Securing Basic Well-being for All

by

Reiko Gotoh
Naoki Yoshihara

Working Paper 2017-16
Securing Basic Well-being for All*

Reiko Gotoh† and Naoki Yoshihara‡

Current Version: August 2017

Abstract

The purpose of this paper is to examine the possibility of a social choice rule to implement a social policy for “securing basic well-being for all.” The paper introduces a new scheme of social choice, called a social relation function (SRF), which associates a reflexive and transitive binary relation over a set of social policies to each profile of individual well-being appraisals and each profile of group evaluations. As part of the domains of SRFs, the available class of group evaluations is constrained by three conditions. Furthermore, the non-negative response (NR) and the weak Pareto condition (WP) are introduced. NR demands giving priority to group evaluation, while treating the groups as formally equal relative to each other. WP requires treating impartially the well-being appraisals of all individuals. In conclusion, this paper shows that under some reasonable assumptions, there exists an SRF that satisfies NR and WP.

JEL: D63.

Keywords: basic well-being; individual well-being appraisals; social relation functions.

*We are extremely grateful to Carmen Herrero, Laurence Kranich, Prasanta Pattanaik, Yongsheng Xu, Marc Fleurbaey, James Foster, Peter Hammond, and Yoshi Saijo for their fruitful discussions relevant to this paper.

†Institute of Economic Research, Hitotsubashi University, Naka 2-1, Kunitachi, Tokyo 186-8603, Japan. Phone: (81)-42-580-8358, Fax: (81)-42-580-8333, E-mail: reikogotoh@ier.hit-u.ac.jp

‡Department of Economics, University of Massachusetts Amherst, Crotty Hall, 412 North Pleasant Street, Amherst, MA 01002, USA; and Institute of Economic Research, Hitotsubashi University, Naka 2-1, Kunitachi, Tokyo 186-8603, Japan. E-mail: yoshihara@ier.hit-u.ac.jp
1 Introduction

Despite the United Nations’ declaration of universal human rights in 1948, persons with disabilities have long been restricted in their effective exercise of these rights. The Convention on the Rights of Persons with Disabilities, which was adopted by the United Nations in 2006, has brought about new insights on human rights as well as democracy. The convention is innovative in that it requires the effective exercise of human rights for persons with disabilities by, for example, removing discriminatory practices that have built up over time and implementing “reasonable accommodations” in public places.¹ Further, a remarkable aspect of drafting this convention is that, persons with disabilities have taken the initiative and offered their expertise in assessing alternative articles, going by the slogan “Nothing about us, without us.”

The above example urges us to reconsider the appropriateness of the standard framework of social choice theory, as there is little discussion about the relationship between asymmetrical prior treatments of individual preferences and the different types of social choice problems they are admissible in. In addition, it indicates that the asymmetrical prior treatment of individual preferences could be appropriate when the given social choice problem is on the effective exercise of universal human rights with respect to the particularity of those individuals. The main purpose of this paper is to formulate a social choice procedure that permits prior treatments for disadvantaged groups not as exceptions but as a general rule under some reasonable and socially imposed conditions. More specifically, we focus on a specific type of social choice problem: selecting a public policy in terms of securing basic well-being for all and defining the concept of a “group” as a representation of particularity that requires a prior treatment in order to secure basic well-being for all.

The framework of this paper is as follows. First, the key concept of this paper, an individual’s “well-being,”² is defined as a function of individuals’ abilities and social policies (called well-being transformations). While no particular type of a well-being indicator is presumed, it is generically multidimensional in the space of plural attributes,³ each of which is observable in public. For the sake of simplicity and without loss of generality, individuals’

¹See Convention on the Rights of Persons with Disabilities (Article 2).
²The concept of “functionings vector” or “capability” a la Amartya Sen are typical examples of the well-being indicator (Sen, 1980, 1985).
³For a detailed discussion of evaluative attributes, see Pattanaik and Xu (2007, 2012).
well-being transformations are assumed to be fixed and the profile of each individual well-being is identified corresponding to each alternative social policy. The paper also refers to “basic well-being,” which represents a critical reference point of multi-dimensional well-beings that one can legitimately claim to have met by social policies, and each group can refer to it to identify the “injustice” of social policies.\(^4\)

Second, a social choice rule to select a social policy for securing basic well-being for all is introduced and examined. This social choice rule, which we call a social relation function (SRF), is defined as having three elements as its informational basis: the individual appraisal of well-being contents, the group appraisal of well-being contents, and the group evaluation of social policies. The individual appraisal is formulated as a binary relation defined over the universal class of well-being contents; the group appraisal is formulated as the intersection of its members’ appraisals; and the group evaluation is formulated as a binary relation defined over social policies, focusing on its least advantaged members who are identified on the basis of the group appraisal. By using the three elements of information, an SRF forms a social evaluation, which is a binary relation defined over social alternatives.

Some remarks on the SRF framework are necessary. First, the individual appraisal of well-being contents is based on her own conception of the good, while the group appraisal of well-being contents is based on the conception shared by the members. In contrast, the group evaluation of social policies is supposed to correspond to conceptions of justice shared in the society, which are embodied explicitly by the axioms and conditions and implicitly by public reasoning. Thus, throughout this paper, “better or worse” is used in the comparative evaluation of well-being contents, while “more or less just” or “less or more unjust” is used in the comparative evaluation of social policies.\(^5\)

Second, because of the multiplicity of attributes for well-being, the types of disadvantages may be diversified, which could generate different types of “the least advantaged.” Although they share the common feature that

\(^4\)For instance, if the well-being indicator is specified by “capability,” basic well-being implies “basic capability” (Sen, 1980, p. 367).

\(^5\)This usage is derived from the distinction of concepts of “the good” and of “justice” according to Rawls (Rawls, 1971, pp. 396-397), while “less or more unjust” is derived from Sen, as mentioned in section 4.
they lack access to basic well-being, as illustrated in section 2, the concrete contents (the lists, scales, and sizes) of basic well-being might differ from each other, depending upon the types of disadvantages and their corresponding conceptions of justice.6 Therefore, in this paper, the concept of “group” is operationally defined as a maximum unit that can commonly share a concrete content of basic well-being and can identify “the least advantaged” within the group.

Third, due to the multi-dimensionality of well-being contents, the individual and group appraisals could be incomplete,7 which implies that intra-personal full comparability of these appraisals cannot be generally presumed, while inter-personal comparability of these appraisals can be legitimately presumed to some extent at least in a group.

Due to the three-component structure of the informational basis, SRFs allow the appropriate asymmetric and prior treatment of specific groups of individuals relevant to the underlying social choice problem in question as well as the symmetric treatment of individual appraisals. To incorporate this idea formally, we introduce two basic axioms, the non-negative response (NR) and the weak Pareto (WP) axioms for SRFs within this framework. NR requires that SRFs should give priority to a disadvantaged group’s evaluation whenever any other groups’ evaluations are not completely opposite to this group’s, while WP requires that SRFs should treat every individual’s appraisal symmetrically.

Given the possibility of a prior treatment of disadvantaged groups, we introduce domain conditions of group evaluations to restrict groups’ “decisive powers” so as not to depart from the general societal goal. We name the domain conditions the basic well-being condition, the restricted monotonicity, and the refrain condition. These conditions together stipulate that any specific disadvantaged group should evaluate social state x as “more just” than social state y whenever (i) its least advantaged members’ well-being contents under x (resp. y) are better or at least not worse (resp. not better

6Our framework follows John Rawls’ difference principle in that securing basic well-being of the least advantaged respective to each policy is necessary and sufficient for achieving the social goal of securing basic well-being for all. Yet, although Rawls’ model assumes inter-personal level-comparability for society as a whole, our model starts from the possibility of different types of “the least advantaged” derived from different types of disadvantages.

7Note that the line of research on ranking opportunity sets initiated by Pattanaik and Xu (1990) also does not presume completeness of binary relations over opportunity sets.
or even worse) than under basic well-being; or (ii) its least advantaged members’ well-being contents are better under \(x \) than under \(y \), given that their respective well-being contents are worse under \(x \) and \(y \) respectively than under basic well-being. Moreover, this group should refrain from comparing \(x \) and \(y \) whenever its least advantaged members’ well-being contents are better under \(x \) and \(y \) respectively than under basic well-being.

An interesting question is to examine the general existence of an SRF satisfying the three domain conditions as well as the two basic axioms. On the one hand, such an existence problem may have some similarity to the dominance and context-dependence paradox observed by Pattanaik and Xu (2007; 2012). As a typical example of this kind of paradox, recall the Pareto-liberal paradox initiated by Sen (1970), which points out the incompatibility of minimal liberty and the Pareto principle, where the former is formulated as the local decisiveness of some individuals, while the latter is formulated as the global decisiveness of all individuals. Incidentally, in our framework, the three conditions of group evaluations and NR together imply that a disadvantaged group is given locally decisive power, in a weak sense,\(^8\) over the specific pairs of alternatives.

On the other hand, the existence issue of SRFs should not be argued analogical to the original Pareto-liberal paradox. For, firstly, the locally decisive power of a disadvantaged group is much weaker than the standard notion of local decisive power discussed in Arrow (1951/1963) and Sen (1970); secondly, the least advantaged members of each group may vary owing to the change of social policies, which makes it more complicated to identify each group evaluation; and finally, the domain of SRFs is not universal but restricted by the three conditions. Moreover, among other things, the key factor of this existence issue is the incompleteness of binary relations as the informational basis of SRFs.\(^9\) In fact, our paper shows the extent to which the incompleteness of group appraisals is acceptable so as not to rule out the existence of SRFs that are compatible with NR and WP.

In the following discussion, Section 2 provides remarks on the concept of “group” with regard to the aim of securing basic well-being for all. Section 3 provides the basic SRF framework and section 4 the three conditions for

\(^8\)The intention of “in a weak sense” here is that this group’s ‘local decisiveness’ over such pairs is conditional on there being no resistance of any other groups.

\(^9\)Incompleteness of binary relations as the informational basis is not assumed in the context of the Pareto-liberal paradox as well as other types of the dominance and context-dependence paradox discussed by Pattanaik and Xu (2012).
group evaluations and the relevant two axioms. Section 5 discusses the existence problem of SRFs satisfying these properties. Section 6 provides some philosophical implications of this paper, and section 7 concludes the paper.

2 Group Characteristics: Differences in “Basic Well-being” and the Corresponding Conceptions of Justice

As mentioned in section 1, basic well-being represents a critical reference point that one can legitimately claim to have met by social policies. Assuming three types of disadvantages, this section illustrates the differences in the contents of basic well-being and in their corresponding conceptions of justice.

The first type of disadvantage is closely related to what Aristotle called “corrective justice.” It is based on recognizing the cause of the suffered disadvantage as an injustice that needs to be redressed. Examples are disadvantages that derive from historical injustices such as colonial exploitation and the ill-treatment of indigenous populations and victims of social diseases. The corresponding conception of justice in contemporary context is, for example, Robert Nozick’s discussion on historical injustice (Norzick, 1974).

The second type of disadvantage is related to the concept of “justice as compensation.” This concept implies that individuals should be recognized as disadvantaged if their vulnerability is due to the failure of social institutions to protect them from “undeserved inequalities,” such as persons with disabilities or certain diseases, or those discriminated on the basis of age, nationality, gender, or being a single parent. This concept is supported by the recent discussion on “compensation and responsibility.”

The third type of disadvantage relates to the concept of “justice as protection.” This concept considers it unjust that some individuals have less than what is necessary for a minimum standard of living. It focuses on individuals, unlike the first two concepts, whose specific causes of difficulties can be hard to identify. The corresponding conception of justice is the behind idea of Rawls’s difference principle, which takes a form of outcome equality

10 Refer to, for example, Fleurbaey, M. (1994) and Fleurbaey, M. and F. Maniquet, (2011)

11 For example, article 25 of the Japanese Constitution stipulates “the right to the minimum standards of wholesome and cultured living.”
and requires bringing every individual up to a reference point (Rawls, 1993). Because of this diversity of disadvantages and of the forms of justice underlying them, the concrete conception of basic well-being becomes plural. Moreover, under a common concept of basic well-being, special needs must be addressed relative to the different types of disadvantages. To demonstrate this, consider some examples of each disadvantage type. Individuals who have suffered historical injustice due to an atomic bomb, an event that completely changed their life-goals, are affected by the first type of disadvantage. Many have decided to live as witnesses of this social disaster in order to prevent it from ever happening again at any other place or time. In such cases, air tickets to fly to New York, which holds the “No more Hiroshima/Nagasaki Congress,” or a grant for publishing their memoirs may be counted as a necessity for securing their basic well-being. Similarly, with respect to the second type of disadvantage, fundamental freedoms should be promoted, protected, and ensured for individuals with disabilities to function as active members of society. For example, for individuals using the wheelchair, one of the essential claims to secure basic well-being would be to remove environmental barriers such as inaccessible buses or staircases. Finally, for individuals affected by the third disadvantage type, such as the homeless, it is important to claim basic needs including food, clothing, shelter, and health care to protect their right to the minimum standards of wholesome and cultured living as a means to secure basic well-being.

Lastly, it should be noted that an individual might actually suffer from all three types of disadvantages mentioned above and as a result will be included in each of the three groups. This implies that such an individual’s basic well-being consists of three aspects that cannot be compared intrapersonally, while each of the three aspects permits inter-personal comparison within each group. In this case, the individual can participate in the process of making an evaluation of each group, also deserving to take advantage of social policies addressing all three types of disadvantages, although the actual amount of provision might be reduced considering combination effects of the three policies.

3 The Basic Model

Consider a society with population \(N = \{1, 2, ..., i, ..., n\} \), where \(2 \leq n < +\infty \). Let us denote a social state by \(x \), and the set of all possible social
states by X, where $3 \leq \#X < +\infty$. Each $x \in X$ may be interpreted as representing an admissible social policy. Thus, we sometimes call each $x \in X$ a social policy x. Note that a social policy x does not necessarily represent a single policy. For instance, it may present a bundle of multiple social policies or a state of resource allocation realized by a certain bundle of social policies.

For each $i \in N$, let Z_i be a product of subsets of metric spaces, which represents the set of conceivable well-being contents for i. Let $Z = \bigcup_{i \in N} Z_i$. For each $i \in N$, let i's well-being transformation be a mapping $C_i : X \rightarrow Z_i$ such that for each $x \in X$, $C_i(x)$ is a vector in Z_i.

C_i represents an individual's ability to transform each social policy to a content of well-being and $C_i(x)$ represents individual i's well-being available under the social policy x. Let $C = \{C_i\}_{i \in N}$ be a profile of the well-being transformations. Denote the admissible set of profiles of well-being transformations by C.

Given Z, for each $i \in N$, let us define a binary relation \succ_i on Z, which is reflexive and transitive. We call this \succ_i a well-being appraisal of i. The interpretation of the well-being appraisal \succ_i is that, for any $C, C' \in Z$, $C \succ_i C'$ if and only if C is at least as good as C' for i. Given \succ_i defined on Z, let $C \succ_i C'$ if and only if $C \succ_i C'$ holds but $C' \succ_i C$ does not hold; let $C \sim_i C'$ if and only if $C \succ_i C'$ and $C' \succ_i C$ hold. If Z is a partially ordered set endowed with a partial ordering \geq on Z,

it may be assumed that for any $i \in N$ and any $C, C' \in Z$, if $C \geq C'$, then $C \succ_i C'$, and if $C > C'$, then $C >_i C'$. The well-being appraisal \succ_i reflects a bundle of criteria for comparing i's well-being contents.

Next, let us define the concept of group. Given society N, there exists a set of characteristics T with generic element t such that (1) $0 < \#T \leq \#N$; and (2) for each $C \in C$ and each $t \in T$, there exists a unique subset N_C^t of N.\footnote{Although $C_i(x)$ is formulated as a vector in Z_i, this formulation may allow an interpretation that Z_i is a Hausdorff topological space whose elements are all non-empty, compact, and comprehensive subsets of \mathbb{R}_+^n, and each $C_i(x) \in Z_i$ represents i's capability (Sen, 1980; 1985) associated with the social policy x, as Herrero (1996) and Gotoh and Yoshihara (2003) did. Basu and Lopez-Calva (2011) provide an illuminating survey on the formulation of functionings and capabilities.}

\footnote{The precise definitions of \geq and its asymmetric part $>$ depend on the mathematical structure of the space Z. For instance, if each C represents a vector on $Z \subseteq \mathbb{R}_+^n$, then $(\geq, >)$ represents the standard vector inequality. If each C represents a compact and comprehensive subset in \mathbb{R}_+^n, then $(\geq, >)$ represents the standard set-inclusion as $C \geq C'$ if and only if for any $z \in C'$, $z \in C$ holds; and $C > C'$ if and only if $C \geq C'$ and $C' \not\subseteq C$.}
Note that N^t_C may be empty for some $t \in T$, and N^t_C may be identical to N for some $t \in T$. Each element $t \in T$ is called a group. As argued in section 1, each group $t \in T$ is assumed to be the maximal set of individuals who have a certain disadvantage in common. In other words, each t represents a type of conceivable disadvantage, and the set of group members N^t_C represents the set of t-type disadvantaged individuals in society N with C. Thus, $N \setminus (\cup_{t \in T} N^t_C)$ is the set of non-disadvantaged individuals in society N with C. As argued in section 1, each group $t \in T$ is assumed to be a maximal set of individuals who have a certain disadvantage in common.

3.1 Definition of Group Appraisals, Group Evaluations, and Social Relation Functions

3.1.1 Group Appraisals

Again as argued in section 1, it is assumed that each group t is able to construct a criterion for comparing their well-being contents, which is commonly shared by every member of this group, due to the similarity of disadvantages. Such a shared criterion for comparing well-being contents in group t is formulated by the intersection of all members’ well-being appraisals, $\succeq_t \equiv \cap_{i \in N^t_C} \succeq_i$, which is called hereafter a well-being appraisal of group t. To represent a feature of the commonly shared criterion of all of its members, \succeq_t is assumed to be non-empty for each $t \in T$.\footnote{The idea behind this formulation is that each individual of each group appraises the well-being contents of the members of the group, including her own, not in terms of a personal conception of the good but in terms of a shared conception of the good, on the basis of some commonality among members.} Note that, since each \succeq_i is reflexive and transitive, so is the well-being appraisal of each group. Finally, let $\succeq \equiv (\langle \succeq_i \rangle_{i \in N}, (\succeq_t)_{t \in T})$ be a profile of well-being appraisals. Denote the admissible set of profiles of well-being appraisals by A.

3.1.2 The least advantaged in each group and the basic well-being

With the well-being appraisal of the group, the least advantaged within the group can be defined as follows. Given society N with $C \in \mathcal{C}$ and a profile of well-being appraisals $\succeq \in A$, the set of the least advantaged individuals of type t under social policy $x \in X$ is defined by

$$L^*_C(x; \succeq_t) \equiv \{ i \in N^t_C \mid \nexists j \in N^t_C : C_i(x) \succ_t C_j(x) \}.$$
That is, the least advantaged under social policy x is defined as an individual whose well-being content never dominates the well-being contents of others. Note that $L_C^t(x; \succeq_t)$ is non-empty for each $x \in X$ and for each $t \in T$ with $N_C^t \neq \emptyset$. Moreover, it is not necessarily a singleton.

While the set of the least advantaged individuals $L_C^t(x; \succeq_t)$ specifies the relatively least position of individuals within the group, it does not refer to their absolute well-being conditions. To refer to this point, the concept of basic well-being $BC^t \in Z$, which is unique to each $t \in T$, is introduced. As argued in section 1, BC^t is a reference well-being content that one can legitimately claim to have met by social policies, and each group can refer to it to identify the “injustice” of social policies. In other words, the group should concern about its members’ absolute well-being conditions in comparison with the basic well-being BC^t.

When making an appraisal of the well-being contents of the least advantaged members in comparison with the basic well-being, the group appraisal should respect such members’ own appraisals of their own well-being contents in comparison with the basic well-being. That is, for any group t and any individual i of the least advantaged members within the group t at the social state x, this individual’s appraisal \succeq_i should be respected in the group appraisal \succeq_t at least over the comparison of her well-being $C_i(x)$ under x with the basic well-being BC^t of the group. To ensure this property, the following assumption is imposed on group appraisals:

For $x \in X$, each $t \in T$, and each $i \in L_C^t(x; \succeq_t)$, if $[BC^t \succeq_i C_i(x)]$ (resp. $[C_i(x) \succeq_i BC^t]$), then $[BC^t \succeq_t C_i(x)]$ (resp. $[C_i(x) \succeq_t BC^t]$) holds.

This assumption, combined with the definition of \succeq_t, implies that the appraisal by the least advantaged individual of his/her own well-being condition in comparison with the basic well-being is approved by all other members of the same group, in that all of them do not reveal the opposite appraisal of this individual’s well-being in comparison with the basic well-being.

3.1.3 Group evaluations

While the group appraisal of each group is used to identify the least advantaged individuals among the group members, each group is also assumed to evaluate alternative social policies in order to improve the well-being of the least advantaged members. Such a scheme of evaluation is defined as a binary relation over the set of social policies X, which is formulated as follows.
Given society N with $C \in \mathcal{C}$ and a profile of well-being appraisals $\succsim \in \mathcal{A}$, for each $t \in T$, the group evaluation of type t is defined as a reflexive relation R'_t on X, where let P'_C be defined as the strict part of R'_C. Likewise, let I'_t be the indifferent part of R'_t. Moreover, let NR'_t denote the non-comparable part of R'_t; that is, $xNR'_t y$ if and only if neither $xR'_t y$ nor $yR'_t x$. The interpretation of R'_t is that it represents an evaluation of alternative social policies, which is defined on the domain respective to this group, and which can be agreed upon by all individuals in this group, N'_t. Given society N with $C \in \mathcal{C}$ and a profile of well-being appraisals $\succsim \in \mathcal{A}$, let us denote the admissible class of such group evaluations of type t on X by $D'_t(\succsim_t)$. Moreover, let $D_C(\succsim) \equiv \times_{t \in T} D'_t(\succsim_t)$ and $R^T_C \equiv (R'_t)_{t \in T}$.

3.1.4 Social relation functions

With this basic framework, we are ready to formally define our scheme of social choice rules as follows:

Definition 1: Given a society N with a profile of well-being transformations $C \in \mathcal{C}$, the social relation function (SRF) is the mapping F, which associates each well-being appraisal $\succsim \in \mathcal{A}$ and each profile of group evaluations $R'_t \in \mathcal{D}_C(\succsim)$ to the reflexive and transitive relation R_C on X.

R_C is called a social evaluation over X in a society with $C \in \mathcal{C}$.

By assuming that disadvantaged groups are given prior treatment in incorporating their information into a social policy, the two types of informational bases for disadvantaged groups, namely group appraisals and group evaluations, may play different functional roles. Group appraisals are necessary to identify the least advantaged members in each group on the basis of its own conception of the good. Each group evaluation is formed on the basis of its own group appraisal by focusing on the least advantaged members of this group. The policy maker can choose appropriate social policies based on the social evaluation derived from the SRF, into which she can incorporate each individual’s appraisal as well as each disadvantaged group’s evaluation.
4 Axioms for Group Evaluations and Social Relation Functions

In this section, we define several conditions assumed to be publicly imposed on SRFs.

4.1 Axioms for Group Evaluations

A part of such conditions is to restrict the available class of group evaluations. As argued in section 1, the group evaluation is introduced to evaluate alternative social policies in order to ensure that the well-being contents of the least advantaged members of the group is not worse than the basic well-being. We incorporate this idea as domain conditions of SRFs in this section.

Firstly, with the concept of basic well-being \(BC^t \in Z \), for each \(t \in T \), let the domain of group evaluations be classified for each \(\succsim \in \mathcal{A} \), each \(t \in T \) and each \(x, y \in X \) as follows.

- **Case \(\alpha-1 \).** \(C_i(x) \succsim_t BC^t \) for all \(i \in L_C^t(x; \succsim_t) \), and \(BC^t \succsim_t C_j(y) \) for all \(j \in L_C^t(y; \succsim_t) \);

- **Case \(\alpha-2 \).** Case \(\alpha-1 \) holds and moreover, \(C_i(x) \succ_t BC^t \) for all \(i \in L_C^t(x; \succsim_t) \) or \(BC^t \succ_t C_j(y) \) for all \(j \in L_C^t(y; \succsim_t) \);

- **Case \(\beta \).** \(C_i(x) \succsim_t BC^t \) for all \(i \in L_C^t(x; \succsim_t) \), and not \([BC^t \succsim_t C_j(y)] \) & not \([C_j(y) \succsim_t BC^t] \) for some \(j \in L_C^t(y; \succsim_t) \);

- **Case \(\gamma \).** not \([BC^t \succsim_t C_i(x)] \) & not \([C_i(x) \succsim_t BC^t] \) for some \(i \in L_C^t(x; \succsim_t) \), and \(BC^t \succ_t C_j(y) \) for all \(j \in L_C^t(y; \succsim_t) \);

- **Case \(\delta \).** \(BC^t \succ_t C_i(x) \) for all \(i \in L_C^t(x; \succsim_t) \), and \(BC^t \succ_t C_j(y) \) for all \(j \in L_C^t(y; \succsim_t) \);

- **Case \(\epsilon \).** \(C_i(x) \succ_t BC^t \) for all \(i \in L_C^t(x; \succsim_t) \), and \(C_j(y) \succ_t BC^t \) for all \(j \in L_C^t(y; \succsim_t) \);

- **Case \(\varepsilon \).** Otherwise.
That is, Case α-1) refers to the domain where the least advantaged individuals’ well-beings in policy x are all at least as good as basic well-being, while the least advantaged individuals’ well-beings in policy y are all at least as bad as their basic well-being. Case α-2) refers to the domain where α-1) applies, and the least advantaged individuals’ well-beings in policy x are all better than basic well-being, or the least advantaged individuals’ well-beings in policy y are all worse than basic well-being. Case β) refers to the domain where the least advantaged individuals’ well-beings in policy x are either all better than basic well-being or all indifferent to basic well-being, while at least one of the least advantaged individuals’ well-beings in policy y is non-comparable with basic well-being. Case γ) refers to the domain where at least one of the least advantaged individuals’ well-beings in policy x is non-comparable with their basic well-being, while the least advantaged individuals’ well-beings in policy y are all worse than their basic well-being. Case δ) refers to the domain where the least advantaged individuals’ well-beings are all worse than their basic well-being in both policies x and y. Case ϵ) refers to the domain where the least advantaged individuals’ well-beings in both policies x and y are all better than their basic well-being.

Based on this classification, let us introduce three conditions imposed on group evaluations, which result in restricting the domain of the SRF F.

Basic Well-being Condition (BWC): For each $C \in \mathcal{C}$, each $\succsim \in \mathcal{A}$, and each $t \in T$, and for each $x, y \in X$, $x R^t_C y$ (resp. $x P^t_C y$) holds if (x, y) corresponds to at least one of cases α-1) (resp. α-2), β, and γ).

Restricted Monotonicity (RM): For each $C \in \mathcal{C}$, each $\succsim \in \mathcal{A}$, and each $t \in T$, and for each $x, y \in X$, $x R^t_C y$ (resp. $x P^t_C y$) holds if (x, y) corresponds to case δ), and $C_i(x) \succsim_t C_j(y)$ (resp. $C_i(x) \succ_t C_j(y)$) holds for all $i \in L_C(x; \succsim_t)$ and all $j \in L_C(y; \succsim_t)$.

Refrain Condition (RC): For each $C \in \mathcal{C}$, each $\succsim \in \mathcal{A}$, and each $t \in T$, and for each $x, y \in X$ with $x \neq y$, $x N R^t_C y$ holds if (x, y) corresponds to either case ϵ) or case ε).

BWC requires each group to evaluate a social policy x, under which the well-being contents of the least advantaged are at least as good as their basic well-being, as being *more just* than another social policy y, under which the well-being contents of the least advantaged either fall beneath their basic well-being or cannot be compared with it. Furthermore, it requires each
group to evaluate a social policy \(y \), under which the well-being contents of
the least advantaged fall beneath their basic well-being, as being less just
than another social policy \(x \) in which the well-being contents of the least
advantaged cannot be compared with their basic well-being.

\textbf{RM} requires each group to evaluate a social policy \(x \) as being more just
than another social policy \(y \) whenever the corresponding profile of the least
advantaged members' well-beings is better in \(x \) than \(y \), given that all of
their well-being contents derived from both policies fall beneath their basic
well-being. \textbf{RM} represents a kind of monotonicity criterion,\(^{15}\) although its
applicability is constrained to a proper domain of alternatives.

Lastly, \textbf{RC} requires a group evaluation not to make pair-wise rankings
of the social policies if the well-being contents of the least advantaged cor-
responding to these social policies are better than their basic well-being or
they cannot be compared with their basic well-being.\(^{16}\)

Thus, the three conditions together define the available class of group
evaluations, which make their rankings over pairs of social policies deserve
being called more or less unjust. The last comparative adjective is motivated
from the “comparative approach to justice” proposed by Sen in place of a
“transcendental approach to justice” (Sen 2009a, pp. 15-18, Sen, 2009b, p.
46f.). According to Sen, the latter is a traditional approach in ethics, which
focuses on the description of an ideal just state, while the former is a new
approach in ethics, which ranks alternative social states in terms of justice
but does not necessarily identify an ideal just state. The three conditions
constitute an attempt to formulate a “comparative approach to justice,” in
that they together make the available group evaluations consistent with the
common goal of securing basic well-being for all members of each group,
on the one hand by identifying “unjust” policies as those fall short of basic
well-being and comparing them with one another to make evaluations of
them as “less unjust” or “more unjust,” on the other hand by refraining from
identifying any of the policies as ideal just when they warrant everyone’s

\(^{15}\)The concept of dominance proposed by Pattanaik and Xu (2007, p. 361-362), which
is closely related to Sen’s idea of “dominance partial ordering” (Sen, 1987, pp. 29-30) is a
good example.

\(^{16}\)This condition is similar to the “focus axiom” proposed by Sen (1981; p. 186), which
requests that the difference between two social states, both of which bring about capabilities
at least as good as basic capability, is not reflected in the social evaluation. We are
grateful to James Foster and Prasanta Pattanaik for pointing this out. See Foster (1984;
p. 217) and Sen (1997; p. 172).
well-being beyond basic well-being.

We examine the mutual consistency of these three conditions.

Lemma 1: Let the reflexive R_C^t satisfy BWC, RM, and RC. Then, it is transitive.

Due to this lemma, each group can form its own evaluation based on the three conditions that are rational in terms of logical consistency.

4.2 Axioms for Social Relation Functions

The next task for us is to introduce two basic axioms regarding how to aggregate plural group evaluations as well as diverse individual well-being appraisals in order to form a consistent social evaluation. To explore this problem, let us introduce the following conditions.

Non-negative Response (NR): For each $C \in \mathcal{C}$, each $\succeq \in \mathcal{A}$, each $R_C^T \in D_C(\succeq)$, and each $x, y \in X$, if there exists $t' \in T$ such that $xR_C^{t'}y$ (resp. $xP_C^{t'}y$) and there exists no $t'' \in T$ such that $yP_C^{t''}x$, then xR_Cy (resp. xP_Cy) holds, where $R_C = F(\succeq, R_C^T)$.

Weak Pareto (WP): For each $C \in \mathcal{C}$, each $\succeq \in \mathcal{A}$, each $R_C^T \in D_C(\succeq)$, and each $x, y \in X$, if $C_i(x) \succeq_i C_i(y)$ holds for all $i \in N$, then xP_Cy holds, where $R_C = F(\succeq, R_C^T)$.

Recall that each $t \in T$ represents a particular type of disadvantage, so $N \setminus (\cup_{t \in T} N_C^t)$ is the set of non-disadvantaged individuals in society N with C. Hence, NR requires giving priority to the evaluations of disadvantaged groups over the evaluations of non-disadvantaged individuals in the aggregation procedure, while there is no priority rule in the treatments of evaluations among the different disadvantaged groups. That is, even if the well-being contents of all non-disadvantaged individuals become worse in y than in x, the social evaluation must be that y is at least as just as x whenever a group t evaluates y as being at least as just as x and no other group evaluates x as more just than y. Such a requirement seems quite reasonable whenever persons with a particular disadvantage can be considered as “experts” on that disadvantage and these persons are expected to provide a reasonable group evaluation. In this respect, NR together with the available class of group
evaluations constrained by BWC, RM, and RC warrant the reasonableness of preferential treatments of specific types of groups in the aggregation procedure.

In contrast, WP requires no prior treatment of any particular individuals’ appraisals. It simply states that, if the well-being contents of all individuals are better in x than in y, then the social evaluation must be that x is more just than y. In terms of respecting the plurality of the conceptions of the good, WP also seems quite reasonable.

It is also worth mentioning that, although WP is a weaker condition of welfarism, the requirement of NR with the scheme of group evaluations makes SRFs non-welfaristic. To see this point, remember that the neutrality property of social choice rules is necessary for welfarism in the standard Arrovian framework. In our framework, neutrality of SRFs is defined as follows: for any $C \in C$, for every $x, y, z, w \in X$, and for any two profiles of well-being appraisals $\succ_i, \succ'_i \in A$, if $[C_i(x) \succ_i C_i(y)$ if and only if $C_i(z) \succ'_i C_i(w)]$ holds for every $i \in N$, then $[xR_Cy$ if and only if $zR'_Cw]$ holds, where $R_C = F(\succ, R^T_C)$ and $R'_C = F(\succ', R^T_C)$.

The following example shows that if SRF satisfies NR with the scheme of group evaluations satisfying BWC, RM, and RC, then it does not satisfy neutrality.

Example 1: Let $N = \{1, 2, 3, 4\}$ with $C \in C$, $T = \{t^1, t^2, t^3\}$ with $N^t_1 = \{1\}$, $N^t_2 = \{2\}$, and $N^t_3 = \{3\}$, and $X = \{x, y, z, w\}$. Let us define two profiles of well-being appraisals $\succ, \succ' \in A$ as follows:

$$
C_i(z) \succ_i C_i(x) \succ_i BC^{t^i} \succ_i C_i(w) \succ_i C_i(y) \quad \text{for} \quad i \in \{1, 3\};
$$

$$
C_2(z) \succ_2 BC^{t^2} \succ_2 C_2(x) \succ_2 C_2(y);
$$

$$
C_4(x) \succ_4 BC^{t^4} \succ_4 C_4(w) \succ_4 C_4(z);
$$

and

17 The basic idea of neutrality can be summarized as follows: if the individual preferences over (x, y) in one case are “identical” to the individual preferences over (a, b) in another case, then the social preference in the latter would place a and b respectively where x and y figured in the former (Sen, 2002; p. 333).

See Fleurbaey and Mongin (2005; p. 386) for an excellent survey of studies on neutrality.

As pointed out, Sen has examined the essential nature of neutrality in terms of “welfarism” (e.g., Sen, 1970, chs. 5 and 5*).
whether the compatibility of that the group evaluations satisfy the local decisiveness of specific as well as of all individuals. Then, provided the application of this principle. Therefore, treats every individual’s appraisal and, moreover, there is no constraint for prior treatments based on their group evaluations. In contrast, individuals. Indeed, democratic way while admitting a prior treatment of disadvantaged individuals. This is a legitimate and interesting question when a social choice problem is to select a public policy to secure basic well-being for all in a democratic way while admitting a prior treatment of disadvantaged individuals. Therefore, if an SRF \(F \) satisfies neutrality, then \([z_{RC}w] \) must hold, where \(R_C = F(\succ_i, R^{T}_C) \) and \(R'_C = F(\succ_i', R'^{T}_C) \). In contrast, by BWC, \(C_1(z) \succ_i BC^{at} \succ_i C_1(w) \) implies \(z_{PC}w \), and \(C_3(z) \succ_i BC^{at} \succ_i C_3(w) \) implies \(z_{NP}x \). Similarly, by BWC, \(C_2(z) \succ_i BC^{at} \succ_i C_2(x) \) implies \(z_{PC}x \); while by RC, \(C_1(x) \succ_i C_1(z) \succ_i BC^{at} \) implies \(z_{NP}x \), and \(C_3(x) \succ_i C_3(z) \succ_i BC^{at} \) implies \(z_{NP}x \). Therefore, \(z_{PC}w \) and \(z_{PC}x \), where \(R_C = F(\succ_i, R^{T}_C) \) and \(R'_C = F(\succ_i', R'^{T}_C) \), hold by NR. Thus, this \(F \) does not satisfy neutrality.

In summary, the group evaluations scheme constrained by BWC, RM, and RC and the axiom NR together imply non-welfarism.

5 On (Im)possibility of Social Relation Functions

The aim of this section is to verify the possibility of an SRF satisfying NR and WP under the constraints of BWC, RM, and RC on group evaluations. This is a legitimate and interesting question when a social choice problem is to select a public policy to secure basic well-being for all in a democratic way while admitting a prior treatment of disadvantaged individuals. Indeed, NR specifies under what conditions as well as to what extent some of disadvantaged individuals should be entitled to receive the prior treatments based on their group evaluations. In contrast, WP equally treats every individual’s appraisal and, moreover, there is no constraint for the application of this principle. Therefore, NR and WP represent mutually different principles, though they are respectively weak as the claims for the local decisiveness of specific as well as of all individuals. Then, provided that the group evaluations satisfy BWC, RM, and RC, it is not obvious whether the compatibility of WP and NR is verified.
We examine, in the first step, whether or not there exists an SRF that satisfies NR. To do this, we introduce another axiom, the Positive Response (PR), which is even weaker than NR. Proposition 1 discussed below shows that there is no SRF that satisfies PR.

Therefore, in the second step, to avoid this negative result, we introduce an additional condition, Full Comparability of Destitution (FCD), which insures the full comparability of policies when the well-beings of all of the least advantaged members become worse than their basic well-being. Proposition 2 proves that under the presumption of FCD, there exists an SRF that satisfies NR.

However, in the third step, we show in Theorem 1 that it is impossible to guarantee the compatibility of NR and WP even under the presumption of FCD. Given these results, Theorem 2 clarifies what kind of further condition is required for the compatibility of these two axioms.

Assume, for the sake of simplicity, that the profile of the disadvantaged groups \((N_t^C)_{t \in T}\) is fixed independent of the types of SRFs. As our first step, let us introduce the following axiom for SRFs:

Positive Response (PR):

For each \(C \in C\), each \(\succeq \in A\), each \(R^T_C \in D_C(\succeq)\), and each \(x, y \in X\), if there exists \(t' \in T\) such that \(x P^T_C y\) and there is no \(t'' \in T\) such that \(y P^T_C x\), then \(x P_C y\) holds, where \(R_C = F(\succeq, R^T_C)\).

PR is a weaker version of NR. This condition, as well as NR, seems quite reasonable, given that persons with a particular disadvantage can be considered as “experts” on that disadvantage.

Then,

Proposition 1: There exists a profile of well-being appraisals \(\succeq\) under which no SRF \(F\) satisfies PR.

This impossibility holds whenever there are at least three different disadvantaged groups, \(t^1, t^2, t^3 \in T\), and also at least three alternatives, \(x, y, z \in X\). To focus on the simplest case, let there be no other group, \(T = \{t^1, t^2, t^3\}\), and each of the three groups have only one member, \(N^{t^i}_C = \{i\}\) for \(i = 1, 2, 3\). Then, each individual \(i = 1, 2, 3\) is also the least advantaged member of her group, and her appraisal is identical to her group’s appraisal.

Given this setting, assume that the well-being contents of all the three individuals under any of the three alternatives are worse than their corresponding basic well-being contents: \(BC^{t^i} \succ_{t^i} C_i(w)\) for any \(w \in \{x, y, z\}\)
and for each $i = 1, 2, 3$. Moreover, assume that, according to group t^1’s appraisal, x is better than y, y and z are non-comparable, and z and x are non-comparable; according to group t^2’s appraisal, y is better than z, z and x are non-comparable, and x and y are non-comparable; and according to group t^3’s appraisal, z is better than x, x and y are non-comparable, and so are y and z. Then, RM implies that $xP_{C}^{t^1}y$, $yP_{C}^{t^2}z$, and $zP_{C}^{t^3}x$. Moreover, let $yNR_{C}^{t^1}z$ and $zNR_{C}^{t^2}x$; $zNR_{C}^{t^2}x$ and $xNR_{C}^{t^3}y$; and $xNR_{C}^{t^3}y$ and $yNR_{C}^{t^3}z$. Such group evaluations are available due to the assumptions of the three groups’ appraisals. However, by PR, the corresponding social evaluation R_{C} should have $xP_{C}y$, $yP_{C}z$, and $zP_{C}x$, which implies that there is no SRF satisfying PR.

The above arguments indicate that the incompleteness of group appraisals is the key factor to generate such a cyclical social evaluation.\(^{18}\) Given this impossibility, let us introduce an additional condition on well-being appraisals:

Full Comparability of Destitution (FCD): For each $t \in T$ and each $x, y \in X$, if case δ) applies, then for all $i \in L_{C}^{t}(x; \succsim_{t})$ and all $j \in L_{C}^{t}(y; \succsim_{t})$, $C_{i}(x) \succsim_{t} C_{j}(y)$ or $C_{j}(y) \succsim_{t} C_{i}(x)$.

Case δ) is the situation where in each policy, the well-being contents of the least advantaged are all worse than their basic well-being. FCD requires that the well-beings of the least advantaged are all comparable when they are in such “destitution”. This condition seems reasonable, since the plurality of evaluations over social policies tends to be reduced under a situation of “destitution.” Moreover, it would be desirable that relatively “less unjust” policies can be selected under the situation of “destitution,” and FCD insures the feasibility of such a social choice.

The next proposition proves that if we introduce FCD into the group appraisal, we can warrant the existence of an SRF F, which satisfies NR, a strong version of PR.

Proposition 2: Let FCD hold. Then, there exists an SRF F that satisfies NR.

To show Proposition 2, let us define F_{NR} as follows: for each $C \in \mathcal{C}$, each $\succsim \in \mathcal{A}$, each $R_{C}^{t} \in D_{C}(\succsim)$, and each $x, y \in X$, $xR_{C}^{t}y$ holds if and only if

\(^{18}\) Indeed, in the three-group and three-alternative example, for each group, if at least one non-comparable pair is changed to be comparable, then the cyclical social evaluation is no longer generated.
there exists $t' \in T$ such that $x R'_C y$ and there is no $t'' \in T$ such that $y P''_C x$, where $R_{NR}^T = F_{NR}(\succsim, R_T)$. This R_{NR}^T is shown to be transitive.

As FCD seems to be a strong condition, it is not so surprising that under this condition, the existence of SRF satisfying NR is ensured. A more interesting question is whether there exists an SRF satisfying NR and WP or not. Surprisingly, even under the strong assumption of FCD, there is no SRF satisfying NR and WP, as the following theorem shows.

Theorem 1: Suppose FCD. Then, there exists a profile of well-being appraisals \succsim under which no SRF satisfies PR and WP.

The essential factor to generate this theorem is that at least two least advantaged members may exist within a group under a social policy, whose well-being positions relative to basic well-being are different, and at least one of such members is no longer the least advantaged under another social policy. To see this, let us suppose that i and j are the least advantaged members within a group t, where i’s well-being is worse than BC^t and j’s well-being is non-comparable with BC^t in policy x, according to the group appraisal \succsim_t. Moreover, let us suppose that all individuals’ well-being contents are improved as a result of the change from policy x to policy y, and j’s well-being becomes better than BC^t in y, although i’s is still worse than BC^t. Moreover, let i be the unique least advantaged member of the group t under y, so that j is no longer the least advantaged of this group. This situation corresponds to case γ), so BWC applies and this group evaluates that x is more just than y. Then, if no other groups make any objection, PR requires that x is better than y. Yet, WP requires that y is better than x.

This argument suggests that, unlike the Pareto-liberal paradox, PR and WP can be incompatible even if the social evaluation R_C is not requested to be acyclic. Note also that the existence of only one disadvantaged group is sufficient to generate this incompatibility; in contrast, in the Pareto-liberal paradox, at least two agents must exercise their local decisive powers to generate a conflict with the Pareto principle.

For the purpose of our four steps, let us introduce an additional condition that requires even greater comparability of each group’s well-being appraisal:

Dominance (D): For each $C \in \mathcal{C}$, each $t \in T$, each $x \in X$, and each $i, j \in N^t_C$, if $i, j \in L^t_C (x; \succsim_t)$, then $C_i (x) \sim_t C_j (x)$.
Lemma 2: we consider cases (3) and (4): it is easy to see that if case (2) applies, then Proposition 2 shows that if case (1) applies, \((2C) \) where \(C \).

To show Theorem 2, let us define the satisfaction of \(\text{Theorem 2} \): such an \(\left(\text{SRF} \right) \). Thus, \(D \) makes it impossible that \(j \) is deemed least advantaged even if \(j \)'s well-being content is non-comparable with basic well-being and there is another least advantaged member \(i \) whose well-being content is worse than basic well-being.

As argued above, the essential factor to derive the incompatibility between \(\text{NR and WP} \) was the existence of at least two least advantaged members within a group under a social policy, whose well-being positions relative to basic well-being are different. The assumption of \(D \) excludes such a situation, and so it seems indispensable for the existence of \(\text{SRF} \) satisfying both of \(\text{NR and WP} \). Indeed, the following theorem guarantees the existence of such an \(\text{SRF} \) \(F \) under the assumption of \(D \) in addition to \(\text{FCD} \):

Theorem 2: Let \(\text{FCD and D hold}. \) Then, there exists an \(\text{SRF} \) \(F \) that satisfies \(\text{NR and WP} \).

To show Theorem 2, let us define \(\text{WP} \) as follows: for each \(\text{C} \in \mathcal{C} \), each \(\tilde{\preceq} \in \mathcal{A} \), each \(R^T_C \in D_C(\tilde{\preceq}) \), and each \(x, y \in X \), \(x \preceq y \) holds if and only if \(C_i(x) \succ C_i(y) \) holds for all \(i \in \mathbb{N} \), and \(x \preceq y \) holds if and only if \(x = y \), where \(R^W_C = F_{\text{WP}}(\tilde{\preceq}, R^T_C) \). Moreover, let us define \(F_{\ast} \) as follows: for each \(\text{C} \in \mathcal{C} \) and each \(R^T_C \in D_C(\tilde{\preceq}) \), \(F_{\ast}(\tilde{\preceq}, R^T_C) = R^T_C \), where \(R^T_C \equiv R^{\text{SRF}}_C \cup R^W_C \).

In the following discussion, we show that this \(R^T_C \) is transitive. Let \((x, y), (y, z) \in R^T_C \). Then, there are the following four possible cases:

1. \((x, y), (y, z) \in R^{\text{NR}}_C \);
2. \((x, y), (y, z) \in R^W_C \);
3. \((x, y) \in R^{\text{NR}}_C \), and \((y, z) \in R^W_C \); and
4. \((x, y) \in R^W_C \) and \((y, z) \in R^{\text{NR}}_C \).

Proposition 2 shows that if case (1) applies, \((x, z) \in R^{\text{NR}}_C \) holds. Moreover, it is easy to see that if case (2) applies, then \((x, z) \in R^W_C \) holds. Next, let us consider cases (3) and (4):

Lemma 2: For each \(\text{C} \in \mathcal{C} \), each \(\tilde{\preceq} \in \mathcal{A} \), and each \(R^T_C \in D_C(\tilde{\preceq}) \), if \((x, y) \in R^{\text{NR}}_C \) and \((y, z) \in P^W_C \), then \((x, z) \in P^T_C \).
Lemma 3: For each $C \in \mathcal{C}$, each $\succ \in \mathcal{A}$, and each $R_C^T \in D_C(\succ)$, if $(x, y) \in P_C^{WP}$ and $(y, z) \in R_C^{NR}$, then $(x, z) \in P_C^*$.

Proof of Theorem 2: By Lemmas 2 and 3, it holds. ■

Theorems 1 and 2 indicate that, given the incompleteness of the informational basis, the moderate prior treatments of disadvantaged groups are unable to ensure consistent and Paretoian social decision-making for social policies. This impossibility, however, does not necessarily imply that there is an intrinsic conflict between the claim of the prior treatment of specific individuals and the equal treatment of all. Rather, it may originate from a lack of sufficient information on the part of a disadvantaged group to make a deliberate appraisal of their own states. As condition D and Theorem 2 show, the main reason for the impossibility is the existence of the least disadvantaged member whose well-being content is deemed non-comparable to basic well-being despite the existence of another least advantaged whose well-being content is deemed worse than basic well-being. If such “tentative” non-comparability can be resolved via further scrutiny of this member’s condition, consistent and Paretoian social decision-making for desired policies can be compatible with the prior treatment of specific people.19 In other words, the difficulty of constructing the desired social choice due to “tentative” non-comparability within the same disadvantaged group could be resolved by technical progress at least in the future, which should be discriminated from the more intrinsic types of impossibility problems.

It is also worth noting that, while FCD and D make any pairs of social policies satisfying cases $\alpha), \beta), \gamma), \delta$ of group evaluations comparable, the remaining non-comparable parts in group evaluations is “assertive” rather than “tentative”, as warranted by RC for group evaluations. Interestingly, however, such “assertive” non-comparability is also indispensable for the existence of SRFs satisfying NR and WP. Indeed, regardless of whether FCD and D are imposed, allowing comparability for group evaluations even within the domains of any pairs satisfying cases $\epsilon)$ and $\varepsilon)$ may restore the incompatibility of NR and WP, as the following example suggests.

19The notions of “tentative incompleteness” and “assertive incompleteness” are introduced by Sen, where the former consists of “some pairs of alternatives that are not yet ranked (although all may get ranked with more deliberation or information),” while the latter consists of “some pairs of alternatives that are asserted to be ‘non-rankable’” (Sen, 2002, p. 182).
Example 2: Let $N = \{h, i^1, j^1, i^2, j^2\}$ with $C \in C, T = \{t^1, t^2\}$ with $N_C^{t^1} = \{i^1, j^1\}$ and $N_C^{t^2} = \{i^2, j^2\}$, and $X = \{x, y, z\}$. Let $Z \equiv \mathbb{R}^2$ and

$$C_i^t (x) = (4, 4) ; C_i^t (y) = (1, 3.3) ; C_i^t (z) = (5, 3) ;$$
$$C_j^t (x) = (3.9, 2) ; C_j^t (y) = (2, 3.6) ; C_j^t (z) = (6, 3.5) ;$$
$$C_i^2 (x) = (4, 0.5) ; C_i^2 (y) = (3, 3) ; C_i^2 (z) = (1, 1) ;$$
$$C_j^2 (x) = (5, 2) ; C_j^2 (y) = (1.5, 1.5) ; C_j^2 (z) = (1.5, 4) ;$$
$$C_h (x) = (6, 6) ; C_h (y) = (5, 5) ; C_h (z) = (4, 4).$$

For each $k \in \{h, i^1, j^2\}$, let \succ_k be given by $C_k (v) \succ_k C_k (u)$ if and only if $C_k (v) \geq C_k (u)$; and $C_k (v) \succ_k C_k (u)$ if and only if $C_k (v) > C_k (u)$, where \geq (resp. $>$) is the vector inequality (resp. the strict vector inequality).

For each $l \in \{j^1, i^2\}$, let \succ_l be given by $C_l (v) \succ_l C_l (u)$ if and only if $(C_l (v))_1 \geq (C_l (u))_1$; and $C_l (v) \succ_l C_l (u)$ if and only if $(C_l (v))_1 > (C_l (u))_1$, where $(C_l (v))_1$ represents the first component of the vector $C_l (v)$. Finally, let $\succ_{t^1} \equiv \succ_{t^1}$ and $\succ_{t^2} \equiv \succ_{t^2}$. Moreover, let $BC^{t^1} \equiv (0, 0.5)$ and $BC^{t^2} \equiv (0.5, 0)$.

Given these settings, it follows that

$$C_l (x) \succ_l C_l (y) \text{ for all } l \in N;$$
$$L_C^{t^1} (x; \succ_{t^1}) = \{j^1\} ; L_C^{t^1} (y; \succ_{t^1}) = \{i^1\} ; L_C^{t^1} (z; \succ_{t^1}) = \{i^1\} ; \text{ and}$$
$$L_C^{t^2} (x; \succ_{t^2}) = \{i^2\} ; L_C^{t^2} (y; \succ_{t^2}) = \{j^2\} ; L_C^{t^2} (z; \succ_{t^2}) = \{j^2\} .$$

Then,

$$\text{not }[C_{j^1} (x) \succ_{t^1} C_{i^1} (y)] \text{ and } \text{not }[C_{i^1} (y) \succ_{t^1} C_{j^1} (x)]$$

by $C_{j^1} (x) \not\succ_{t^1} C_{i^1} (y) \& C_{j^1} (x) \not\succ_{t^1} C_{i^1} (y)$;

$$\text{not }[C_{i^1} (y) \succ_{t^1} C_{i^1} (z)] \text{ and } \text{not }[C_{i^1} (z) \succ_{t^1} C_{i^1} (y)]$$

by $C_{i^1} (y) \not\succ_{t^1} C_{i^1} (z) \& C_{i^1} (y) \not\succ_{t^1} C_{i^1} (z)$; and

$$C_{i^1} (z) \succ_{t^1} C_{j^1} (x) \text{ by } C_{i^1} (z) > C_{j^1} (x) .$$

Similarly,

$$\text{not }[C_{i^2} (x) \succ_{t^2} C_{i^2} (y)] \text{ and } \text{not }[C_{i^2} (y) \succ_{t^2} C_{i^2} (x)]$$

by $C_{i^2} (x) \not\succ_{t^2} C_{i^2} (y) \& C_{i^2} (x) \not\succ_{t^2} C_{i^2} (y)$;

$$\text{not }[C_{i^2} (x) \succ_{t^2} C_{i^2} (z)] \text{ and } \text{not }[C_{i^2} (z) \succ_{t^2} C_{i^2} (x)]$$

by $C_{i^2} (x) \not\succ_{t^2} C_{i^2} (z) \& C_{i^2} (x) \not\succ_{t^2} C_{i^2} (z)$.

23
by \(C_{i^2} (z) \not\succ C_{i^2} (x) \& C_{i^2} (z) \not\succ C_{i^2} (x) \); and

\[
C_{j^2} (y) \succ C_{i^2} (z) \text{ by } C_{j^2} (y) > C_{i^2} (z).
\]

Now, let \(R_{C}^{t_1} \) and \(R_{C}^{t_2} \) do not satisfy \(RC \), and so \(zP_{C}^{t_1} x \) and \(yP_{C}^{t_2} z \), while \(xNR_{C}^{t_1} y, yNR_{C}^{t_2} z, xNR_{C}^{t_2} y, \) and \(zNR_{C}^{t_1} x \). Then, \(NR \) implies that \(zP_{C} x \) and \(yP_{C} z \), while \(xP_{C} y \) follows from \(WP \), where \(R_{C} = F(\succ, R_{C}^{t}) \). Thus, \(RC \) violates transitivity.

The above example implies that, under the imposition of \(FCD \) and \(D \), a further increase of comparable parts in group evaluations via the elimination of \(RC \) results in the impossibility of \(SRFs \) satisfying \(NR \) and \(WP \).

6 Discussion

Before concluding the paper, we first comment on another prominent feature of our \(SRF \) framework. In Arrovian social welfare functions, a social choice is made simply on the basis of the structure of preference profiles announced by individuals and thus is independent of information on the characteristics of individuals and alternatives. Note that this property of Arrovian social welfare functions derives from the three conditions imposed by Arrow, namely the universal domain, the Pareto principle, and the independence of irrelevant alternatives. It is known that these three conditions lead to neutrality or welfarism, that is, these conditions together require that individuals’ ordinal rankings of alternatives are the sole relevant information to make a social choice. This structure of Arrovian models well represents the spirit of traditional liberalism, which gives priority to individual autonomy and prohibits arbitrarily unequal treatment.\(^{20}\) In contrast, in our \(SRFs \), a social choice is made on the basis of not only the preference profiles expressed by individuals but also the information of the characteristics of individuals and of alternatives. We have shown that this change is a clue to avoid welfaristic nature of social choice. Besides, this formulation allows us to explore another possibility of liberalism, that is, substantive equality of political freedom that allows the preferential treatment of ordinal rankings. The reasonableness of such preferential treatment is ensured by the introduction of an explicit device

\(^{20}\) According to Arrow, “The decision as to which preferences are relevant and which are not is itself a value judgement and cannot be settled on an a priori basis” (Arrow, 1963, p. 18).
for public scrutiny, which is represented in this paper by the observability of well-being indicators and the three-component structure of the informational basis.

Second, let us clarify the basic ideas underlying this paper. The first idea is relevant to two kinds of “incomparability.” In this paper, the least advantaged are identified as individuals whose well-being contents never dominate the well-beings of others in each social policy. Due to the multiplicity of attributes that define the notion of well-being, there could remain incomparability among the least advantaged even within a group. However, the meaning of incomparability within a group should be kept distinct from incomparability (also called “incommensurability”) between groups. The reason is that the former is a technical or political problem and certain conditions of compromise can be introduced to deal with it, as we have done by introducing \(FDC \) and \(D \) in this paper. On the other hand, the latter is a kind of incomparability for which no compromise can be found as long as the plurality of disadvantages is taken seriously. This distinction between these two forms of incomparability corresponds to the distinction introduced by Sen (2002) between “tentative incompleteness” and “assertive incompleteness.”

The second idea concerns two types of conflicts between groups—one arises from each group’s need to achieve basic well-being, while the other derives from each group’s desire to enjoy well-being beyond basic well-being. While the former type of conflict is avoidable if there are sufficient resources to secure basic well-being for all groups, the latter is not, if the desire towards better well-being is without limit. The former deserves consideration in terms of justice that this paper is concerned with, while the latter does not. This is the reason why in this paper, the application of the monotonicity condition is restricted to the domain below basic well-being through the application of \(RM \), while in the domain above basic well-being, conflicts are avoided through the application of \(RC \), which prohibits groups from making rankings.

7 Conclusion

This paper addressed and formulated a social choice problem for “securing basic well-being for all,” where individual well-being was defined in the space of multi-dimensional attributes; the notion of basic well-being was introduced as a critical reference point of multi-dimensional well-beings in
order to identify the “injustice” of social policies; and the mutually incommensurable types of disadvantages were allowed to exist. Given such an environment, a new scheme of social choice rule, a social relation function (SRF), was introduced with three elements of informational basis: individuals’ appraisals of their respective well-being contents; each disadvantaged group’s appraisal of its members’ well-being contents to identify the least advantaged members on the basis of the members’ shared conception of the good; and each group’s evaluation of alternative social policies, formed on the basis of its own appraisal by focusing on the least advantaged members. In the scheme of SRF, while individuals’ appraisal is equally treated, group evaluations are allowed a prior treatment as experts on their own disadvantages. The former property is formulated as weak Pareto condition (WP) and the latter as non-negative response (NR) along with three constraints, basic well-being condition (BWC), restricted monotonocity (RM), and refrain condition (RC), on the admissible group evaluations. It was shown that NR together with BWC, RM, and RC makes an SRF non-welfaristic.

Then, the paper showed that the three constraints are compatible in that a group evaluation is transitive if it satisfies these constraints, while there exists an SRF that satisfies NR if full comparability among the disadvantaged individuals’ well-being contents within a group is allowed under the situation of “destitution.” It also showed that any SRF cannot simultaneously satisfy WP and NR together with BWC, RM, and RC if “tentative” non-comparability of the least advantaged’s well-being contents within the same group remains, while there exists an SRF satisfying these axioms if the remaining non-comparability is “assertive,” where the “assertive” property of the remaining non-comparability is insured by RC. Finally, it was shown that the existence of the “assertive” non-comparability is indispensable for the existence of such an SRF.

Essentially, this study presents the set of disadvantaged types, the profiles of individual and group appraisals, and group evaluations along with the concrete conceptions of basic well-being contents for the respective groups as parameters in the framework of SRFs. It would be interesting to develop an analytical framework to address the structure of interaction in the formation process of these profiles and lists, as the adoption of the Convention on the Rights of Persons with Disabilities and its ratification by each party suggest. This is thus a topic worth discussing in future research.
8 References

9 Appendix: Proofs

Proof of Lemma 1. Let \(xR_C^t y \) \(R_C^t z \). We will show \(xR_C^t z \) holds. Note that \(xR_C^t y \) is derived from imposing either BWC or RM upon the pair \((x, y) \).

Case 1. Assume \(xR_C^t y \) by BWC.

Then, \(C_i(x) \succ_i BC^t \) holds for all \(i \in L_C(x; \succ_t) \), or not \([BC^t \succ_t C_i(x)] \) & not \([C_i(x) \succ_t BC^t] \) holds for some \(i \in L_C(x; \succ_t) \).

Sub-case 1-1. \(BC^t \sim_t C_j(y) \) for all \(j \in L_C(y; \succ_t) \).

Then, \(xR_C^t y \) is derived by imposing BWC under the case \(\alpha-1 \) or \(\alpha-2 \).

Suppose that case \(\alpha-1 \) holds but case \(\alpha-2 \) does not hold. Hence, \(C_i(x) \sim_t BC^t \) holds for all \(i \in L_C(x; \succ_t) \), which implies that \(yR_C^t x \) is also derived from
\textbf{BWC} under case α-1). Thus, $xP_C^t y$. Moreover, $yR_C^t z$ is only derived from \textbf{BWC} upon the pair (y, z). Therefore, the pair (x, z) satisfies case α-1) or α-2), so that $xR_C^t z$ holds by \textbf{BWC}. In particular, if $yP_C^t z$, then $xP_C^t z$ also holds, while if $yI_C^t z$, then $xI_C^t z$ also holds.

Suppose that case α-2) holds. Then, $C_t(x) \succ BC^t$ holds for all $i \in L_C^t(x; \preceq_t)$ and $xP_C^t y$. Again, $yR_C^t z$ is only derived from applying \textbf{BWC} to the pair (y, z). Therefore, the pair (x, z) satisfies case α-2), so that $xP_C^t z$ holds by \textbf{BWC}.

\textbf{Sub-case 1-2.} not $[C_j(y) \preceq_t BC^t]$ and not $[BC^t \preceq_t C_j(y)]$ for some $j \in L_C^t(y; \preceq_t)$.

Then, case β) holds for the pair (x, y), so that $xP_C^t y$ holds. Moreover, $yR_C^t z$ is only derived from \textbf{BWC} under case γ) upon the pair (y, z), where $BC^t \succ C_j(z)$ must hold for all $j \in L_C^t(z; \preceq_t)$, so that $yP_C^t z$ holds. Therefore, the pair of (x, z) satisfies case α-2), so that $xP_C^t z$ holds by \textbf{BWC}.

\textbf{Sub-case 1-3.} $BC^t \succ C_j(y)$ for all $j \in L_C^t(y; \preceq_t)$.

Then, the case α-2) or γ) holds for the pair (x, y), so that $xP_C^t y$ holds. Moreover, $yR_C^t z$ is then derived only from \textbf{RM} upon the pair (y, z), which implies that $C_i(y) \preceq_t C_j(z)$ holds for all $i \in L_C^t(y; \preceq_t)$ and all $j \in L_C^t(z; \preceq_t)$, so that $BC^t \succ C_j(z)$ holds for all $j \in L_C^t(z; \preceq_t)$ by the transitivity of \preceq_t. Thus, the pair of (x, z) corresponds to the case α-2) or γ), so that $xP_C^t z$ holds by \textbf{BWC}.

\textbf{Case 2.} Assume $xR_C^t y$ by \textbf{RM}.

Then, $yR_C^t z$ should also be derived from \textbf{RM} upon the pair (y, z). Hence, the pair (x, z) satisfies case δ). Moreover, $C_i(x) \preceq_t C_j(y) \preceq_t C_h(z)$ holds for all $i \in L_C^t(x; \preceq_t)$, all $j \in L_C^t(y; \preceq_t)$, and all $h \in L_C^t(z; \preceq_t)$. Then, by the transitivity of \preceq_t, $C_i(x) \preceq_t C_h(z)$ holds for all $i \in L_C^t(x; \preceq_t)$ and all $h \in L_C^t(z; \preceq_t)$. Thus, $xR_C^t z$ holds by \textbf{RM}. Moreover, if $xP_C^t y$ or $yP_C^t z$, then $xP_C^t z$ holds, while if $xI_C^t y$ and $yI_C^t z$, then $xI_C^t z$ holds by the transitivity of \preceq_t and \textbf{RM}.

\textbf{Proof of Proposition 1.} Let a binary relation P_C^{PR} be defined as: for each $C \in \mathcal{C}$, each $(R_C^t)_{t \in T} \in D_C(\preceq_t)$, and each $x, y \in X$,

$$xP_C^{PR} y \text{ holds if and only if there exists } t' \in T \text{ such that } xP_C^{t'} y \text{ and there is no } t'' \in T \text{ such that } yP_C^{t''} x.$$

Note that any \textbf{SRF} F should associate a quasi-ordering $R_C = F (C, \preceq, (R_C^t)_{t \in T})$
with each \((C, \succsim, (R_C^t)_{t \in T})\) such that \(P_C^{PR} \subseteq R_C\) if \(F\) satisfies \(PR\). Therefore, it is sufficient for this proof to show that \(P_C^{FR}\) is not transitive.

Let \(\{t^1, t^2, t^3\} = T\), and let us consider \((C, \succsim, (R_C^t)_{t \in T})\) satisfying the following properties:

1. Let \(BC^{t^1} \succsim_{t^1} C_i(x)\) for all \(i \in L^1_C(x; \succsim_{t^1})\); \(BC^{t^1} \succsim_{t^1} C_j(y)\) for all \(j \in L^1_C(y; \succsim_{t^1})\); and \(BC^{t^1} \succsim_{t^1} C_h(z)\) for all \(h \in L^1_C(z; \succsim_{t^1})\). Moreover, let \(C_i(x) \succsim_{t^1} C_j(y)\) for all \(i \in L^1_C(x; \succsim_{t^1})\) and all \(j \in L^1_C(y; \succsim_{t^1})\); not \([C_i(x) \succsim_{t^1} C_h(z)]\) and not \([C_h(z) \succsim_{t^1} C_i(x)]\) for some \(i \in L^1_C(x; \succsim_{t^1})\) and some \(h \in L^1_C(z; \succsim_{t^1})\); and not \([C_j(y) \succsim_{t^1} C_h(z)]\) and not \([C_h(z) \succsim_{t^1} C_j(y)]\) for some \(j \in L^1_C(y; \succsim_{t^1})\) and some \(h \in L^1_C(z; \succsim_{t^1})\).

2. Let \(BC^{t^2} \succsim_{t^2} C_i(x)\) for all \(i \in L^2_C(x; \succsim_{t^2})\); \(BC^{t^2} \succsim_{t^2} C_j(y)\) for all \(j \in L^2_C(y; \succsim_{t^2})\); and \(BC^{t^2} \succsim_{t^2} C_h(z)\) for all \(h \in L^2_C(z; \succsim_{t^2})\). Moreover, let \(C_i(y) \succsim_{t^2} C_h(z)\) for all \(i \in L^2_C(y; \succsim_{t^2})\) and all \(h \in L^2_C(z; \succsim_{t^2})\); not \([C_i(y) \succsim_{t^2} C_j(x)]\) and not \([C_j(x) \succsim_{t^2} C_i(y)]\) for some \(i \in L^2_C(y; \succsim_{t^2})\) and some \(j \in L^2_C(x; \succsim_{t^2})\); and not \([C_i(x) \succsim_{t^2} C_h(z)]\) and not \([C_h(z) \succsim_{t^2} C_i(x)]\) for some \(i \in L^2_C(x; \succsim_{t^2})\) and some \(h \in L^2_C(z; \succsim_{t^2})\).

3. Let \(BC^{t^3} \succsim_{t^3} C_i(x)\) for all \(i \in L^3_C(x; \succsim_{t^3})\); \(BC^{t^3} \succsim_{t^3} C_j(y)\) for all \(j \in L^3_C(y; \succsim_{t^3})\); and \(BC^{t^3} \succsim_{t^3} C_h(z)\) for all \(h \in L^3_C(z; \succsim_{t^3})\). Moreover, let \(C_h(z) \succsim_{t^3} C_i(x)\) for all \(h \in L^3_C(z; \succsim_{t^3})\) and all \(i \in L^3_C(x; \succsim_{t^3})\); not \([C_j(y) \succsim_{t^3} C_h(z)]\) and not \([C_h(z) \succsim_{t^3} C_j(y)]\) for some \(h \in L^3_C(z; \succsim_{t^3})\) and some \(j \in L^3_C(y; \succsim_{t^3})\); and not \([C_i(x) \succsim_{t^3} C_j(y)]\) and not \([C_j(y) \succsim_{t^3} C_i(x)]\) for some \(i \in L^3_C(x; \succsim_{t^3})\) and some \(j \in L^3_C(y; \succsim_{t^3})\).

Under (1), \(xP_C^{t^1}y\) by \(RM\), and \(zNR_C^{t^1}x\) and \(yNR_C^{t^1}z\) by \(RC\). Under (2), \(yP_C^{t^2}z\) by \(RM\), and \(zNR_C^{t^2}y\) and \(xNR_C^{t^2}y\) by \(RC\). Under (3), \(zP_C^{t^3}x\) by \(RM\), and \(yNR_C^{t^3}x\) and \(yNR_C^{t^3}y\) by \(RC\). Therefore, by the definition of \(PR\), \(xP_C^{PR}yP_C^{PR}zP_C^{PR}x\) holds, which implies that \(P_C^{PR}\) is not transitive.

Proof of Proposition 2. Let \(xR_C^{NR}yR_C^{NR}z\). This implies that there exists \(t^1 \in T\) such that \(xR_C^{t^1}y\) and not \(yP_C^{t^1}x\) for any other \(t \in T\), and there exists \(t^2 \in T\) such that \(yR_C^{t^2}z\) and not \(zP_C^{t^2}y\) for any other \(t \in T\). Moreover, \(xR_C^{t^1}y\) (resp. \(yR_C^{t^2}z\)) is derived from \(BWC\) by applying either of the cases \(\alpha\), \(\beta\), and \(\gamma\); or it is derived from \(RM\) by applying case \(\delta\).

1. First of all, let us show that if \(xR_C^{t^1}y\) and not \(zP_C^{t^1}y\), then \(xR_C^{t^1}z\).

 Case 1: Let \(xR_C^{t^1}y\) be derived from \(BWC\) by applying \(\alpha-1\).

 Then, \(BC^{t^1} \succsim_{t^1} C_j(y)\) for all \(j \in L^1_C(y; \succsim_{t^1})\), and \(C_i(x) \succsim_{t^1} BC^{t^1}\) for all \(i \in L^1_C(x; \succsim_{t^1})\). Suppose \(zP_C^{t^1}x\). Note that neither of the case \(\alpha\), \(\beta\),
\(\gamma\), \(\delta\) can derive \(zP_C^t x\), thus \((z, x)\) satisfies \(\epsilon\) or \(\varepsilon\), which leads to \(xNR_C^t z\) by RC, a contradiction. Thus, \(xNR_C^t z\) or \(xR_C^t z\) holds. Suppose \(xNR_C^t z\). This implies that \((x, z)\) corresponds to \(\epsilon\), so that \(C_i (z) \succ_{t_l} BC^{t_l}\) for all \(i \in L_C^t (z; \succ_{t_l})\). Then, \(zP_C^t y\) from BWC by applying case \(\alpha-2\), which is a contradiction. Thus, \(xR_C^t z\) holds.

Case 2: Let \(xP_C^t y\) be derived from BWC by applying \(\beta\).

Then, not \([C_j (y) \succ_{t_l} BC^{t_l}\)] for some \(j \in L_C^t (y; \succ_{t_l})\), and \(C_i(x) \succ_{t_l} BC^{t_l}\) for all \(i \in L_C^t (x; \succ_{t_l})\). Suppose \(zP_C^t x\). Note that neither of \(\alpha\), \(\beta\), \(\gamma\), \(\delta\) can derive \(zP_C^t x\), thus \((z, x)\) corresponds to \(\epsilon\) or \(\varepsilon\), which leads to \(xNR_C^t z\) by RC, a contradiction. Thus, \(xNR_C^t z\) or \(xR_C^t z\) holds. Suppose \(xNR_C^t z\). This implies that \((x, z)\) satisfies property \(\epsilon\), so that \(C_i (z) \succ_{t_l} BC^{t_l}\) for all \(i \in L_C^t (z; \succ_{t_l})\). Then, \(zP_C^t y\) from BWC by applying case \(\beta\), which is a contradiction from not \(zP_C^t y\). Thus, \(xR_C^t z\) holds. Finally, suppose that \(zR_C^t x\). This is only available by applying case \(\alpha-1\), and \(C_i(x) \sim_{t_l} BC^{t_l}\) for all \(i \in L_C^t (x; \succ_{t_l})\) and \(C_i(z) \sim_{t_l} BC^{t_l}\) for all \(i \in L_C^t (z; \succ_{t_l})\). Then, \(zP_C^t y\) from BWC by applying case \(\beta\), which is a contradiction from not \(zP_C^t y\). Thus, \(zR_C^t x\) is impossible, so that \(xP_C^t z\) holds.

Case 3: Let \(xP_C^t y\) be derived from BWC by applying the case \(\alpha-2\) or \(\gamma\).

Case 3-1: Suppose that \(BC^{t_l} \sim_{t_l} C_i (y)\) for all \(i \in L_C^t (y; \succ_{t_l})\).

Then, \(C_i(x) \succ_{t_l} BC^{t_l}\) for all \(i \in L_C^t (x; \succ_{t_l})\) so that \(zR_C^t x\) is never possible. Moreover, if \(zNR_C^t x\), then \(C_i (z) \succ_{t_l} BC^{t_l}\) for all \(i \in L_C^t (z; \succ_{t_l})\) due to RC under case \(\epsilon\). Then, \(zP_C^t y\) by BWC under case \(\alpha-2\), which is a contradiction from not \(zP_C^t y\). Thus, \(xP_C^t z\) is only possible.

Case 3-2: Suppose that \(BC^{t_l} \succ_{t_l} C_i (y)\) for all \(i \in L_C^t (y; \succ_{t_l})\).

Case 3-2-1: Suppose \(zR_C^t x\).

If not \([C_j (x) \succ_{t_l} BC^{t_l}\)] for some \(j \in L_C^t (x; \succ_{t_l})\), then, in order to ensure \(zR_C^t x, C_i (z) \succ_{t_l} BC^{t_l}\) must hold for all \(i \in L_C^t (z; \succ_{t_l})\). Thus, \(zP_C^t y\) from BWC under case \(\alpha-2\), which is a contradiction from not \(zP_C^t y\). If \(C_i(x) \succ_{t_l} BC^{t_l}\) for all \(j \in L_C^t (x; \succ_{t_l})\), then \(zR_C^t x\) is possible only from BWC under case \(\alpha\). Then, it implies that \(C_j (z) \succ_{t_l} BC^{t_l}\) for all \(j \in L_C^t (z; \succ_{t_l})\), which again implies \(zP_C^t y\) by BWC under case \(\alpha-2\), which is a contradiction from not \(zP_C^t y\). In summary, \(zR_C^t x\) is impossible.

Case 3-2-2: Suppose \(zNR_C^t x\).

Note that \(zNR_C^t x\) is derived from RC under case \(\epsilon\) or \(\varepsilon\).

Case 3-2-2-1: Let case \(\epsilon\) hold.
Then $C_i(z) \succeq_{t1} BC^{t1}$ holds for all $i \in L^t_C(z; \preceq_{t1})$, so that zP^t_Cy from \textbf{BWC} by applying α-2), a contradiction.

Case 3-2-2-1: Let case ε) hold.

Then

$$\not\left[C_j(z) \succeq_{t1} BC^{t1}\right]$$ for some $j \in L^t_C(z; \preceq_{t1})$; or

$$\not\left[BC^{t1} \succeq_{t1} C_i(z)\right]$$ for some $i \in L^t_C(z; \preceq_{t1})$.

Let both the former and the latter hold. Then, by the property of $L_C^t(z; \preceq_{t1})$, there is a common $i \in L_C^t(z; \preceq_{t1})$ such that $\not\left[C_i(z) \succeq_{t1} BC^{t1}\right]$ and $\not\left[BC^{t1} \succeq_{t1} C_i(z)\right]$.

Then, given that case ε) holds for zNR^t_Cx, case γ) must hold for having xP^t_Cy. Then, zP^t_Cy holds from \textbf{BWC} under case γ), a contradiction.

Hence, either the former does not hold or the latter does not hold. Let the former do not hold, so that $C_i(z) \succeq_{t1} BC^{t1}$ holds for all $i \in L_C^t(z; \preceq_{t1})$. Then, zP^t_Cy from \textbf{BWC} under case α)-2), a contradiction. Let the latter do not hold, so that $BC^{t1} \preceq_{t1} C_i(z)$ for all $i \in L_C^t(z; \preceq_{t1})$. Thus, $\not zP^t_Cy$ is derived from \textbf{RM} under case δ). Then, by \textbf{FCD}, yR^t_Cz holds. Thus, by transitivity, xP^t_Cz, which is a contradiction from zNR^t_Cx. In summary, zNR^t_Cx is impossible. Thus, xP^t_Cz holds.

Case 4: Let xR^t_Cy be derived from \textbf{RM} under case δ).

Then, $BC^{t1} \succeq_{t1} C_i(x)$ for all $i \in L_C^t(x; \preceq_{t1})$; and also, $BC^{t1} \succeq_{t1} C_i(y)$ for all $i \in L_C^t(y; \preceq_{t1})$. Since $\not zP^t_Cy$, either yR^t_Cz or yNR^t_Cz. Suppose yNR^t_Cz. Since $BC^{t1} \succeq_{t1} C_i(y)$ for all $i \in L_C^t(y; \preceq_{t1})$, yNR^t_Cz implies that $BC^{t1} \succeq_{t1} C_i(z)$ for all $i \in L_C^t(z; \preceq_{t1})$. However, by \textbf{FCD}, \textbf{RM} can be applied to evaluate (y, z), which implies $\not yNR^t_Cz$, a contradiction. Thus, yP^t_Cz. Then, by transitivity of R^t_C, xR^t_Cz holds.

In summary, if xR^t_Cy and $\not zP^t_Cy$, then xR^t_Cz.

2. Second, let us show that if yR^t_Cz and $\not yP^t_Cx$, then $\not zP^t_Cx$. Suppose zP^t_Cx. Since yR^t_Cz, it follows from transitivity of R^t_C that $(y, x) \in yP^t_Cx$, which is a contradiction. Thus $\not zP^t_Cx$.

3. Third, let us show that for any $t \in T \setminus \{t^1\}$, if $\not yP^t_Cx$ and $\not zP^t_Cy$, then $\not zP^t_Cx$. Suppose, in the contrary, zP^t_Cx. Then, it is derived from \textbf{BWC} under either of the case α-2), β), or γ); or it is derived from \textbf{RM}-2) under case δ).
Let $zP_C^t x$ be derived from BWC. Suppose that the case α-2) or γ) is applied with $BC^t \lor_i C_i(x)$ for all $i \in L^t_C(x; \triangleright_e)$. Thus, by FCD and RM, it is impossible that $yNR^t_C x$. Thus, $xR^t_C y$. Then, by transitivity, $zP_C^t y$, which is a contradiction.

Suppose that $zP_C^t x$ is derived from BWC by applying property β). Then, not $[C_i(x) \triangleright_e BC^t]$ and not $[BC^t \triangleright_e C_i(x)]$ hold for some $i \in L^t_C(x; \triangleright_e)$. In this case, $xR^t_C y$ or $xNR^t_C y$. Let $xR^t_C y$. This case is derived from BWC by applying β), which implies that $BC^t \lor_i C_i(y)$ for all $i \in L^t_C(y; \triangleright_e)$. Then, $zP_C^t y$ holds by BWC with applying α-2). Thus, a contradiction. Next, let $xNR^t_C y$. This is derived from RC by applying case ε). To apply case ε) for (x, y), the case that not $[C_j(y) \triangleright_e BC^t]$ and not $[BC^t \triangleright_e C_j(y)]$ for some $j \in L^t_C(y; \triangleright_e)$ must hold. Then, $zP_C^t y$ is derived from BWC by applying case β), which is a contradiction.

Suppose that $zP_C^t x$ is derived from BWC by applying case α-2) with $BC^t \lor_i C_i(x)$ for all $i \in L^t_C(x; \triangleright_e)$. Then, $yNR^t_C x$ is impossible. Thus, $xR^t_C y$. Then, by transitivity, $zP_C^t y$, which is a contradiction. In summary, $zP_C^t x$ cannot be derived from BWC.

Let $zP_C^t x$ be derived from RM-2) under case δ). Then, $BC^t \lor_i C_i(x)$ for all $i \in L^t_C(x; \triangleright_e)$. Thus, by FCD and RM, it is impossible that $yNR^t_C x$. Thus, $xR^t_C y$. Then, by transitivity, $zP_C^t y$, which is a contradiction. Thus, $zP_C^t x$ cannot be derived from RM-2).

In summary, for any $t \in T \setminus \{t^1\}$, if not $yP_C^t x$ and not $zP_C^t y$, then not $zP_C^t x$.

4. By the above arguments of 1. and 3., we have $xR^t_C z$ and not $zP_C^t x$ for any $t \in T \setminus \{t^1\}$. Thus, $xR^t_C z$ holds.

Proof of Theorem 1. Let $T = \{t^1\}$, $\{i, j, h, h'\} \subset N_C^{t^1} = N$, $L^t_C(x; \triangleright_e) = \ldots$
\{i, j, h\}, \ L_C^{t_1}(y; \succ_i t_1) = \{i, j, h\}, \text{ and } L_C^{t_1}(z; \succ_i t_1) = \{i, j, h, h'\}. \ Suppose that:

\[
BC^{t_1} \succ_i C_i(x) \sim_{i, 1} C_j(x) \sim_{i, 1} C_h(x); \\
BC^{t_1} \succ_i C_i(y) \sim_{i, 1} C_j(y) \sim_{i, 1} C_h(y); \\
BC^{t_1} \succ_i C_i(z) \sim_{i, 1} C_j(z) \sim_{i, 1} C_h(z); \\
\text{not } [BC^{t_1} \succ_i C_{h'}(z) \text{ or } C_{h'}(z) \succ_{i, 1} BC^{t_1}]; \\
C_i(x) \succ_i C_i(y) \succ_i C_i(z); \\
C_j(x) \succ_j C_j(y) \succ_j C_j(z); \\
C_h(x) \succ_h C_h(y) \succ_h C_h(z); \text{ and} \\
C_{h'}(x) \succ_{h'} C_{h'}(y) \succ_{h'} C_{h'}(z).
\]

Moreover, for any \(k \in t_1\backslash \{i, j, h, h'\}\), let \(C_k(z) \succ_{i, 1} C_{h'}(z), \ C_k(x) \succ_{i, 1} BC^{t_1}, \ C_k(y) \succ_{i, 1} BC^{t_1}, \ C_k(z) \succ_{i, 1} BC^{t_1}, \) and \(C_k(x) \succ_k C_k(y) \succ_k C_k(z)\).

Then, since \(BC^{t_1} \succ_{i, 1} C_i(x)\) for all \(i \in L_C^{t_1}(x; \succ_i t_1)\), and \(not BC^{t_1} \succ_{i, 1} C_{h'}(z) \& not C_{h'}(z) \succ_{i, 1} BC^{t_1}\) for \(h' \in L_C^{t_1}(z; \succ_i t_1)\), it follows that \(zP_C^{t_1}x\) from \(BWC\) under case \(\gamma\). Thus, since \(T = \{t_1\}\) by \(NR\), \(zP_C^{x}x\) holds, while by \(WP\), \(xP_C^{x}z\) holds. Thus, a contradiction, which implies \(NR\) and \(WP\) are incompatible.

\textbf{Proof of Lemma 2}. 1. Let \(xR_C^{NR}y\) and \(yP_C^{WP}z\). This implies that there exists \(t_1 \in T\) such that \(xR_C^{t_1}y\) and \(not yP_C^{t_1}x\) for any other \(t \in T\), and \(C_i(y) \succ_i C_i(z)\) holds for all \(i \in N\). Moreover, \(xR_C^{t_1}y\) is derived from \(BWC\) by applying either of the case \(\alpha), \beta), \text{ or } \gamma\); or it is derived from \(RM\) by applying case \(\delta\).

2. We show that for any \(t \in T\), (i) \(not yP_C^{t_1}x\), and (ii) \(C_i(y) \succ_i C_i(z)\) holds for all \(i \in N\) together imply that \(xR_C^{t_1}z \text{ or } xNR_C^{t_1}z\). First of all, \(not yP_C^{t_1}x\) if and only if \(xR_C^{t_1}y\) or \(xNR_C^{t_1}y\). If \(xR_C^{t_1}y\), then it is derived from \(BWC\) by applying the case \(\alpha), \beta), \text{ or } \gamma\); or from \(RM\) by applying property \(\delta\). If \(xNR_C^{t_1}y\), then it is derived from \(RC\) by applying the case \(\epsilon\) or \(\varepsilon\).

2-i). Suppose \(xR_C^{t_1}y\) is derived from \(BWC\) by applying the case \(\alpha), \beta), \text{ or } \gamma\). Then, \(not [BC^{t_1} \succ_i C_i(x)]\) for some \(i \in L_C^{t_1}(x; \succ_i t_1)\). Note, since \(C_i(y) \succ_i C_i(z)\) holds for all \(i \in N\), \(not [C_h(z) \succ_i C_j(y)]\) holds for any \(j \in L_C^{t_1}(y; \succ_i t_1)\) and any \(h \in L_C^{t_1}(z; \succ_i t_1)\). To see this, let us suppose that \([C_h(z) \succ_i C_j(y)]\) holds for some \(j \in L_C^{t_1}(y; \succ_i t_1)\) and some \(h \in L_C^{t_1}(z; \succ_i t_1)\). Then, it follows that \(C_h(z) \succ_i C_j(y) \succ_j C_j(z)\). If \(j \in L_C^{t_1}(z; \succ_i t_1)\), then \(C_j(z) \sim_{i, 1} C_h(z)\) holds by \(D\), which implies \(C_h(z) \succ_i C_j(y) \succ_j C_j(z) \sim_{i, 1} C_h(z)\) by the definition of \(\succeq_i \equiv \cap_{i \in N} \succ_i\). However, it is a contradiction, since \(\succeq_j\) must be transitive.
Therefore, $j \notin L^t_C(z; \succeq_t)$, which implies that there exists $k \in L^t_C(z; \succeq_t)$ such that $C_h(z) \succeq_t C_j(y) \succ_j C_j(z) \succ_t C_h(z)$. Then, since $C_k(z) \sim_t C_h(z)$, it is also a contradiction by the definition of \succeq_t and the transitivity of \succ_t. Thus, not $[C_h(z) \succeq_t C_j(y)]$ holds for any $j \in L^t_C(y; \succeq_t)$ and any $h \in L^t_C(z; \succeq_t)$.

Suppose zP^t_Cx. Then, if this relation is derived from BWC, it is due to the application of the case β with not $[BC^t \succeq_t C_i(x)]$ and not $[C_i(x) \succeq_t BC^t]$ for some $i \in L^t_C(x; \succeq_t)$. This implies that $C_i(z) \succeq_t BC^t$ for any $i \in L^t_C(z; \succeq_t)$. In this case, xR^t_Cy is derived from BWC by applying the case γ, so that $BC^t \succ_t C_i(y)$ for any $i \in L^t_C(y; \succeq_t)$. Thus, by the transitivity, $[C_h(z) \succ_t C_j(y)]$ holds for any $j \in L^t_C(y; \succeq_t)$ and any $h \in L^t_C(z; \succeq_t)$, which is a contradiction. Since there is no other situation to generate zP^t_Cx together with xR^t_Cy under BWC and the case α, β, or γ, the last result implies that zP^t_Cx is impossible. Thus, xR^t_Cz or xNR^t_Cz.

2-ii). Suppose xNR^t_Cy is derived from RC by applying the case ϵ or ε). If ϵ is applied for xNR^t_Cy, then $[C_i(x) \succ_t BC^t]$ holds for any $i \in L^t_C(x; \succeq_t)$. Then, xR^t_Cz or xNR^t_Cz is derived by applying either of the case α, β, ϵ, or ε.

If case ε is applied for xNR^t_Cy, then not $[BC^t \succeq_t C_i(x)]$ for some $i \in L^t_C(x; \succeq_t)$ and not $[C_j(x) \succeq_t BC^t]$ for some $j \in L^t_C(x; \succeq_t)$] and not $[BC^t \succeq_t C_i(y)]$ for some $i \in L^t_C(y; \succeq_t)$ and not $[C_j(y) \succeq_t BC^t]$ for some $j \in L^t_C(y; \succeq_t)$]. Note that in such a case, it does not follow that $[C_i(x) \succ_t BC^t]$ for some $i \in L^t_C(x; \succeq_t)$ and $[BC^t \succ_t C_j(x)]$ for some $j \in L^t_C(x; \succeq_t)$. Indeed, if so, the transitivity of \succeq_t implies $C_i(x) \succ_t C_j(x)$ for some $i, j \in L^t_C(x; \succeq_t)$, which is a contradiction from the definition of $L^t_C(x; \succeq_t)$. Thus, if not $[BC^t \succeq_t C_i(x)]$ for some $i \in L^t_C(x; \succeq_t)$, then not $[C_i(x) \succeq_t BC^t]$ also holds. Similarly, not $[BC^t \succeq_t C_i(y)]$ and not $[C_j(y) \succeq_t BC^t]$ for some $i \in L^t_C(y; \succeq_t)$ also hold. Then, by either RC with case ε or BWC with γ, xR^t_Cz or xNR^t_Cz is derived.

2-iii). Suppose xR^t_Cy is derived from RM by applying case δ. Then, since $C_i(y) \succ_t C_i(z)$ holds for all $i \in N^t_C$, we have, by combining with RM with case δ, $C_i(x) \succeq_t C_j(y) \succ_j C_j(z)$ for any $i \in L^t_C(x; \succeq_t)$ and any $j \in L^t_C(y; \succeq_t)$. By definition of $L^t_C(z; \succeq_t)$, FCD, and D, $C_j(z) \succeq_t C_h(z)$ holds for any $h \in L^t_C(z; \succeq_t)$ and any $j \in L^t_C(y; \succeq_t)$. Indeed, unless $j \in L^t_C(z; \succeq_t)$, there is another $h \in L^t_C(z; \succeq_t)$ such that $C_j(z) \succ_t C_h(z)$. Then, since $C_j(z) \sim_t C_h(z)$ holds for any $h' \in L^t_C(z; \succeq_t)$ by the definition of $L^t_C(z; \succeq_t)$, FCD, and D, the desired result holds. Then, it follows that $C_j(y) \succ_t C_h(z)$ for any $j \in L^t_C(y; \succeq_t)$ and any $h \in L^t_C(z; \succeq_t)$ from the definition of $L^t_C(z; \succeq_t)$. To see this, suppose $C_j(y) \succeq_t C_h(z)$ for some $j \in L^t_C(y; \succeq_t)$ and some $h \in L^t_C(z; \succeq_t)$. Then, by the definition of \succeq_t, $C_j(y) \succ_j C_h(z)$. Thus, not $[C_j(y) \succeq_t C_h(z)]$ holds for any $j \in L^t_C(y; \succeq_t)$ and any $h \in L^t_C(z; \succeq_t)$.
Note that as shown in the step this case, it can be shown that equation holds for any \(L \), so that equation holds for any \(C \). Therefore, \(C_i(x) \succ_i C_h(z) \) for any \(i \in L_C(x; \triangleright_i t) \), any \(j \in L_C(y; \triangleright_j t) \), and any \(h \in L_C(z; \triangleright_h t) \). By the transitivity of \(\triangleright_t \), \(C_i(x) \succ_t C_h(z) \) for any \(i \in L_C(x; \triangleright_i t) \) and any \(h \in L_C(z; \triangleright_h t) \). Since \(xR_C(y \succ_i y) \) is derived from \(\text{RM} \) by applying case \(\delta \), the transitivity of \(\triangleright_t \) implies that \(BC^t_i \succ_t C_h(z) \) for any \(h \in L_C(z; \triangleright_h t) \), and so by \(\text{RM} \) with case \(\delta \), \(xP^t_C(z) \) holds.

3. Let \(xR_C(z) \) be derived from \(\text{BWC} \) by applying either of the case \(\alpha \), \(\beta \), or \(\gamma \).

3-i): Let \(xR_C(z) \) be derived from \(\text{BWC} \) by applying case \(\alpha \). Then, \(BC^t_i \succ_i C_j(y) \) for all \(j \in L_C(y; \triangleright_j t) \), and \(C_i(x) \succ_t BC^t_i \) for all \(i \in L_C(x; \triangleright_t) \). Then, we can show that \(C_i(x) \succ_i BC^t_i \) holds for every \(i \in N_C^t \). First, if \(i \in N_C^t \) is \(C_i(x) \succ_i C_j(x) \) for some \(j \in L_C(x; \triangleright_j t) \), it is obvious. If \(i \in N_C^t \) is not \([C_i(x) \succ_i C_j(x)] \) for any \(j \in L_C(x; \triangleright_j t) \), then \(i \in L_C(x; \triangleright_t) \), so that \(C_i(x) \succ_t BC^t_i \) holds.

Let us consider \(L_C^t_i(z; \triangleright_i t) \). Since \(C_i(y) \succ_i C_i(z) \) holds for all \(i \in N_C^t \), we can show as in the step 2-i) of this proof that not \(C_i(z) \succ_i C_j(y) \) holds for any \(j \in L_C^t_i(y; \triangleright_j t) \) and any \(i \in L_C^t_i(z; \triangleright_i t) \). Then, since \(BC^t_i \succ_i C_j(y) \succ_j C_i(z) \) for all \(j \in L_C^t_i(y; \triangleright_j t) \), not \(C_i(z) \succ_i BC^t_i \) holds for any \(i \in L_C^t_i(z; \triangleright_i t) \). In fact, if \(C_i(z) \succ_i BC^t_i \) holds for some \(i \in L_C^t_i(z; \triangleright_i t) \), it implies \(C_i(z) \succ_i BC^t_i \succ_i C_j(y) \succ_j C_i(z) \) for some \(h \in L_C^t_i(z; \triangleright_i t) \) as argued in the step 2-i) of this proof, which is a contradiction. Therefore, not \(C_i(z) \succ_i BC^t_i \) holds for any \(i \in L_C^t_i(z; \triangleright_i t) \). Thus, \(xP^t_C(z) \) is derived from \(\text{BWC} \) by applying the case \(\alpha-2 \) or \(\beta \). Note that in this case, it can be shown that not \(xP^w_P \) holds.

3-ii): Let \(xP_C^t(y) \) be derived from \(\text{BWC} \) by applying case \(\beta \) but not applying case \(\alpha \). Then, not \(C_j(y) \succ_j BC^t_i \) and not \(C_j(y) \succ_j BC^t_i \) for any \(j \in L_C^t_i(y; \triangleright_j t) \) due to \(D \), and \(C_i(x) \succ_t BC^t_i \) for all \(i \in L_C^t_i(x; \triangleright_t) \). Then, by the property of \(\triangleright_t \), not \(C_j(y) \succ_j BC^t_i \) and not \(C_j(y) \succ_j BC^t_i \).

Note that as shown in the step 2) of this proof, \(xR_C^t(z) \) or \(xN_R_C(z) \) holds.

Suppose \(xI_C^t(z) \). This is possible only when \(C_i(x) \sim_i BC^t_i \) for all \(i \in L_C^t(x; \triangleright_i t) \) and \(C_h(z) \sim h BC^t_i \) for all \(h \in L_C^t(z; \triangleright_h t) \). Therefore, \(C_h(y) \succ_h BC^t_i \sim h C_h(z) \) for all \(h \in L_C^t(z; \triangleright_h t) \). Since \(BC^t_i \sim h C_h(z) \) for all \(h \in L_C^t(z; \triangleright_h t) \) implies \(BC^t_i \sim h C_h(z) \) for all \(h \in L_C^t(z; \triangleright_h t), L_C^t(z; \triangleright_h t) \cap L_C^t(y; \triangleright_j t) = \emptyset \) follows from \(C_i(y) \succ_i C_i(z) \) for all \(i \in N \). Then, since
\[C_j(z) \succ_{t^1} BC^{t^1}, \quad C_j(y) \succ_j C_j(z) \succ_{j} BC^{t^1} \] holds, which is a contradiction from \(\text{not } C_j(y) \succ_{j} BC^{t^1}\). Thus, \(xR^t_C z\) is impossible.

Suppose \(xNR_C^{t^1} z\). This implies that \((x, z)\) corresponds to case \(\epsilon\), so that \(C_i(z) \succ_{t^1} BC^{t^1}\) for all \(i \in L_C^{t^1}(z; \prec_{t^1})\). Again, in this case, \(L_C^{t^1}(z; \prec_{t^1}) \cap L_C^{t^1}(y; \prec_{t^1}) = \emptyset\) follows from \(j \notin L_C^{t^1}(z; \prec_{t^1})\). If \(j \in L_C^{t^1}(z; \prec_{t^1})\), then \(C_j(y) \succ_j C_j(z) \succ_{j} BC^{t^1}\) holds, which is a contradiction from \(\text{not } C_j(y) \succ_{j} BC^{t^1}\).

However, \(C_i(z) \succ_{t^1} BC^{t^1}\) for all \(i \in L_C^{t^1}(z; \prec_{t^1})\) implies that \(C_i(z) \succ_{t^1} BC^{t^1}\) for all \(i \in N_C^{t^1}\). Therefore, \(C_j(y) \succ_j C_j(z) \succ_{j} BC^{t^1}\) holds, which is again a contradiction. Thus, \(xNR_C^{t^1} z\) is impossible.

In conclusion, \(xP_C^{t^1} z\) holds. Note that in this case, it can be shown that \(\text{not } zP_C^{t^1} x\) holds.

3-iii): Let \(xP_C^{t^1} y\) be derived from \(\text{WBC}\) by applying the case \(\alpha-2\) or \(\gamma\).

This implies \(\text{not } BC^{t^1} \succ_{t^1} C_i(x)\) for some \(i \in L_C^{t^1}(x; \prec_{t^1})\), and \(BC^{t^1} \succ_{t^1} C_j(y)\) for all \(j \in L_C^{t^1}(y; \prec_{t^1})\).

Suppose \(zR_C^{t^1} x\). In order to ensure \(zR_C^{t^1} x\), \(C_i(z) \succ_{t^1} BC^{t^1}\) holds for all \(i \in L_C^{t^1}(z; \prec_{t^1})\). However, since \(BC^{t^1} \succ_{t^1} C_j(y) \succ_j C_j(z)\) for all \(j \in L_C^{t^1}(y; \prec_{t^1})\), we have \(C_i(z) \succ_{t^1} BC^{t^1} \succ_{t^1} C_j(y) \succ_j C_j(z)\) for all \(j \in L_C^{t^1}(y; \prec_{t^1})\) and all \(i \in L_C^{t^1}(z; \prec_{t^1})\). Therefore, \(BC^{t^1} \succ_j C_j(z)\) for all \(j \in L_C^{t^1}(y; \prec_{t^1})\). However, \(C_i(z) \succ_{t^1} BC^{t^1}\) holds for all \(i \in L_C^{t^1}(z; \prec_{t^1})\) implies that \(C_i(z) \succ_{t^1} BC^{t^1}\) holds for all \(i \in N_C^{t^1}\), and so \(C_i(z) \succ_{t^1} BC^{t^1}\) holds for all \(i \in N_C^{t^1}\). Thus, we have a contradiction. Thus, \(zR_C^{t^1} x\) is impossible.

Suppose \(zNR_C^{t^1} x\). Note that \(zNR_C^{t^1} x\) is derived from \(\text{RC}\) by applying the case \(\epsilon\) or \(\varepsilon\). If case \(\varepsilon\) is applied, then \(C_i(z) \succ_{t^1} BC^{t^1}\) holds for all \(i \in L_C^{t^1}(z; \prec_{t^1})\). Then, as in the same argument as the case of supposing \(zR_C^{t^1} x\), we have a contradiction. Thus, \(zNR_C^{t^1} x\) is impossible to be derived from \(\text{RC}\) by applying the case \(\epsilon\).

If case \(\varepsilon\) is applied, then

\[\text{not } C_j(z) \succ_{t^1} BC^{t^1} \quad \text{for some } j \in L_C^{t^1}(z; \prec_{t^1}); \]

or

\[\text{not } BC^{t^1} \succ_{t^1} C_i(z) \quad \text{for some } i \in L_C^{t^1}(z; \prec_{t^1}). \]

Let the former do not hold, so that \(C_i(z) \succ_{t^1} BC^{t^1}\) holds for all \(i \in L_C^{t^1}(z; \prec_{t^1})\). Then, again, since \(BC^{t^1} \succ_{t^1} C_j(y) \succ_j C_j(z)\) for all \(j \in L_C^{t^1}(y; \prec_{t^1})\), we have \(BC^{t^1} \succ_{t^1} C_h(z)\) for all \(h \in L_C^{t^1}(z; \prec_{t^1})\) by applying \(\text{D}\), which is a contradiction. Let the latter do not hold, so that \(BC^{t^1} \succ_{t^1} C_i(z)\).
for all \(i \in L^i_C(z; \bar z_i) \). Again, since \(BC^i \succ_i C_j(y) \succ_j C_j(z) \) for all \(j \in L^i_C(y; \bar z_i) \), we have \(BC^i \succ_i C_h(z) \) for all \(h \in L^i_C(z; \bar z_i) \). Then, \(not zP^t \) is derived from \(RM \) by applying case \(\delta \). Then, by \(FCD \), \(yR^t \) holds for all \(\). Thus, by transitivity, \(xP^t \), which is a contradiction from \(zNR^t \). In summary, \(zNR^t \) does not hold.

In conclusion, \(xP^t \) holds. Note that in this case, it can be shown that \(not zP^t \) holds.

4. Let \(xP^t \) be derived from \(RM \) by applying case \(\delta \). Then, \(BC^i \succ_i C_i(x) \) for all \(i \in L^i_C(x; \bar z_i) \); and also, \(BC^i \succ_i C_i(y) \) for all \(i \in L^i_C(y; \bar z_i) \). Since \(BC^i \succ_i C_j(y) \succ_j C_j(z) \) for all \(j \in L^i_C(y; \bar z_i) \), \(D \) implies that \(BC^i \succ_i C_h(z) \) for all \(h \in L^i_C(z; \bar z_i) \). Thus, by \(FCD \) and \(RM \) with case \(\delta \), \(yR^t \) is derived. Hence, the pair \((x, z)\) corresponds to case \(\delta \). Moreover, \(C_i(x) \succ_i C_j(y) \succ_j C_j(z) \) holds for all \(i \in L^i_C(x; \bar z_i) \), all \(j \in L^i_C(y; \bar z_i) \), and all \(h \in L^i_C(z; \bar z_i) \). Then, by the transitivity of \(\succ \), \(C_i(x) \succ_i C_i(y) \) holds for all \(i \in L^i_C(x; \bar z_i) \) and all \(h \in L^i_C(z; \bar z_i) \). Thus, \(xP^t \) holds by \(RM \). Note that in this case, it can be shown that \(not zP^t \) holds.

5. In combining the above arguments, if \(xR^t \) and \(yP^t \), then \(xP^t \) or \(xNR^t \) holds and \(xR^t \) or \(xNR^t \) for any \(t \in T \setminus \{t^1\} \), thus \(xP^t \) or \(xNR^t \). Moreover, \(not zP^t \) holds. Therefore, by the transitive closure, \(xP^t \).

Proof of Lemma 3. Let \(xP^t \) and \(yP^t \). This implies that there exists \(t \in T \) such that \(yP^t \) and \(not zP^t \) for any other \(t \in T \), and \(C_i(x) \succ_i C_i(y) \) holds for all \(i \in N \).

1. We will show that, in this case, \(xP^t \) holds.

First, if \(yP^t \) is derived from \(BWC \) by applying either of the case \(\alpha-2 \), \(\beta \), or \(\gamma \), then \(xP^t \) is derived from \(BWC \) by applying either of the case \(\alpha-2 \), \(\beta \), or \(\gamma \).

Second, if \(yP^t \) is derived from \(BWC \) by applying case \(\alpha-1 \), then \(xP^t \) is derived from \(BWC \) by case \(\alpha \). Moreover, since \(C_i(x) \succ_i BC^t \) for all \(i \in L^i_C(x; \bar z_i) \), \(xP^t \) holds by \(BWC \) with case \(\alpha-2 \).

Third, let \(yR^t \) be derived from \(RM \) by applying case \(\delta \). If \(C_i(x) \prec_t BC^t \) for all \(i \in L^i_C(x; \bar z_i) \), then \(xP^t \) is derived from \(RM \) and \(FCD \); otherwise, then \(xP^t \) is derived from \(BWC \) and \(FCD \) by applying the case \(\alpha-2 \) or \(\gamma \).

In summary, \(xP^t \) holds for \(t^1 \in T \).

2. Next, we will show that \(not zP^t \) for any \(t \notin T \setminus \{t^1\} \). Note that for any \(t \notin T \setminus \{t^1\} \), (i) \(not zP^t \), and (ii) \(C_i(x) \succ_i C_i(y) \) holds for all \(i \in N \)
together imply that $xR_C^t z$ or $xNR_C^t z$. First of all, not $P_C^t y$ if and only if $yR_C^t z$ or $yNR_C^t z$.

If $yR_C^t z$, then it is derived from **BWC** by applying the case $\alpha\), \beta\), or $\gamma\)$, or from **RM** by applying case $\delta\)$. Then, as shown in the case of 1., we can see that $P_C^t z$ holds for any $t \in T \setminus \{t^1\}$.

If $yNR_C^t z$, then it is derived from **RC** by applying the case $\epsilon\) or $\varepsilon\)$. If case $\epsilon\)$ is applied for $yNR_C^t z$, then $xNR_C^t z$ also holds by **RC**. If $\varepsilon\)$ is applied for $yNR_C^t z$, then $[\text{not } B_C^t ; C_i(y)]$ for some $i \in L_C^t(y; \zeta_i)$ and $not [C_j(y) \approx t B_C^t]$ for some $j \in L_C^t(y; \zeta_j)$ and $[\text{not } B_C^t ; C_i(z)]$ for some $i \in L_C^t(z; \zeta_i)$ and $not [C_j(z) \approx t B_C^t]$ for some $j \in L_C^t(z; \zeta_j)$. Then, since $C_i(x) \approx t C_i(y)$ holds for all $i \in N$, **RC** with case $\epsilon\)$ is again applied for $xNR_C^t z$ or **BWC** with case $\beta\)$ is applied for $xR_C^t z$.

Thus, in summary, for any $t \in T \setminus \{t^1\}$, $xR_C^t z$ or $xNR_C^t z$ holds.

3. From 1. and 2., $P_C^{NR} z$ holds. Finally, in any case, it is impossible to have $zR_C^{WP} x$. Therefore, by transitivity, $P_C^t z$. ■