurement of

schooling. Orley Ashenfelter and Cecilia Rouse (1998) find a net upward bias on the

order of just 10 percent of the magnitude of the OLS estimate. David Card’s (2001)

survey of instrumental variables-based estimates reaches a similar conclusion, as do

Ashenfeiter et al. (1999).” (Hertz, 2003, pp. 1354, emphasis added).

• “Our IV results, together with the results on neighboring districts and the historical

data, lead us to conclude that our OLS results are not biased upward due to omitted

district characteristics.” (Banerjee and Iyer, 2005, pp. 1206, emphasis added).

• “There are several possible threats to our strategy. One is that product demand shocks

may be correlated across high-income countries. In this event, both our OLS and IV

estimates may be contaminated by correlation between import growth and unobserved

components of product demand, making the impact of trade exposure on labor-market

outcomes appear smaller than it truly is.” (Autor et al., 2013, pp. 2129, emphasis

added).

The frequent use of direction-of-bias arguments is problematic because in any realistic
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situation, it is di�cult to rule out more than one omitted variable, and in such a scenario the

direction of OVB cannot be ascertained unambiguously (other than on the basis of rather

restrictive assumptions). This latter fact is also well-known.

Omitted-variable bias could be equally problematic, although it is impossible to

predict the direction of this bias in a multivariate context. (Forbes, 2000, pp.

870, emphasis added).

How then do we square this - the impossibility of predicting the direction of omitted variable

bias in a multivariate context - with the numerous examples of papers that explicitly use

arguments about the direction of OVB (a small list of which I have referred to above)? The

next line of the above quotation provides one possible answer.

If there are strong univariate correlations between an omitted variable, inequal-

ity [included regressor], and growth [the dependent variable], however, these re-

lationships could outweigh any multivariate e↵ects and generate a significant,

predictable bias. (Forbes, 2000, pp. 870).

This is not very persuasive. While intuitive arguments about relationships between omitted

variables, included regressors and the dependent variable can often o↵er insights into the

signs of partial e↵ects involving omitted variables, it is di�cult to see how such informal

arguments can also give information about their relative magnitudes (especially when these

might be unobserved). And, without knowledge about the relative magnitudes of the various

partial e↵ects involved, it is not possible to “generate a significant, predictable bias” in a

multivariate context.2

The above examples suggest that there is less than full clarity in the applied economics

literature about the nature of OVB in a multivariate context. In this paper, I o↵er a simple

2It should also be noted that, in this context, univariate correlations are not relevant; rather we need to
deal with partial e↵ects.
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geometric interpretation of the OVB that helps us think rigorously about the issue. This

analysis suggests that it is best to avoid using arguments about the direction of OVB. This is

because the direction of OVB is ambiguous in most realistic research scenarios - when there

are bound to be many omitted variables.

The rest of the paper is organized as follows: in section 2, I derive an expression for

the OVB in the OLS estimator in a general setting which shows that, in general, it is not

possible to ascertain the direction of OVB; in section 3, I develop a geometric argument to

think about the direction of the OVB; in section 4, I discuss two special cases, and in the

following section, I conclude the paper. The proof of Proposition 1 is given in the appendix.

2 Omitted Variable Bias of OLS Estimators

To fix ideas, suppose the population regression model is given by

y = X� + Z� + u (1)

where y is N ⇥1 vector of observations on the dependent variable, X and Z denote (N ⇥K)

and (N ⇥ M) matrices, respectively, of regressors, � and � denote (K ⇥ 1) and (M ⇥ 1)

vectors of population regression coe�cients, and u is the N ⇥ 1 vector of errors. I assume

that the error term is orthogonal to the regressors, i.e.

E
�
X 0u

�
= E

�
Z0u

�
= 0, (2)

to ensure that the method of ordinary least squares (OLS) estimation gives consistent esti-

mates of the true parameters in the population regression function.

Suppose a researcher is unable to include the set of regressors, Z, in the regression, either

because those variables are unobservable or because data on them are not available. Hence
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the researcher estimates the following model

y = X
0�̃ + v (3)

by OLS. Let us call the OLS estimator of �̃ as �̂ and note that it is likely to be biased

and inconsistent for the true parameter vector, �. This follows from the fact that (3) is a

misspecified model because the set of regressors, Z, that appears in the true model (1), has

been omitted from the estimated model (3).

Proposition 1. The asymptotic omitted variable bias (OVB) in �̂ is given by

plim �̂ � � = �� (4)

where the m-th column of the K⇥M matrix � is the coe�cient vector in the linear projection

of the m-th omitted variable on the full set of included regressors, X, and � denotes the

(M⇥1) vector of coe�cients associated with the omitted variables in the population regression

function in (1).

Using the result in Proposition 1, we can see that the OVB bias of the OLS estimator

for the coe�cient on the k-th included regressor in (3) is given by

OV Bk = plim �̂k � �k = �1�1k + �2�2k + · · ·+ �M�Mk =
MX

m=1

�m�mk (5)

where �mk is the k-th element of the coe�cient vector �m in (11), with k = 1, 2, . . . , K and

m = 1, 2, . . . ,M .

The expression in (4) and in (5) are both well-known (Angrist and Pischke, 2009, pp. 60–

61). It shows that the OVB is the product of two types of e↵ects summed over all the omitted

variables: (a) the first is the marginal e↵ect of the m-th omitted variable on the dependent
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variable, y, in the correctly specified model (1) in the population: �m; and (b) the second

is the marginal e↵ect of the k-th included regressor on the m-th omitted variable in a linear

projection of the latter, zm, on the whole set of included regressors, X in the sample: �mk.

What is not emphasized is the following fact: since OV Bk is the sum of M terms, each of

which can be of any sign, it is not possible in general to unambiguously ascertain its sign.

3 Direction of Bias: A Geometric Interpretation

Define the 1⇥M vector,

�k = [�1k �2k · · · �Mk] , (6)

and note that this is the k-th row of the � is the K⇥M matrix. Hence, the m-th element of

the M ⇥1 vector �k gives the coe�cient on the k-th included regressor in a linear projection

of the m-th omitted variable, zm, on the whole set of included regressors, X. Hence, the

vector �k collects together the coe�cient on the k-th included regressor in linear projections,

successively, of the 1-st, 2-nd, · · · , M -th omitted variable on the whole set of included

regressors.

Since � is a M ⇥ 1 vector, the expression for the omitted variable bias in (5) is the inner

product of the two vectors, �k and �. Hence,

OV Bk = �k
.� =

���k
�����

�� cos(✓) (7)

where
��x

�� denotes the L2-norm of the vector, x, ✓ is the angle - measured in radians -

between �k and �, each considered as an element in RM , and 0  ✓  ⇡.

Definition 1. Let a and b be two vectors in RM with ✓ denoting the angle between the two

vectors defined by (7).

1. We will say that a and b are similar in orientation if the angle between them is acute,
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i.e., 0 < ✓ < ⇡/2.

2. We will say that a and b are dissimilar in orientation if the angle between them is

obtuse, i.e. ⇡/2 < ✓ < ⇡.

This definition is inspired by the notion of “cosine similarity” in the machine learning

literature and can help us ascertain the direction of OVB.

Proposition 2. The direction of omitted variable bias of the OLS estimator of the k-th

included regressor in a misspecified model with many omitted variables is positive (negative)

if the vectors �k and � are (dis)similar in orientation.

Proof. The proof follows immediately from an inspection of the expression in (7).

Figure 3 depicts the various possibilities related to the two vectors �k and �, and the

direction of bias in a 2-dimensional setting. In this figure, we denote �k by the solid (black)

line and � with the broken (red) lines. We start with a given value of �k, and then show the

various configurations of � that will lead to positive or negative bias.

In the right panel in Figure 3, we start with a given �k (shown in solid black), and then

draw a plane that is perpendicular to �k (labeled AB). If the vector � lies anywhere to

the right (or on top) of the plane, the direction of bias will be positive (because the angle

between the two vectors will be between 0 and ⇡/2. For instance, two possible values of

the � vector are shown in broken (red) lines. If we move to the left panel in Figure 3, we

see configurations when the bias will be negative. For a given value of �k (shown in solid),

the perpendicular plane is AB. Any value of � which leads to the vector falling below the

plane AB will give rise to a negative OVB (because the angle between the two vectors will

be larger than ⇡/2 but less than ⇡).

This intuition carries over to RM . In this general case, AB will be the subspace of RM

that is perpendicular to the M -vector �k. When the M -vector � lies on top of the subspace
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AB, the OVB will be positive; when lies below AB, the OVB will be negative. While this

general characterisation allows us to see the conditions that lead to positive or negative OVB,

in the next subsection, I will convert this discussion into sign requirements on the elements

of the two vectors. That will allow us to interpret the general geometric requirement into

signs of coe�cients that capture partial e↵ects.

3.1 Unambiguous Sign of OVB

The result in Proposition 2 shows that in general we will not be able to ascertain the sign

of the OVB. Nonetheless, there are special configurations, as noted in Proposition 2, where

we will be able to make unambiguous sign statements.

3.1.1 Unambiguously Zero Bias

We will be able to assert that there is no bias if the vectors �k and � are orthogonal or if

one of them is a null vector. The two vectors are orthogonal when the all omitted variables

are orthogonal to all the included regressors, and hence leaving out the omitted variables

does not induce any correlation between the error term and the included regressors. That is

why OLS is able to consistently estimate all the parameters. On the other hand, if either of

the vectors is a null vector, it means that either the omitted variables are irrelevant or that

the included regressors have no partial e↵ect on the omitted variables (in the relevant linear

projection). That is why OLS is able to, once again, estimate the parameters consistently.

3.1.2 Unambiguously Positive Bias

We will be able to unambiguously determine the sign of the OVB to be positive if both the

vectors �k and � lie in the same orthant. This is because, in this case, the two vectors will

be similar in orientation according to Definition 1. If the two vectors lie in the same orthant,

they will have the same sign for each corresponding element. In this case, we will be able to
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Figure 1: Possible configuration of the vectors �k (solid arrow) and � (broken arrow), and
the direction of bias. The vector �k collects together the coe�cients on the k-th included
regressor in linear projections, successively, of the 1-st, 2-nd, · · · , M-th omitted variable on
the whole set of included regressors, X. The vector � is the vector of coe�cients on the
omitted variables in the population regression function. In the right panel, the two vectors
are similar in orientation, which leads to positive asymptotic bias of the OLS estimators of
the coe�cients of X in the misspecified model (with omitted variables, Z). In the left panel,
the two vectors are dissimilar in orientation, so that the bias is negative.
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determine the sign of the OVB as positive irrespective of the magnitude of the elements of

the two vectors. Translated into the meaning of the elements of the two vectors, �k and �,

an unambiguously positive OVB will arise for the OLS estimate of k-th included regressor’s

coe�cient in the misspecified model in (3) if the partial e↵ect of each omitted variable on

the dependent variable has the same sign as the partial e↵ect of the k-th included regressor

on that omitted variable (in a linear projection of the omitted variable on all the included

regressors).

How likely is this scenario? To answer this question, let us abstract from the magnitudes

of the elements of the two vectors, �k and �, and only consider their signs, which can be

either positive or negative. Thus, let us consider two vectors of length M , whose elements

belong to this two element set: {+,�}. The total number of possibilities of generating

these two vectors is 2M ⇥ 2M . In geometric terms, generating these two vectors is exactly

equivalent to choosing the orthant combination of two vectors in M dimensional Euclidean

space. Since there are 2M orthants, when we choose two M -vectors, we can choose from

2M ⇥ 2M orthant combinations.

This immediately gives us a way to identify cases when the two vectors will lie in the

same orthant. That will happen only if the signs of all the elements in the two vectors are

exactly the same. In this case, we can choose from one of the 2M orthants - because both

vectors must lie in the same orthant. Thus, if the elements of the two vectors were randomly

assigned signs, the probability of having them lie in the same orthant - which generates an

unambiguously positive OVB - would be 2�M(= 2M/22M). Even for moderately large values

of M , this probability is quite small. For instance, if M = 5, the probability is 0.03125, and

if M = 10, this probability is 0.0001.

In most realistic research scenarios, we will have partial, rather than, zero information.

Hence, we will often be able to convincingly argue about the sign of some of the omitted

variables. This will reduce the severity of the problem. Suppose there are a total of M
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omitted variables, and we are able to ascertain signs of M 0  M partial e↵ects (of omitted

variables on the dependent variable and of included regressors on the omitted variables),

then the dimensionality of the problem reduces to M � M
0. Now we need to choose the

orthant combination of two vectors in M�M
0 dimensional Euclidean space. Using the same

argument as above, we can see that the probability of correctly guessing a positive OVB is,

in this case, 2M
0�M . For instance, if out of 10 omitted variables, we are able to sign the

partial e↵ects of 2 of them, then the probability of guessing the OVB correctly as being

positive is 0.004.

3.1.3 Unambiguously Negative Bias

We will be able to unambiguously determine the sign of the OVB to be negative if the

two vectors, �k and �, lie in “opposite” orthants, by which I mean that the sign of each

element in the first vector is exactly opposite of the sign of the corresponding element in the

second vector. This is because, in this case, the two vectors will be dissimilar in orientation,

according to Definition 1. To see this, note that the inner product of the two vectors in

this case will result in a negative scalar because each of the terms in the inner product is

negative. Hence, the angle between the two vectors will be between ⇡/2 and ⇡.

How likely is this scenario? To answer this question, we can use the same device we

used to determine cases of unambiguously positive bias. Two vectors will lie in “opposite”

orthants if the signs of all the elements are exactly opposite in the two vectors. We can

choose one of the 2M orthants for the first vector, and then flip the sign of each element

of the vector to get the orthant for the second vector. The first can be done in 2M ways,

and the second in 1 way, giving us a total of 2M combinations of such vectors. Thus, if

the elements of the two vectors were randomly assigned signs, the probability of having a

negative OVB would be 2�M(= 2M/22M). Interestingly, this is the same magnitude as the

probability of unambiguous positive OVB. Moreover, if we are able to correctly assign signs
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for M 0  M partial e↵ects, then the probability becomes 2M
0�M , as in the previous case.

3.1.4 Unambiguously Positive or Negative Bias

Bringing discussion of the two cases together, we can see that, if the elements of the two

vectors, �k and �, were assigned signs randomly, then the probability of being able to make

an unambiguous assertion about positive or negative bias would be 2�M+1(= 2�M + 2�M).

This is a rather small probability. Hence, when we do not have a firm basis for determining

the sign of the partial e↵ects of omitted variables on the dependent variable or of the partial

e↵ects of included regressors on omitted variables (in the relevant linear projections) or both,

we would be able to make correct judgments about the direction of OVB with extremely small

probabilities by making a random guess. For instance if there were 10 omitted variables,

this probability would be 0.00195.

4 Special Cases Discussed in the Literature

There are two special cases of the general result in (5) that are often discussed in the

literature.

4.1 One Omitted Variable, Many Included Variables

If the researcher is able to make a convincing argument that there is only one omitted

variable, then the vector of omitted variables, Z, reduces to a scalar, Z, in (1). Using (5),

in this case, the OVB for the k-th included regressor becomes

OV Bk = �1�1k (8)
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where �1 is the marginal e↵ect of the single omitted variable on the dependent variable in the

true model, and �1k is the coe�cient on the k-th element of X in the linear projection of the

single omitted variable on the full set of included regressors, X. This has often been used

in the applied economics literature -for instance, in the applied labour economics literature

- and has filtered down into textbook treatments of the OVB (Wooldridge, 2002, pp. 61-63.)

In this case, we will be able to ascertain the direction of bias in an unambiguous manner

just by knowing the signs of �1 and �1k. We will not need to know the magnitude of the

coe�cients to make any statements about the direction of OVB.

The canonical case is a wage regression where the included variable under consideration

is years of schooling and the only omitted variable is “ability”. Since ability is likely to

be positively correlated with log-wage (the dependent variable) and years of schooling, we

might be able to make the case that the direction of the OVB is positive.

4.2 One Included Variable, Many Omitted Variables

In many textbook treatments, the OVB is motivated with examples where there is only one

included variable but many omitted variables (Angrist and Pischke, 2009, pp. 60). Using

(5), in this case, the OVB for the only included variable is given by

OV B1 = (�1�11 + �2�21 + · · · �M�M1) . (9)

Consider the wage regression again, but now only with years of schooling as the included

regressor. If ability, motivation, neighbourhood characteristics, family income, and other

such variables are omitted from the model, then we are within the purview of this special

case. Note that unless we make the strong assumption that we can replace all the omitted

variables with a composite variable called “ability”, we will be facing an expression for the

OVB as given in (9). Thus, in this case too, we will not be able to ascertain the direction
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of the OVB (because it is the sum of M terms, each of which can be positive, negative or

zero) other than by making claims about the relative magnitudes of the various parameters

appearing in (9). This latter option is untenable because in most cases there is scant basis

for making judgments about relative magnitudes of partial e↵ects involving omitted (often

unobservable) variables. Moreover, this case is qualitatively di↵erent from the previous

special case where we could determine the direction of bias without any knowledge of the

magnitude of the coe�cients.

5 Comparison of OLS and IV Estimators

One common strategy to deal with the bias caused by omitted variables is to use instrumental

variables estimators. In such a context, it is standard in the literature to make comparisons

of the direction and magnitude of bias of OLS and IV estimators (Angrist and Krueger, 2001,

pp. 79). The above analysis suggests that such comparisons can be di�cult to pin down.

Consider a scenario that fits with the special case discussed above: one included regressor

and many omitted variables. Let the dependent variable and the included (endogenous)

regressor be denoted as y and x, respectively, and suppose we have an instrumental variable,

z for x. Thus, the model is

y = �x+ u

where E(xu) 6= 0 because the error term contains many omitted variables. In this case, the

instrumental variables estimator of the coe�cient on x is given by

�̂IV =

P
n

i=1 (zi � z̄) (yi � ȳ)P
n

i=1 (zi � z̄) (xi � x̄)

so that

plim �̂IV � � =
Cov (z, u)

Cov (z, x)
. (10)
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On the other hand, the asymptotic bias of the OLS estimator is given by the expression in

(9):

plim �̂OLS � � ⌘ OV B1 = (�1�11 + �2�21 + · · · �M�M1) .

If Cov (z, u) = 0, the instrument is exogenous and the IV estimator will be consistent. In such

a case, IV estimation is clearly superior to OLS because the latter will give asymptotically

biased estimates. But if Cov (z, u) 6= 0, the instrument is not exogenous. Hence, the IV

estimator will be biased, as can be seen from the expression in (10). In such situations, the

question that is often of interest is a possible comparison of the OLS bias and the IV bias

- both its direction and its magnitude. Is it possible to do such comparisons? The answer

seems to be in the negative because, as argued in this paper, it is di�cult to ascertain - other

than in special cases - the magnitude and sign of the OVB of the OLS estimator.

Even if Cov (z, u) is small, so that violation of instrument exogeneity is not very serious,

the bias in the IV estimator can be large if Cov (z, x) is small. This is the weak instrument

problem and has been discussed extensively in the past several decades (Andrews et al.,

Working Paper). But the same problem of comparison of the bias of the IV and the OLS

estimator remains. If neither the magnitude nor the sign of OLS bias can be determined,

then it is not clear how one would compare it with the possibly large bias of the IV estimator

with weak instruments? It is undeniable that the use of weak instruments can lead to large

asymptotic bias. What is less clear is whether we can compare the sign and magnitude of

that bias with the bias of the OLS estimator in the presence of many omitted variables -

which presumably led to the use of instrumental variables in the first place.3

3The analysis in this section can be easily extended to the case of many instrumental variables and the
2SLS estimator.
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6 Conclusion

In the social sciences, researchers are often confronted with bias and inconsistency in OLS

estimators of parameters of interest due to omitted variables. In such situations, if the use of

methods to deal with the omitted variable problem is not feasible, researchers often choose to

deal with the situation with a direction-of-bias argument. The direction of bias argument is

used in other cases too - possibly to motivate the use of instrumental variables estimation or

related methods. In either case, researchers have to confront the problem highlighted in this

paper: when there are many omitted regressors, it is not possible, in general, to ascertain

the sign of the OVB of OLS estimators.

In this paper I have identified some special cases where we will be able to unambiguously

determine the sign of the OVB using knowledge the signs of relevant partial e↵ects only

(and being ignorant about their magnitudes). These cases, discussed in section 3.1, are

multivariate generalizations of the one-dimensional case that is frequently discussed in the

literature: one omitted variable and one included regressor. In this latter case we are able to

determine the direction of bias as soon as we know the signs of the two partial e↵ects. In a

similar way, for a case with M omitted variables, we will be able to unambiguously determine

the sign of the OVB as positive if the partial e↵ects of omitted variables on the dependent

variable are of the same sign as the partial e↵ect of the regressors on the omitted variables,

and as negative if the partial e↵ects of omitted variables on the dependent variable are of

exactly the opposite sign as the partial e↵ect of the regressors on the omitted variables. In

all other cases, we will not be able to unambiguously determine the sign of the OVB.

Much of the extant literature in applied economics, including standard textbook treat-

ments, seems to have ignored the possible ambiguity of the sign of the OVB by considering

the case of a single omitted variable. As soon we move beyond this simplified setup and allow

for more than one omitted variables, it is no longer possible to unambiguously determine the
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sign of the OVB of OLS estimators (other than in the two special cases discussed above).

Attempts to club together multiple omitted variables into a composite category, for instance,

as is often done in discussions of wage regressions, where “ability” stands for many omitted

factors (like ability, motivation, family background), are bound to be misleading. The direc-

tion of bias conclusions used by researchers in substantive arguments using such composite

omitted variables cannot be sustained in most realistic settings if we allow for many omitted

variables. The upshot of the analysis presented in this paper is that researchers should not

take recourse to direction of OVB arguments - even to motivate the use of methods to deal

with OVB, like instrumental variables. Moreover, comparisons of the magnitude and direc-

tion of bias of OLS versus IV estimators in situations with many omitted variables might

also be misleading.
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Appendix

This is a proof of Proposition 1.

Proof. Note that

plim �̂ = plim
⇣�

X
0
X
��1

X
0
y

⌘
= � +

h
E
�
X 0X

�i�1 h
E
�
X 0Z

�i
�,

where we have plugged in the expression for y from the true model in (1), and the last step

follows from the orthogonality of the error term given in (2) and using a suitable law of large

numbers (along with the Slutsky theorem) to replace plim
�
X 0X

�
with E

�
X 0X

�
, and to

replace plim
�
X 0Z

�
with

�
X 0Z

�
.

Note, using the algebra of partitioned matrices, that

X 0Z = X 0
h
z1 z2 · · · zM

i
=

h
X 0z1 X 0z2 · · · X 0zM

i

where zm refers to the N⇥1 vector representing them-th column of Z, withm = 1, 2, . . . ,M .

Hence

plim �̂ � � =
h
E
�
X

0
X
�i�1

E
�
X 0Z

�
�

=

h
E
�
X

0
X
�i�1

E
�
X 0z1

�
· · ·

h
E
�
X

0
X
�i�1

E
⇣
X 0zM

⌘�
�

= [�1 · · · �M ]�

= ��

where, for m = 1, 2, . . . ,M , �m is the coe�cient vector in the linear projection of the m-th

omitted variable on the whole set of included regressors, i.e.

zm = X�m + vm, (11)
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with E
�
X 0

vm

�
= 0, so that

�m =
h
E
�
X

0
X
�i�1

E
�
X 0zm

�
.

Columnwise stacking of �m, then gives the K ⇥M matrix � and completes the proof.
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