
Comparison of design-based sample mean estimate

with an estimate under re-sampling-based multiple

imputations

Recai Yucel

1 Introduction

This section introduces the general notation used throughout this report.

Let Y denote a binary random variable, and let the values of the Y in a random sample

of n be denoted as y = (y1, y2, . . . , yn). We assume that this random sample of n is

obtained under a simple random sample without replacement (SRSWOR). Further we will

work with the decomposition of y corresponding to the observed values and missing values:

ycom = (yobs, ymis). Missingness indicator ri will be used to in the following way:

ri =


1 if yi is missing,

0 if yi is observed,

and r = (r1, r2, . . . , rn). Methods dealing with missing data typically assume one of the

following missingness mecahnisims:

MCAR: P (r | yobs, ymis) = P (r)

MAR: P (r | yobs, ymis) = P (r | yobs)

MNAR: P (r | yobs, ymis) = P (r | yobs, ymis)

Throughout this report we will assume MCAR as the underlying mechanism for missing-

ness. The general idea of multiple imputation is to replace missing values with m sets of
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plausible values. In a parametric multiple imputation, an imputation model (e.g. normal

distribution) is used to draw these values, which is often called predictive distribution of

missing values. To make a fair comparison of the estimation methods between design-based

estimate by Stanek et al. , we will not assume any parametric structure on Y , but rather

randomly sample from yobs. The details are explained below.

2 Estimation routines

2.1 Stanek et al. estimate

The estimate of the population mean is proposed to be the weighted sum of three terms:

µ̂0 =
1

N
[nȲ + (N − n)P̂1 + NπP̂2], (1)

where

Ȳ =
1

n

n∑
i=1

Yi sample mean (for missing values Yi = 0, i.e. Ȳ = 1
n

∑n
i=1 riYi)

P̂1 : predictor of response for subject not selected (Ȳ )

P̂2 : predictor of response for Nπ subjects where the response is expected to be missing

π : is the estimate of the probability of responding

The estimate of the variance of this estimate is given by

V̂ (µ̂0) =
n0

nn1

T 2 +
N − n

N

s2
1

n
, (2)

where

T 2 =
1

n1

n∑
i=1

riY
2
i , where n1 = nobs, n0 = nmis

s2 = sample variance based on yobs, assuming ymis = 0
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2.2 Multiple imputation estimate

m sets of imputations are obtained by random draws from yobs using SRSWOR. After

obtaining m imputations of ymis, we calculate the sample mean and estimate of its variance

for each of the imputed dataset. These estimates are then combined using rules for scalar

estimates by Rubin (1987). Note that these rules do not relate the procedure used in

creating the imputations nor the missingness mechanism. It should be seen as a way to

reflect the uncertainty due to imputation method into estimation. In standard notation,

these rules are given below:

Q̂ = complete-data point estimate

Û = complete-data variance estimate

Q̄ = m(−1)
m∑

t=1

Q̂(t)

B = (m− 1)−1
m∑

t=1

(Q̂(t) − Q̄)2

= Between imputation variance

Ū = m(−1)
m∑

t=1

U (t)

= Within imputation variance

T = Ū + (1 + m−1)B

= Total variance

Interval estimate is Q̄± tν
√

T , where

ν = (m− 1)

[
1 +

Ū

(1 + m−1)B

]2

.

Degrees of freedom vary from m−1 to ∞, depending on relative sizes of Ū and (1+m−1)B.

Relative increase in variance due to nonresponse is estimated by

r =
(1 + m−1)B

Ū
,
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and, fraction of missing information is estimated by r+2/(ν+3)
r+1

. It is often noted that this

estimate can be noisy for small n

In our application, complete-data point estimate is given by Q = ȳ =
∑n

i=1 yi/n and

complete-data variance estimate is given by U = ˆV ar(ȳ) = N−n
N−1

s2

n
, where t denotes the

imputation number. Note that these are estimates under SRSWOR.

Question: Should one correct these estimates to reflect the fact that parts of data were

imputed from yobs?

3 Simulation study

3.1 Simulation conditions

This simulation study attempts to compare performances of the following estimators:

• design-based estimator by Stanek et al.

• Multiple imputation

These methods are explained in detail below in (2) and (4). Notation used is also explained

below.

This simulation experiment assumes that the population consists of N = 100 binary

values and simulations repeatedly draw sample of n = 20 via simple random sampling

without replacement (SRSWOR). Let yi denote the ith value of the sampled unit, and let

y denote the vector that consists of the yi, y = (y1, . . . , yn).

Total number of repetition is 1000, and in each of the repetition we perform the follow-

ing:

1. Sampling Select n = 20 from N = 100 using SRSWOR.

2. Imposing missing values Draw missingness indicator, ri ∼ Bernoulli(0.6), i =

1, 2, . . . , n. Note that this indicator will be used to set the values of yi to missing in
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the following sense:

yi =


1 if yi is missing,

0 if yi is observed.

Let yobs and ymis denote the partitions of y corresponding to observed and missing

parts of y. Then yobs = y[r == 0].

3. Drawing (re-sampling) imputations from yobs. In each cycle of the simulation,

form multiple imputations, i.e. multiply re-sample n∗ = n − nobs from yobs using

SRSWOR. This step consists of the following three steps:

(a) Sample nmis from nobs using SRSWOR,

(b) Calculate estimates of mean (Ȳ ) and its variance ( ˆV ar(ȳ)) using standard SR-

SWOR formulas,

(c) Repeat (a) and (b) 10 times, each time store the estimates,

(d) Combine the 10 sets of mean estimate and its variance estimate.

3.2 Results and next steps

The results show consistency between two estimates with respect to evaluation criterion

MSE. Note that the column BD (the estimates based on sample before deletion) represents

the gold standard that the two approach try to capture. There is a gap between the MSEs

of the two method and the MSE of the sample mean before deletion. It would be desirable

to further understand whether this gap is important, and whether the estimates could be

improved to close the gap. It is also important to further understand the differences in the

variance estimates between design-based and MI methods. Surprisingly, the MI method

resulted in estimates that were closer to estimates under BD.

Second step will be to look at the combined variance of the estimate under MI (column

2). This estimate is based on the following two quantities: Between imputation variance

assessing the variability across the imputations B = (m − 1)−1 ∑m
t=1(Q̂

(t) − Q̄)2 = (m −
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Table 1: Simulation results: Mean estimates followed by the
√

MSE, given in parantheses

(BD: before deletion; MI: multiple imputation, Ed: Ed’s method; all are averages across

the simulations)

Method

BD MI Ed

Scenario 1: µ=0.19, σȲ = σ/
√

n = 0.08816

0.9015(0.0788) 0.1895(0.0993) 0.1895(0.0991)

Scenario 2: µ=0.35,σȲ = σ/
√

n = 0.1072

0.3489(0.0312) 0.3502(0.0389) 0.3504(0.0389)

Scenario 3: µ=0.57, σȲ = σ/
√

n = 0.1113

0.5692(0.0708) 0.5726 (0.0747) 0.5719(0.0745)

Scenario 4: µ=0.66, σȲ = σ/
√

n = 0.1065

0.6605(0.0301) 0.6589 (0.0384) 0.6591(0.0380)

Scenario 5: µ=0.72, σȲ = σ/
√

n = 0.1009

0.7227(0.0285) 0.7238 (0.0352) 0.7233(0.0354)

Scenario 6: µ= 0.8 , σȲ = σ/
√

n = 0.0899

0.7973 (0.0254) 0.7961 (0.0325) 0.7968 (0.0324)

Scenario 7: µ=0.91, σȲ = σ/
√

n = 0.0643

0.9099(0.0178) 0.9104 (0.0227) 0.9106(0.0226)
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Table 2: Simulation results: Variance estimates (BD: before deletion; MI: multiple impu-

tation, Ed: Ed’s method; all are averages across the simulations)

Method

BD MI Ed

Scenario 1: µ=0.19, σȲ = σ/
√

n = 0.08816

0.00774 0.00722 0.01015

Scenario 2: µ=0.35,σȲ = σ/
√

n = 0.1072

0.01144 0.01083 0.01685

Scenario 3: µ=0.57, σȲ = σ/
√

n = 0.1113

0.01235 0.01169 0.02262

Scenario 4: µ=0.66, σȲ = σ/
√

n = 0.1065

0.01133 0.01063 0.02369

Scenario 5: µ=0.72, σȲ = σ/
√

n = 0.1009

0.01012 0.00954 0.02462

Scenario 6: µ= 0.8 , σȲ = σ/
√

n = 0.0899

0.00817 0.00767 0.02487

Scenario 7: µ=0.91, σȲ = σ/
√

n = 0.0643

0.00415 0.00389 0.02424
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1)−1 ∑m
t=1(ȳ

(t) − ¯̄y)2, where ¯̄y is the average of the sample means across the imputations.

The second quantity is the within imputation variance: W = m(−1) ∑m
t=1 U (t). The total

variance is calculated to be Ū + (1 + m−1)B (Rubin, 1986). As discussed by Schenker and

Rubin (1986), the factor (1 + m−1) reflects the extra variability due to imputations based

on a finite number of imputations (small m). It will be important to derive the estimate

of this variance from a pure finite sampling point in which several processes needed to be

taken into account: sampling, missingness mechanism and imputation. This step is also

important in extending the re-sampling-based multiple imputation inference under other

sampling schemes such as clustered or stratified designs.

Final step pertains to extending the design-based and MI approaches to multivariate set-

tings. Creating imputations by resampling from yobs will be somewhat cumbersome under

the arbitrary missingness, and developing (or using previous methods) sound algorithmical

rules (such as matching to propensity scores) would be potential contributions.
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